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2.7   Simplified explanation of the “critical radius” for a nontechnical person. 

Suppose you have a hot pipe and want to keep the heat inside.  You can 

wrap insulating material around it, the same way you wrap clothes around 

yourself on a cold day.   If the insulating material doesn’t block the heat 

very well, or if there’s not much wind to blow the heat away from the 

outside surface, then something bad can happen:   

The insulation can make the outside of the pipe a lot bigger so the wind 

blows more heat away.  This means that, in some cases, insulation can help 

heat flow.  (Of course, that would only be true up to a certain thickness.  

Beyond that, insulation will once again keep reducing the heat flow.) 
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Finally, the percentage of the heat flowing through the brick will be proportional to its relative 

resistance.   So: 

  Percentage of heat through brick = R2/(R2 + R3) = 0.197/(0.197 + 0.217)100 = 47.6 % 

 7 
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2.10 Compute Q and u for the wall shown in Fig. 2.17 if L = 0.3 m, 

A .  = 0.05 m2/m into the paper, A d pine · s. .
2 = 0.08 m /m, h

1 
=

10 W/m2- 0 c, h = 18 W/m2- 0 c, T 30 ° C and T 
r 00 i oor 

= 10 ° c. 

there be 5 layers each of pine and sawdust. 

Let 

From the example we get the formula for U. Using the numbers 

above and A =  (0.05 + 0.08) = 0.13 m2/m we get: 

u = 1 1 
li3 

+ 10 

Q = UAL'IT = 2.18 

1 
1 

0.14 0.05 
+0.3 0.13 

= 2.18 

0.06 0.08 
o":°"3 0.13 

2 w [5(0.13 �)] (30-10) ° C
2 m m

_
o K

w 
2 rn 

_
o K

w = 28.3 m

2 .11 Find U for the wall in Example 1.2. 

where: 

u =

R S.S.

R cu

1 

= L _ 0. 002 m
k - 17W/rn- ° C 

2 
= 0:000118 m _o c

w 

= k = 0.003 
387 

2 
= 0.00000775 m _o c

w 

so 

8 

u

m
= 4103 _

2

w 
o

__
c 
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Notice that very inaccurate resistances dominate both of these overall
heat transfer coefficients.  We could not reasonably base any precise 
calculations upon them.
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Problem 2.21  Derive an expression for the thermal resistance of a spherical shell 

of inner radius ri and outer radius ro.   

We give the solution to the heat conduction equation for this case in Problem 2.18.  

The resulting heat transfer (considering it to flow from the inside to the outside) is: 

                  Q =4π rorik ΔT/(ro – ri)  

The thermal resistance is then  

          Rt =  ΔT/Q  = [(ro – ri)/4πrorik] K/W  

                                       —————————          
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Problem 2.26  We must illuminate a Space Station experiment in a large tank of 

water at 20 oC.  What is the maximum wattage of a submerged 3 cm diameter 

spherical light bulb that will illuminate the tank without boiling the surrounding 

water.  The bulb is an LED that coverts 70% of the power to light.  Bear in mind 

that this will occur in zero gravity. 

Solution  The problem of heat conduction from a spherical cavity in an infinite 

medium is solved completely in the solution to Problem 2.5.  The result is: 

   Q = 4πkR(Tcavity wall – Tꝏ) = 4π(0.653)(0.015)(100 – 20)  = 9.85 W 

where we use k = 0.653 W/m-K at an average water temperature of 60oC.  The 

power of the bulb is therefore 9.85W/0.30 = 32.8 W  

__________________________________________________________________ 

Problem 2.27  A cylindrical shell is made of two layers: The inner one has an 

inner radius ri and an outer radius rc.  The outer shell has inner and outer radii of rc 

and ro.  There is a contact resistance, hc, between the layers.  The layers have 

different conductivities. T(r = ri) = Ti  and T(r = ro) = To.  What is the inner 

temperature of the outer shell in terms of Ti and To? 

Solution 

   22 
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Problem 2.30  A contact resistance experiment involves pressing two slabs of 
different materials together, imposing a given heat flux through them, and 
measuring the outside temperatures of each slab.   Write the general expression for 
hc in terms of known quantities.  Then determine hc if: The slabs are 2 cm thick 
copper and 1.5 cm thick aluminum, q is 30,000 W/m2, and the two temperatures 
are 15oC and 22.1oC. 

Problem 2.31  A student working heat transfer problems late at night needs a cup 
of hot cocoa to stay awake.  She puts milk in a pan on an electric stove.  To heat 
the milk as fast as possible without burning it, she turns the stove on high and stirs 
the milk continuously.  Use an analogous electric circuit to explain how this works.  
Is it possible to bring the entire bulk of the milk up to the burn temperature without 
burning part of it?   

       _ 
The student wants the resistance 1/hA to decrease so the temperature drop between 
the pan and the milk will stay smaller than Tmilk-burn –Tmilk-bulk.  She accomplishes 
this by stirring to increase the heat transfer coefficient.  But she can do so, only up 
to a point.  There will always have to be some temperature drop between the pan 
wall and the liquid bulk.   

Therefore, it will never be possible to bring the milk temperature all the way up to 
the burning temperature, without first burning the milk at the bottom of the pan. 

 24A
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Problem 2.34  Use data from Fig. 2.3 to create an empirical equation for k(T) in ammonia 

vapor.  (Be aware that, while the data form a nearly straight line, the coordinates are semi-

logarithmic.  The curve-fit must thus take an exponential form.)  Then imagine a hot 

horizontal surface parallel to a cold surface a distance H below with ammonia vapor between 

them.  Derive equations for T(x) and q, with x = 0 at the cold surface and x = H at the hot 

surface.  Compute q if Thot = 150oC, Tcold = -5oC, and H = 0.15m.    

Solution  We first seek an equation of the form k = Ae+BT to fit the almost-straight-line lnk 

vs. ToC data in the Fig. 2.3 coordinates.  Picking two points on the graph, and solving for A 

and B, we get k = 0.0213exp(+0.00392T).  Then:  
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Problem 2.41: You are in charge of energy conservation at your plant. A 300 m run of 6 in. 
O.D. iron pipe carries steam at 125 psig. The pipe hangs in a room at 25°C, with a natural 
convection heat transfer coefficient ℎ = 6 W/m2K. The pipe has an emittance of Y = 0.65. The 
thermal resistances are such that the surface of the pipe will stay close to the saturation temperature 
of the steam. (a) Find the effective heat transfer coefficient between the pipe surface and the room, 
and the rate of heat loss from this pipe, in kWh/y. (b) It is proposed to add a 2 in. layer of glass 
fiber insulation with : = 0.05 W/m·K. The outside surface of the insulation has of Y = 0.7. What 
is the rate of heat loss with insulation? (c) If the installed insulation cost is $50/m including labor 
and the cost of thermal energy is $0.03/kWh, what is the payback time for adding insulation?

Solution.
a) The pipe loses heat by natural convection and thermal radiation. The saturation temperature

of steam at 125 psig = 140 psia = 0.963 MPa may be found from a steam table: 178.3 °C.
The radiation heat transfer coefficient, with )< = (178.3 + 25.0)/2 = 101.6 °C, is

ℎrad = 4Yf)3
< = 4(0.65) (5.67 × 10−8) (101.6 + 273.15)3 = 7.76 W/m2K

The effective heat transfer coefficient is ℎeff = ℎconv + ℎrad = 6 + 7.76 = 13.8 W/m2K.
The annual heat loss is

&ann = ℎeff Δ) �(365.25 × 24 h/y)
= (13.8) (178.3 − 25)c(6) (0.0254) (300) (365.25) (24) = 2.66 × 109 Wh/y

= 2.66 × 106 kWh/y

b) The surface temperature of the insulation is not known yet, but it will be much lower than
the bare pipe. If we guess 40 °C, then

ℎrad = 4(0.7) (5.67 × 10−8) (40 + 273.15)3 = 4.87 W/m2K

and ℎeff = 6 + 4.87 = 10.87 W/m2K. The heat loss is for two thermal resistances in series,
with A> is the radius of the insulated pipe:

'Ctotal =
1

ℎeff(2cA>;)
+ 1

2c;:
ln

A>

Apipe

=
1

(10.87)2c(3 + 2) (0.0254) (300) +
1

2c(300) (0.05) ln
(
3 + 2

3

)
= 3.84 × 10−4 + 5.42 × 10−3 = 5.80 × 10−3 K/W

Then

&ann =
Δ)

'Ctotal
(365.25) (24) = 178.3 − 25

5.80 × 10−3 (365.25) (24) = 232 kWh/y

We must check whether our estimate of the surface temperature for ℎrad is acceptable.
Because the heat flow through the outside resistance equals that through the total resistance,
the fraction of the temperature drop outside the insulation is

)surface − 25
178.3 − 25

=
'Coutside

'Ctotal
=

3.84 × 10−4

5.80 × 10−3 = 0.0662

31
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Solving, the surface temperature is )surface = 35.1 °C. Recalculating with this value gives
ℎeff = 10.65 W/m2K, which represents a 2% reduction of the outside resistance which itself
amounts to only 6.6% of 'Ctotal . There is no need to repeat the calculation with this slightly
lower resistance.

We note that the increase in outside diameter after adding insulation would lower the
natural convection resistance very slightly. In Chapter 8, we’ll see that ℎconv ∼ �−1/4. For
the present dimensions, ℎconv would decrease by about 12% if insulation were added, making
ℎeff = 9.93 W/m2K, a 9% reduction of the outside resistance, but still a very small net
decrease (0.66%) in 'Ctotal .

c) The energy savings is nearly 100%: 2.66 × 106 kWh/y.
Value of energy saved = (2.66 × 106 kWh/y) (0.03 $/kWh) = $79,800/y

Cost of insulation = (300 m) (50 $/m) = $15,000/y
Payback time = (15, 000)/(79, 800) yr = 2.26 months

Adding insulation is an excellent investment. NB: We have not included the cost of capital
because the payback time is very short (the interest on $15,000 over two months will not
increase the cost significantly).

32
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Problem 2.42  A large tank made of thin steel plate contains pork fat at 400oF, which is 

being rendered into oil.  We consider applying a 3-inch layer of 85% magnesia insulation 

to the surface of the tank.  The average heat transfer coefficient is 1.5 Btu/hr-ft2-oF for 

natural convection on the outside.  It is far larger on the inside.  The outside temperature 

is 70oF.  By what percentage would adding the insulation reduce the heat loss? 

Solution:  We sketch a section of the tank below, with the dimensions converted to SI 

units for convenience (See Appendix B for conversion factors).  Thus Tinside = 204.4oC, 

Toutside = 21.1oC, the outer heat transfer coefficient is 8.518 W/m2K, and the wall 

thickness is 0.0762 m.  We get the thermal conductivity of 85% magnesia as 0.80 W/m-K 

directly from Table A.2. 

We assume that we can neglect the resistance of the thin steel tank.  We are also 

confident that the thermal resistance offered by the inner heat transfer coefficient is 

negligible.  This leaves us with only two significant thermal resistances.  They are the 

insulation, if it is present, and the outer heat transfer coefficient:       

Therefore, adding insulation would reduce the heat flux by (1561 -171.3)(100)/1558 

    or  89 percent 

33
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Problem 2.43: The thermal resistance of a cylinder is 'Ccyl = (1/2c:;) ln(A>/A8). If A> = A8 + X, 
show that the thermal resistance of a thin-walled cylinder (X � A8) can be approximated by that for 
a slab of thickness X. Thus, 'Cthin = X/(: �8), where �8 = 2cA8; is the inside surface area. How 
much error is introduced by this approximation if X/A8 = 0.2? Plot 'Cthin /'Ccyl as a function of X/A8. 
Hint: Use a Taylor series.

Solution.

'Ccyl =
1

2c:;
ln

(
A>

A8

)
=

1
2c:;

ln
(
1 + X

A8

)
The Taylor expansion of ln(1 + G) around G = 0 is

ln(1 + G) =
∞∑
==0
(−1)=−1 G

=

=
= G − 1

2
G2 + 1

3
G3 − · · ·

so that

'Ccyl =
1

2c:;

[
X

A8
− 1

2

(
X

A8

)2
+ 1

3

(
X

A8

)3
− · · ·

]
≈ 1

2c:;
X

A8
for X � A8

Letting �8 = 2cA8;, we find that, for X � A8,

'Ccyl ≈ 'Cthin ≡
1

2c:;
X

A8
=

X

:�8

For X/A8 = 0.2,

2c:; 'Ccyl = ln
(
1 + X

A8

)
= 0.1832 · · ·

and
2c:; 'Cthin =

X

A8
= 0.2000

The thin wall approximation is high by 9.7% when X/A8 = 0.2.
The plot is below. To avoid numerical problems as X/A8 → 0: a) use a few terms of the Taylor

expansion of ln(1 + X/A8) in the denominator for X/A8 < 0.15; and b) plot only for X/A8 ≥ 0.001.

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

X/A8

'
C t
hi
n

/ ' C cyl
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Problem 2.44: A Gardon gage measures radiation heat flux by detecting a temperature differ-
ence. The gage consists of a circular constantan membrane of radius ', thickness C, and thermal 
conductivity :ct which is joined to a heavy copper heat sink at its edges. When a radiant heat 
flux @rad is absorbed by the membrane, heat flows from the interior of the membrane to the copper 
heat sink at the edge, creating a radial temperature gradient. Copper leads are welded to the center 
of the membrane and to the copper heat sink, making two copper-constantan thermocouple junc-
tions. These junctions measure the temperature difference Δ) between the center of the membrane, 
) (A = 0), and the edge of the membrane, ) (A = ').

The following approximations can be made:
• The membrane surface has been blackened so that it absorbs all radiation that falls on it.
• The radiant heat flux is much larger than the heat lost from the membrane by convection or
re-radiation. Thus, all absorbed radiation is conducted to the heat sink, and other loses can
be neglected.
• The gage operates in steady state.
• The membrane is thin enough (C � ') that the temperature in it varies only with A, i.e.,
) = ) (A) only.

Solve the following problems.
a) For a fixed heat sink temperature, ) ('), qualitatively sketch the shape of the temperature

distribution in the membrane, ) (A), for two heat radiant fluxes @rad1 and @rad2, where
@rad1 > @rad2.

b) Derive the relationship between the radiant heat flux, @rad, and the temperature difference
obtained from the thermocouples, Δ) . Hint: Treat the absorbed radiant heat flux as if it were
a volumetric heat source of magnitude @rad/C W/m3.

Solution.
a) Since heat flows from the center to the edges, the highest temperature will be at A = 0. The

slope of the temperature profile must be zero at A = 0 by symmetry. The temperatures will
be higher when the radiant flux is greater, except at A = ' where the temperature is fixed.

0 1
) (')

@rad1

@rad2

A/'

M
em

br
an
e
te
m
p.

b) With the approximations given, the situation can be modeled as one-dimensional, steady heat
conduction in cylindrical coordinates, with the absorbed radiation acting like a volumetric
heat release. The heat release per unit volume of membrane is @rad/C. With eqns. (2.11) and

35
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(2.13), the heat conduction equation is:

∇2) + ¤@
:
=

1
U�
�
��7

0
m)

mC

1
A

m

mA

(
A
m)

mA

)
+ 1
A2
�
�
��7

0
m2)

m\2 +
�
�
��7

0
m2)

mI2
= − ¤@

:
= −@rad

:C

1
A

3

3A

(
A
3)

3A

)
= −@rad

:C

Integrating this o.d.e. twice gives
3)

3A
= −@radA

2:C
+ �1
A

) (A) = −@radA
2

4:C
+��>

0
�1 ln A + �2

By symmetry, we require that the temperature gradient 3)/3A = 0 at A = 0 (or equivalently,
that the temperature be finite at A = 0), so �1 = 0.

The temperature difference, ) (0) − ) ('), follows by subtraction without finding �2:

Δ) =
@rad'

2

4:C
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Problem 2.45: You have a 12 oz. (375 mL) can of soda at room temperature (70 °F) that you 
would like to cool to 45 °F before drinking. You rest the can on its side on the plastic rods of the 
refrigerator shelf. The can is 2.5 inches in diameter and 5 inches long. The can’s emittance is 
Y = 0.4 and the natural convection heat transfer coefficient around it is a function of the temperature 
difference between the can and the air: ℎ = 2 Δ)1/4 for Δ) in kelvin.
Assume that thermal interactions with the refrigerator shelf are negligible and that buoyancy 

currents inside the can will keep the soda well mixed.
a) Estimate how long it will take to cool the can in the refrigerator compartment, which is at

40 °F.
b) Estimate how long it will take to cool the can in the freezer compartment, which is at 5 °F.
c) Are your answers for parts a) and b) the same? If not, what is the main reason that they are

different?

Solution. Use a lumped-capacity solution because the liquid in the can is able to circulate, 
minimizing internal temperature gradients. Treat the soda as having the properties of water (App. A, 
Table A.3).

Radiation and natural convection act in parallel, just as in Example 2.7, and the effective heat 
transfer coefficient is the sum of ℎrad and ℎconv. Both depend on the temperature difference between 
the can and the surroundings. While a strict solution would numerically integrate eqn. (1.20) 
to account for changes in the heat transfer coefficients as the can temperature drops, we will get 
sufficient accuracy by evaluating ℎrad and ℎconv at a single, intermediate temperature difference and 
applying eqn. (1.22).

The time constant is

T =
d2+

�(ℎrad + ℎconv)
The volume of the can itself, if calculated, would turn out to be 7% greater than liquid volume.
That’s because an empty "ullage" space is left to accommodate expansion. For this calculation, we
use the true volume of the liquid, since it represents almost all of the mass to be cooled. We’ll use
the entire surface of the can as heat loss area, however, without trying to account for the ullage.

� = c�! + 2(c�2/4) = 49.09 in2 = 0.03167 m2

d2+ = (999) (4190) (375 × 10−6) = 1570 J/kg

a) In this case we begin at 70 °F = 21.11 °C and end at 45 °F = 7.22 °C, with )∞ = 40 °F =
4.44 °C. If we choose an intermediate can temperature of (21.11 + 7.22)/2 = 14.17 °C, we
estimate the heat transfer coefficients as

ℎconv = 2 (14.17 − 4.44)1/4 = 3.53 W/m2K

and, with )< = (14.17 + 4.44)/2 = 9.31 °C,

ℎrad = 4Yf)3
< = 4(0.4) (5.67 × 10−8) (9.31 + 273.15)3 = 2.04 W/m2K

The time constant is

T =
1570

(0.03167) (3.53 + 2.04) = 8900 s

37
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Then, finally,
) − )∞
)0 − )∞

= 4−C/T

so

Ccool = −T ln
(
) − )∞
)0 − )∞

)
= −(8900 s) ln

(
7.22 − 4.44
21.11 − 4.44

)
= 1.594 × 104 s = 4 hr 26 min

b) Here )∞ = 5 °F = −15.00 °C, so
ℎconv = 2 (14.17 + 15.00)1/4 = 4.65 W/m2K

and, with )< = (14.17 − 15.00)/2 = −0.42 °C,
ℎrad = 4Yf)3

< = 4(0.4) (5.67 × 10−8) (−0.42 + 273.15)3 = 1.84 W/m2K

T =
1570

(0.03167) (4.65 + 1.84) = 7638 s

Ccool = −T ln
(
) − )∞
)0 − )∞

)
= −(7638 s) ln

(
7.22 + 15.00
21.11 + 15.00

)
= 3709 s = 1 hr 2 min

c) The time to cool in the freezer is less than 1/4 the time to cool in the refrigerator. The reason
is that the driving temperature difference for heat transfer is substantially larger throughout
the process when cooling in the freezer. The change in the heat transfer coefficients, on the
other hand, lowers the time constant by only about 15%. Of course, one must not forget to
remove the can from the freezer before the liquid solidifies!

Numerical solutions. Runga-Kutta integrations of eqn. (1.20) are shown in Fig. 1. In
the refrigerator, ℎconv becomes smaller as the can approaches the refrigerator temperature. The
numerical solution thus takes about 1000 s longer than the lumped capacity solution (the lumped
answer is low by 6%). In the freezer, the heat transfer coefficients do not vary as much, and the
lumped result is in good agreement with the numerical solution.

0 5,000 10,000 15,000 20,000
0

0.2

0.4

0.6

0.8

1

desired temperature N
L

Time, 𝘵 [sec]

Θ
=

𝖳(
𝗍)

−
𝖳 ∞

𝖳 𝗂
=

𝖳 ∞

Numerical integration
Lumped capacity model

(a) Refrigerator

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1

desired temperature N
L

Time, 𝘵 [sec]

Θ
=

𝖳(
𝗍)

−
𝖳 ∞

𝖳 𝗂
=

𝖳 ∞

Numerical integration
Lumped capacity model

(b) Freezer

Figure 1. Numerical integration with temperature dependent heat transfer coefficients
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Problem 2.46: An exterior wall of a wood-frame house is typically composed, from outside to 
inside, of a layer of wooden siding, a layer glass fiber insulation, and a layer of gypsum wall board. 
Standard glass fiber insulation has a thickness of 3.5 inch and a conductivity of 0.038 W/m·K. 
Gypsum wall board is normally 0.50 inch thick with a conductivity of 0.17 W/m·K, and the siding 
can be assumed to be 1.0 inch thick with a conductivity of 0.10 W/m·K.

a) Find the overall thermal resistance of such a wall (in K/W) if it has an area of 400 ft2.
b) The effective heat transfer coefficient (accounting for both convection and radiation) on the

outside of the wall is ℎ> = 20 W/m2K and that on the inside is ℎ8 = 10 W/m2K. Determine
the total thermal resistance for heat loss from the indoor air to the outdoor air. Also obtain
an overall heat transfer coefficient,*, in W/m2K.

c) If the interior temperature is 20°C and the outdoor temperature is −5°C, find the heat loss
through the wall in watts and the heat flux in W/m2.

d) Which of the five thermal resistances is dominant?
e) The wall is held together with vertical wooden studs between the siding and the gypsum.

The studs are spruce, 3.5 in. by 1.5 in. on a 16 in. center-to-center spacing. If the wall is 8 ft
high, by how much do the studs increase*?

Solution.
a) The wall consists of three thermal resistances in series, each of which is a slab of resistance
!/:�. The area is

� = 400 ft2 = (400) (0.3048)2 m2 = 37.16 m2

Summing the resistances and converting inches to meters gives
'Cequiv = 'siding + 'insul + 'gypsum

=
(1) (0.0254)
(0.1) (37.16) +

(3.5) (0.0254)
(0.038) (37.16) +

(0.5) (0.0254)
(0.17) (37.16)

= 6.835 × 10−3 + 6.296 × 10−2 + 2.010 × 10−3

= 0.0718 K/W

b) Now we must add the two convection resistances, 1
/
ℎ�, in series to 'Cequiv :

'Ctotal = 'conv, out + 'equiv + 'conv, in

=
1

(20) (37.16) + 0.0718 + 1
(10) (37.16)

= 0.0758 K/W
Next, since & = Δ)/'Ctotal = *�Δ) , we have*� = 1/'Ctotal . So

* =
1

� 'Ctotal

=
1

(37.16) (0.0758) = 0.355 W/m2K

c)

& =
Δ)

'Ctotal

=
20 − (−5)

0.0758
= 330 W

@ =
&

�
=

330
37.16

= 8.88 W/m2
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d) The insulation is dominant, contributing to 0.0630 K/W or 83% of the total resistance.
e) An 8 ft high wall of 400 ft2 area has a length of 50 ft or 600 inches. This allows for 600/16 =

37.5 studs, but the spacing is likely reduced at one end of the wall. Take 38 studs. Each stud
has an area of (1.5/12) (8) = 1 ft2, so the total stud area is �studs = 38 ft2 with the remaining
insulated area being �ins = 400 − 38 = 362 ft2.
Wewill approximate the configuration as one dimensional heat conduction through parallel

resistances, one for the studs and one for the insulation. The total resistance of the insulated
portion of the wall is a proportion of that calculated in part b):

'Cins =
400
362
(0.0758) = 0.0838 K/W

The total resistance of the stud portion is, with :spruce = 0.11 W/m·K from Appendix A
(Table A.2),

'Cstuds =
1

�studs

[
1
20
+ 1(0.0254)
(0.1) + 3.5(0.0254)

(0.11) + (0.5) (0.0254)
(0.17) + 1

10

]
=

1
38(0.3048)2

(0.050 + 0.254 + 0.808 + 0.0747 + 0.100)

= 0.365 K/W
The parallel resistance is found as in Example 2.7:

'Ctotal =
1

'−1
Cins
+ '−1

Cstuds

=
1

1/0.0838 + 1/0.365
= 0.0682 K/W

The studs reduced the total thermal resistance. The overall heat transfer coefficient rises to

*studs =
1

�'Ctotal

=
1

(0.0682) (37.16) = 0.395 W/m2K

an increase of 11%.
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Problem 2.47: The heat conduction equation in Sect. 2.1 includes a volumetric heat release 
rate, @¤. We normally describe heat as a transfer of energy and entropy across a system boundary, 
so the notion of volumetric heat release needs some thought. Consider an electrical resistor 
carrying a current � with a voltage difference of Δ+ in steady state. Electrical work is done on the 
resistor at the rate Δ+ · �.

a) Use eqn. (1.1) to find the rate of heat and entropy flow out of the resistor. Assume that the
resistor’s surface temperature, ) , is uniform. What is the rate of entropy generation, ¤(gen?

b) Suppose that the resistor dissipates electrical work uniformly within its volume,V, and that
its thermal conductivity is high enough to provide a nearly uniform internal temperature.
What is the volumetric entropy generation rate, ¤Bgen?

c) By considering the net heat leaving a differential volume 3V, use ¤Bgen to define the
volumetric heat release rate, ¤@.

d) If the resistor has a nonuniform internal temperature but a uniform rate of work dissipation,
does the total entropy generation change? Why or why not?

e) If the resistor is insulated, so that no heat flows out, what is the entropy generation rate?
Assume the resistor’s temperature is nearly uniform, starting at )0 at time C = 0 .

Solution.
a) The heat flow & into the resistor is related to the work Wk done by the resistor

& = Wk +
�
�
��7

0
3*

3C
= − Δ+ · �

So, the heat flow out of the resistor is Δ+ · �. The entropy leaving the resistor is simply

¤(out = −
&

)
=
Δ+ · �
)

Therefore, the rate of entropy generation in the resistor, by dissipation of electrical work, is

¤(gen = ¤(out =
Δ+ · �
)

(1)

b) Dividing eqn. (1) byV, the entropy generated per unit volume is

¤Bgen =
Δ+ · �
V)

c) The entropy generated in a differential volume 3V must be the net entropy transfer out of
that volume. The volume’s surface has the local temperature ) , so the net heat flow out is

3&out = )3 ¤(out = ) ¤Bgen 3V
The apparent rate of “volumetric heat release” is therefore

¤@ ≡ ) ¤Bgen =
Δ+ · �
V

d) The heat flow out of the surface is unchanged, so the rate of entropy flow out of the resistor
is unchanged. Thus, the total rate of entropy generation is unchanged. However, heat
transfer from hotter parts of the resistor is associated with lower entropy transfer (since ) is
greater), but heat conduction through a temperature difference generates additional entropy,
cf. eqn. (1.7). The net result is the same overall entropy generation rate.
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e) If the resistor is adiabatic, the system is unsteady. With eqn. (1.1),

�
�7

0
& = Wk + 3*

3C
3*

3C
= Δ+ · �

Assuming an incompressible resistor with a uniform temperature, eqn. (1.4) gives
3(

3C
=

1
) (C)

3*

3C
=
Δ+ · �
) (C)

The temperature as a function of time can be found with eqn. (1.3)
3*

3C
= <2

3)

3C

and an easy calculation leads to

) (C) = )0 +
Δ+ · �
<2

C

Because no entropy was transferred in the heating process, all of the entropy change is by
entropy generation, and ¤(gen has the same form as in the steady case.
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Problem 2.48: If an overall temperature difference of Δ) is imposed on # thermal resistances 
in series, show that the temperature difference across the 8th thermal resistance is

Δ)8 =
'8∑#
8=1 '8

Δ)

Solution. The heat flow through the series of resistors is (cf. Fig. 2.18):

& =
Δ)

'Cequiv

=
Δ)∑#
8=1 '8

The same heat flows through the 8th resistance:

& =
Δ)8

'8

Equating these expressions and rearranging leads to the stated result:
Δ)8

'8

=
Δ)∑#
8=1 '8

Δ)8 =
'8∑#
8=1 '8

Δ)

In electric circuit theory, this is called the voltage divider relationship.
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Problem 2.49: An electrical resistor is a 1 mm thick annulus of Inconel (Fig. 1). It dissipates 
9.4 kW/m. The resistor is insulated on both sides by a 3 mm layer of epoxy (:4 = 0.5 W/m·K). A 
316 stainless steel pipe inside the resistor is cooled internally by flowing water. The pipe is 5 cm 
I.D. and 6 cm O.D. A larger pipe forms an annular passage outside the resistor, through which 
water also flows; ℎinside = ℎoutside = 1400 W/m2K. The outer pipe has 8.7 cm I.D. and a 0.5 cm 
wall thickness and is wrapped with 2 cm thick glass-fiber pipe insulation, surrounded outside by 
ambient air. If the water temperature inside is 47 °C and that outside is 53 °C, find the resistor’s 
temperature.

steel
epoxy
Inconel
epoxy
water
steel

water

insulation

Figure 1. Cross-section of resistor with water cooling

Solution. This problem can be solved with two effective resistances, one from the resistor to 
the water inside and one from the resistor to the water outside. (The insulation and outer pipe can 
be ignored because the outside water temperature is known.) Further, the epoxy thickness is much 
smaller than the radius, so it may be treated as a slab (Prob. 2.43).

The internal resistances, in series, may be summed for a 1 m length
'inside = 'epoxy + 'pipe + 'conv

=
C

[2c(A> + X/2);]:4
+ ln(A>/A8)

2c:BB;
+ 1
(2cA8;)ℎinside

=
0.003

2c(0.0315) (0.5) +
ln(0.03/0.025)

2c(14) + 1
2c(0.025) (1400)

= 3.03 × 10−2 + 2.07 × 10−3 + 4.55 × 10−3 = 3.69 × 10−2 K/W
The epoxy is clearly the dominant resistance. The exterior resistance is

'outside = 'epoxy + 'conv

=
0.003

2c(0.0355) (0.5) +
1

2c(0.037) (1400)
= 2.69 × 10−2 + 3.07 × 10−3 = 3.00 × 10−2 K/W
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Heat leaving the resistor goes into both effective resistances. With & = 9.4 kW,

& =
)resistor − )water, inside

'inside
+ )resistor − )water, outside

'outside

)resistor

(
1

'inside
+ 1
'outside

)
=

(
)water, inside

'inside
+ )water, outside

'outside

)
+&

)resistor

(
1

3.69 × 10−2 +
1

3.00 × 10−2

)
︸                                 ︷︷                                 ︸

64.28

=

(
47

3.69 × 10−2 +
53

3.00 × 10−2

)
︸                                 ︷︷                                 ︸

3040

+9400

Solving, )resistor = 194 °C
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