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Problem 2.1 The solution of this problem is given, incidentally, in the last
paragraph of the solution to Problem 1.21

Problem 2.2 Show how to evaluate q through a plane wall when k is an arbitrary function
of T. Find q for a 1 cm iron wall with Ty, = -100°C, Ty,s = 400°C.
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If we had used k = k = (98 + 50)/2 = 74 W/m-°C we would have got:
Q =~ 74(500)/0.01 =3.7x10° W

This 1s 6.5% high. This relatively small error results from treating the curve above as
though it were a straight line.
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2.7 Simplified explanation of the “critical radius” for a nontechnical person.

Suppose you have a hot pipe and want to keep the heat inside. You can
wrap insulating material around it, the same way you wrap clothes around
yourself on a cold day. If the insulating material doesn’t block the heat
very well, or if there’s not much wind to blow the heat away from the
outside surface, then something bad can happen:

The insulation can make the outside of the pipe a lot bigger so the wind
blows more heat away. This means that, in some cases, insulation can help
heat flow. (Of course, that would only be true up to a certain thickness.
Beyond that, insulation will once again keep reducing the heat flow.)
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Finally, the percentage of the heat flowing through the brick will be proportional to its relative
resistance. So:

Percentage of heat through brick = R2/(R; + R3) =0.197/(0.197 + 0.217)100 = 47.6 %
7
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2.10 Compute QO and U for the wall shown in Fig. 2.17 if L = 0.3 m,
_ 2 . _ 2 = _
Apine = 0.05 m"/m into the paper, As.d. = 0.08 m"/m, hz =

10 W/m2—°C, Kr = 18 W/m2—°C, T = 30°Cand T = 1l0°C. Let

there be 5 layers each of pine and sawdust.
From the example we get the formula for U. Using the numbers

above and A = (0.05 + 0.08) = 0.13 m’/m we get:

1 W

U= = - —2.18m2_°K———-—-
1§ * 10 0.14 0.05 , 0.06 0.08
0.3 0.1 T 0=7 0.13
W 2 ]
0 = UAAT = 2.18 [5(0.13 ™)) (30-10)°C = 28.3 ¥ m
m“-°K & b

2.11 Find U for the wall in Example 1.2.

1
U —
2RS.S. + Rcu
where:
2
< L _ 0.002 m _ ) m -°C
Rs.s. = K = Tow/m-cc — 0-000118 ==
L 0.003 m2—°C
R = = = = = 0.00000775
cu k 387 W

so U = 4103

N =
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Notice that very inaccurate resistances dominate both of these overall

heat transfer coefficients. We could not reasonably base any precise
calculations upon them.
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2.16 Find r for an insulated sphere:

critical
ro_ri 1
R = —_ (from Prob. 2.18) and R =
teond k4TTrori tconv 4wr§H
\ 1 2
R e =
An 2 3—:)
5 ( 1 e rO k ro h
aro Rt + Rt (R + R )2
cond conv it t
cond conv
Hro
ro occurs when —if-= 2 or when
critical
Terit = %? -

2.17 The heat transfer through a particular wall with U = 225W/m2°C
is set by an overall AT = 200°C. One layer of the wall is
stainless steel with k = 18W/m-°C and a thickness of 0.003 m.

What is AT across the stainless steel layer?

i y [ 2
G = UAT_____ . = 225(200) = 45,000W/m
AT AT
g _ S.S. s.S.
= 20, 0008k e T o 18 57003
So AT = ° —
G OSE
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Problem 2.21 Derive an expression for the thermal resistance of a spherical shell
of inner radius r;and outer radius ro.

We give the solution to the heat conduction equation for this case in Problem 2.18.
The resulting heat transfer (considering it to flow from the inside to the outside) is:

Q =4ru rorik AT/(ro — i)
The thermal resistance is then
Ri= AT/Q =[(ro — ri)/4mrorik] KIW

17
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2.23 Obtain & Armmstmltu e%uahn

=la¥| (29
-F“.. T|n +'l|.t 'S"lﬁb s'haun - q i
Obtain a dimensinless cquahon !

:qmlﬂi -
‘FW T at Hie lz{--'}-]-m-u;i wall, E e
compute the l'E'p(MA rig b
lhm;-"- +E-~Ftr&‘[ﬂkd‘£5 P

AT
(:hf': =0 3 'T_= C..x +C.L : ?nef‘w‘k Saku-{'l-m

XA

= O | e —"

AT
-LJJ 7 U
K=o
- nel
= wd > b.c.
‘1[_ h{rTm)f=|._ 2 .
So
_kCI':ﬁ-'q_ So Cl'-"‘q.!;l:.
Tl
T --(- L/l +C “Tw ) Ca= M, 0t o1
11‘- l’l q-! IC.. [ & 1 } b T— 3 =
o T = na-’-:c +g‘_i._+€& + oo
k k
i ETJ—- = k _-.1"'_-._ = — ¥[l= -
XV Gen) o @ geli-t)
n‘h‘ T"‘Tm -t"'\ i
ﬂt"'fL B
s T = Tn+g%_*=zc+%i—“- e §0°% —-—
To= Tat e Uh 2 40490 1 oo g
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2-14‘) [f‘a'ICu'la.-\-: Yhe ELEan —] .06 | O, |0m —]
h?a{— {jlnw *‘i‘lfuua'h
Hie wall shown gla:
=~ |k z00a%
v T=
/ = | P
Frfﬂ' e FE.Ca.H 'Hou_f-: -Eﬂo‘t g /_ 100°C.
T e Ty +7T; B
kf; = ksi[ tg_ %
- ~'
= 1674 0.0071S (T +T; ) T.2?
TL‘E"\ : T T
Y % oy lG.‘]Ei * b.00nS 1% -.a.ch;'_-"
s 4w 0.0G 0.06 o.10

er ", 333 —2.1!.‘5T.L+ la’nf.%mllﬁﬂ‘f:: ﬁ"‘Ti.' 40

z
or T{ + 23397, -1,094,570 =0

So,ll.llhlj -"“Ll.j. ﬁ_unﬂl\fnlﬂt_ eq_u¢+:mn ™ _'I-L)uit }1"'.

== 2339 .z
T =222 &-J[?EE) ¥1,094,570 = 399.L ovr 2133 %C

The secound result weoeuld velabe Yhe i:"d i ag_ Tleuch: o
ovd % smast be FEJci'.“e:l- Thus: a“

-n T e PN O (i

ﬂ'“‘.'r Udlur a‘c ‘TL 15 R“ Rﬁ"‘
uft-r:) elose 4o Tl because t—qr——o—w,—c
HeVsheel affers fur less T[mt (1{'..:333,_‘1 Ty=100%C
tesisYawce Yha. the nsulahon.

(ly
E“a lj ﬂ‘k T,L"T". B A
o —— =04(9%.C-100) = 112.@ —F -
ﬂ..'. H=

(L\Jt could alse have evaluaked =9, bub we omly knew ,ﬁ'{;,
bo owe decmal FIM.! (‘5.4"{’.‘]) so that caleulahon wenld be

mact um.-l'-r_j
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2,25 lecwor/( praé/em 129 with a hea 7Li"ﬂm_(-)[€f Cc;e#a[/me-nt A

= Pwint
on the outside Cre. cmhe cold side.)
— tme nﬁ Sol R '
\,‘o L_?—TLf-UJOQC. 3 i \l s
c = O
(T=O°(.> T R ‘<wa.\\-_ Lo(\‘" ﬁ-‘z> dx(k .:lx >
I =X 2y aT o -
X=0 K=l k,(1+aT >;\—X. > B
T+ 93—-1—3: % < + C,z_
be's:  To= loo’C A T RS C.= +lo

e (Tle=0) -0) = cho_I\ .

X=0

o  Tlksp) =z L /L\

Combine the second b ot Fhe ?O/aem,\ solubhiom at x =0

G a E
n +3GBC' 3 5s

T\r‘l@\.‘_ {)ul’" <l"LlLS' LA ‘-Hqc gl{-sk,. |o_(,, 'E; ;ﬂ‘r V‘LA ﬂ CL

-10,3
TL + ?TL = C“T_ _& 3;3 o~ 100+ T3,33= 0.05833C, +5.2Ixl0 C‘
o,005 _
D’\'O:Blwmj i error, C = 2209 . Thea £, 132.3-2200 —= =60
S 1 3
T 4 0,0000333T "= (4,067 X + CO -
lC\O ’_‘ r
T
50 —

_ g‘\nu\\a ﬂi‘— C,\'—' 22060 \A';-/_L—i—-—

X C\O:'3 m}
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Problem 2.26 We must illuminate a Space Station experiment in a large tank of
water at 20 °C. What is the maximum wattage of a submerged 3 cm diameter
spherical light bulb that will illuminate the tank without boiling the surrounding
water. The bulb is an LED that coverts 70% of the power to light. Bear in mind
that this will occur in zero gravity.

Solution The problem of heat conduction from a spherical cavity in an infinite
medium is solved completely in the solution to Problem 2.5. The result is:

Q = 41kR (T savity wall — Teo) = 471(0.653)(0.015)(100 — 20) = 9.85 W

where we use k = 0.653 W/m-K at an average water temperature of 60°C. The
power of the bulb is therefore 9.85W/0.30 = 32.8 W

Problem 2.27 A cylindrical shell is made of two layers: The inner one has an
inner radius r; and an outer radius r.. The outer shell has inner and outer radii of r.
and r,. There is a contact resistance, h¢, between the layers. The layers have
different conductivities. T(r=r;)) =T; and T(r =r,) = T,. What is the inner
temperature of the outer shell in terms of T; and T,?

Solution

%p,neml soluhms: inner: T, = & bur L,
outer ! TJ\':CSQ,‘,V' +‘C_q_
besl Tirar)=T, se T, =T+ L5
T.’_((’-rr)):T¢ So ’\—1_ = Tc+ Cg LE
omd - \ |D}\Y:\ - \< Q_T_L\ since healt Llux mush be comhwuous,
Y=Y * =
ﬂeheﬁ?)«e : \<,C| _ \<1C, or €= b‘
Ye ° Ye k2
F r}’\lﬁrv‘w s )T K
W ""t—’ \,‘L(Tl(ru; ~ T lrs f§> K, SF)Q’ —T_: i
or (1 AT T, Ny &T
rc [CQ‘_ k— i-{‘AT _:C|j Cl-:l‘_‘l;__ \'-I/Ln
i hele o
So ! Ty, = Y = C\E\‘ Qnrolr whee C, s q\vem above L v
& 1 e ————— —————————
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Z2.28 A 1 kW electric heater, 8 mm :n diam. and 9.3 m long, 18 to
be used 1n a corrosive envirocnment. Therefnre: it 15 pro-
vided with a cylindrical sheath of fireclay. The gas flows
by at 12aﬂ:, and h is 230 Hme—DE outside the sheath. The
heater surface cannot exceed 800°9C, Set the maximum sheath
thickness and the outer temperature cof the fireclay. (Hint:
Use heat flux and temperature boundary conditions to get the
temperature distribution. Then use the additional convec-—
tive boundary condition to obtain the sheath thickness.)

(T:u':"?-f-"nﬂ} enerak Solukiom
ro.oo0 ;
L * s T = CI Lf" * If.l

be's: Tleae)zT,=ChrtC. @

LT < goo%
‘51 =0 AT . _losow @
l"d“ ™ (0.008)(0,3)
L |

= — l"‘.'i_
q,= 132,03

P'JH’ The lJb\uqu. coln. in @ ? ?G_Jr : C'I. -‘--I'L %;‘ '“LF., :*ﬂ.uﬁ"t{ﬂzjblﬂ]fi = -5305%

Vuk C—.:‘:'I}m:\-‘;arn.ln (_'I-j 1 CJ,G,L C % L.l.
z_' l
5-:.
Then:

T-T, =-%

r
= -SZO.TL =
L

We mosk skl QL.’\' e “I‘t T{f':-rd}. Te Au 0 we veed avothe, b.c,

th,r,‘:. T, )= -k 4 - . .8
L\( Hﬂy ;Ld qn cl,_. ’_d
=t f
K &
€ . - L Ty 1AL LS o , T
5n % BOO- Slosha T = o— ¢ = UL ¢
1 i Tﬁ
Solve .u‘a {‘W‘ru Comel ¢ ror Jn- -IUL 7 N I 4 B r, ™ L.O049% m
o L

]ais mecms Fhe ':1vc('l|n~1l gL.u.“-u canneal ~ . fed a thickness

oE - T, = &.00885- c::.m's-‘: T OO .00085 b B 0.D5 M e

Then: To =T, -530.s50. ‘-;:—'- = Boo-520.50,1.2)1 = £97% ==
L —_—

(There 18 amobhar --less desivable-croot at v, = p.00822  as well)
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2.29 A very small A:mﬂq—} G}GLLN{.QH msu'lﬂe‘l 'hen.an wirte Fraas Aaum
Yhe cemtber a-{ a 1S mm diametrer prad .:F 304 E‘hlmlt.'.ﬁs -fi'dﬂl.

The outside ts cooled EH natucal convection {E = 6.1 W/mt-¢)
reom aw atr 22°C L+ +he wire releases 1ZW/m, plat

Tiod ¥S: fadidl Pﬂdﬁ‘!m im rod and qive the ocutrside demp-

éravrure The  rod . fS-h;r and consider the F]n:}s.:,u.il citeum-
Stances The @ﬁ.ﬂ‘lﬂ‘iﬁw\. There are s@me M}umhfg ,s;mjohﬁcq*
+ions.) '
Q 1Z ) w
'gl‘.._s‘__'l!' Cnmfuire Ta“:rﬂ) ; q’s&,: ;_ = m : 5{]‘5‘.5“1

= h (T; Tw) o 3093 =6.1(T--22)

T, = 98.0°C —~——

9‘-‘5{'5.

Now the era)l solubion 15 T-= C;L r+Ca . We know
me b.c, : T(r=0,)=9%°C . Butl +he other b.c., T=o)F @
1S s:nau.'w( ek 14 lGont ‘nelf. us . Howe ver, wre also know

: q" = 5053 :_k‘il-. '7"'1&(":-—'* so ( :.‘15;‘ 5 :
sfe. ar r=r, (s [ &
Thew S boc.
S é‘.he- CF%LE iy < _r;’:ct Lrﬁ a Cz s CJ':.TG'P q_‘:__raﬁn%
—Thu | P
| 3 T, & El-__s{.;___ ). % . 99 + Sc«ﬁ.s.{a.w@m s
i s k g Sl r
to mﬂmg (.gmlmh at ©.2547
39 T = 1602C
g, inYereshin 4 note sk
while T es Yo m-fln.t-:g,_i'
9.5 — ‘H\E [ 1 Yhe "I'E‘m-ip.:rq}urq
J’-i' other locakens rewmaing
r&\ni—nr\"—l‘j | owa,
9% | | 1
o c.5 'l',/fﬂ
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Problem 2.30 A contact resistance experiment involves pressing two slabs of
different materials together, imposing a given heat flux through them, and
measuring the outside temperatures of each slab. Write the general expression for
h. in terms of known quantities. Then determine h, if: The slabs are 2 cm thick

copper and 1.5 cm thick aluminum, q is 30,000 W/m?, and the two temperatures
are 15°C and 22.1°C.

AT \
a-: A h, = —
by oo by be ¢ [e:__(z._.”L_zﬂ
&, he ke 3» W, ki
amd m Yhis case: l
= W
hc_ W _[o.al +o.ovs] i 3/}223_—.;("‘"—
30 000 39% 237 e

Problem 2.31 A student working heat transfer problems late at night needs a cup
of hot cocoa to stay awake. She puts milk in a pan on an electric stove. To heat
the milk as fast as possible without burning it, she turns the stove on high and stirs
the milk continuously. Use an analogous electric circuit to explain how this works.
Is it possible to bring the entire bulk of the milk up to the burn temperature without
burning part of it?

/,.____ Contact rcs;fbmce} i&t:fréd

\ £ Yesisto-ce o‘;- ?an
/ i resist-
/_ 7 l/hb\p“" Lmces

Lok Z )

e L
— , burner —‘burner / lh'kbuh‘

T must < Tm;\k

wal |

burn

The student wants the resistance 1/hA to decrease so the temperature drop between
the pan and the milk will stay smaller than Tpik-burn —Tmik-buic. She accomplishes
this by stirring to increase the heat transfer coefficient. But she can do so, only up

to a point. There will always have to be some temperature drop between the pan
wall and the liquid bulk.

Therefore, it will never be possible to bring the milk temperature all the way up to
the burning temperature, without first burning the milk at the bottom of the pan.

24A
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ProBLEM 2.32: A small, spherical hot air balloon, 10 m in diameter, weighs 130 kg with a
small gondola and one passenger. How much fuel must be consumed (in kJ/h) if it is to hover at
low altitude in still 27 °C air? Take houside = 215 W/m?K and Aijpsige = 126 W/m?K, as the result
of natural convection. Hint: First determine the temperature inside the balloon that will keep it
neutrally buoyant.

SoLuTiON. We first calculate the temperature that must be sustained in the bag to keep it afloat.

mass of balloon = mass of cold air — mass of hot air

130 = %03(,9

e = Pl inside)
The density inside is therefore

6(130) 3
Plrinsige = 1177 = 555, = 09287 kg/m

The pressure is the same inside and outside the open-bottomed balloon, so the ideal gas law gives
1.177

Neglecting the thermal resistance of the fabric, write Q = UAAT and

U= ;1 =79.44 W/m’K

|
215 T 126
so that

Q = (79.44)(1007)(107.2 - 27.0) = 2002 kW = 7.21 x 10° kJ/h

2.33 Aslab of 0.5 % carbon steel, 4 cm thick, is held at 1000°C on the back side. The front side
is approximately black and radiates to black surroundings at 100°C. What is the temp-
erature of the front side?

The 30««.«.] soluftn for Hhis cose 13 T=C, 2 +Ca Wt b.c.s-
O Tl=0)=1213 °g ()] -\‘g\‘_: -kC, :(T‘fnom)- T:)G'
ce 1273204C, a-d (usmj k=30 Gr shkel ok Sco%)

s 4
- 6—(.--5'225\110’& = [o.c» C,+ 12‘13] - 313+

bj “&ﬂn.q Gnd Seror we. ?.*". C=-32l0 so 1= 1273-32l10%

T(x=0.08) = 1113-129.4 = 1145°K

= 8" *-—

(aﬁ‘A our ’3" gy =° ‘Hm,&’ k (uuld LQ eua‘uqu
ab T = %ocfP--should Le ok .)
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Problem 2.34 Use data from Fig. 2.3 to create an empirical equation for k(T) in ammonia
vapor. (Be aware that, while the data form a nearly straight line, the coordinates are semi-
logarithmic. The curve-fit must thus take an exponential form.) Then imagine a hot
horizontal surface parallel to a cold surface a distance H below with ammonia vapor between
them. Derive equations for T(x) and ¢, with x = 0 at the cold surface and x = H at the hot
surface. Compute q if Tpot = 150°C, Teoig = -5°C, and H = 0.15m.

Solution We first seek an equation of the form k = Ae*BT to fit the almost-straight-line Ink
vs. T°C data in the Fig. 2.3 coordinates. Picking two points on the graph, and solving for A
and B, we get k = 0.0213exp(+0.00392T). Then:

p dT . ar _ BT AT
cﬂkc")dx a ¢ So le. =C So Ae % =C

X

- ' |
Thus: 5Ae.bTAr‘- Sch ov %@BT=C&+D
b.c =4 T=T, at x=o Seo o= %QBTQ
b.c, ¥z Te%y arx=H ss ¢ =-¢;%[a87“- ke
qu 4 [& 2 - | 8T, B 1% BT

T= shlFx-F]= glajg(e™ e ‘)*e l

s BT BTe B

omd o o= A— = 1

er S z = C  se H B(C

Thew | oou3 (0,00391(3:'53

= c.ooz‘:l(_-Su))
% T B.S 0.0039Z -

g =-113.\ W/ m?%

whe/ﬁ %e Mainwuw s S|3n = { 'S °P?°$l¥t In Sla,n 41,,‘_
(r.e. I flows downwardl)

Le.-‘ré Mo e u &’Lutck f‘uuBL C.Lcosc o‘c ’hus msuH~;

oy AT ey 4o _
3;" - k“"j = = (aboéous)ol‘s_ ~ 93w/.,.,i

loa \‘s ?ﬁe‘r!'\s 300A.
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235 A 316 shamless steel pipe (Gr.:m I0 and 8em OD). Thert is 2 ZLmm
lnnh of 85 7. maqresia insulahion around 1+, .rf,rgws-" at 2%
Flows mside 7o hy = 346 W/n-"C . The air around +J’u/?flpc /s at
20°C and ho: G W/ m-°L Colewlote I bosed oo the 'inside arca
Sketely +he E?,unmfau‘- e lectread circark :.‘Jm.-.unj all kaown -L-a.-.rnt::—
@'f‘g-ﬁ‘re,r. Di3cuss lhe cesolks,

z
- 7_"— Lo b ere /dl.'— LI }%—*‘2 2nfe.03) = 5-3585':;:
Ay & Ry
/ {
e = 1 = = =0.6¥¢6
2 — —— — ——— - 5 - ¥
£, hiAL  reesn DO Ko™ hormr ™ Gaotoam
R = 9-“7"55“,:;’11 - ‘G"q"ﬁ_ = 0.003052 R = __i_,..é"r"“ AL = M
S.8. T k. o 15 g U - 21 (0.07)
= 8.1103

h\\ R’s have dimemsions o °c-m/w

T hew .L,T = 6.2 \N_&ﬂl-nﬁ_ -

€ Q= WA AT-6.972 (alooa)n-1e)= 120, 9%

e e

Thent 1, = T“n+ QR o =20+120.9(0.6316) = 96.36° , T54= 96.36+120(0.1109)

T, = 109.73 + 120.9(0.00305 ) = 110.10 Oc e
raﬂ
- M— & A i T
12 110.1%¢  109.73°¢ 20°%C

The most effective insulation here is the low outer
heat transfer coefficient. The insulation would
have to be much thicker to be effective. The inner
heat transfer coefficient and the stainless steel
offer negligible thermal resistance.
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1.56 Twe ki “.j-r.-_'ﬂe.f_hnj, L\ar|1a-...‘11,l JHJ.:_‘. At S/Pﬂﬁfj D005 wrart
The u par ome S kapt ot If-'-'d{:!'c, aved The lower ova At 200°C .
Theere 15 air (n befwean, Hf‘ leet fﬂJﬂ"’ﬁJﬂ—JCam 1!& the heat
flue amd the wmid- oaT YemTemature ia the av, lse a werlaw

Jl‘\"' p{' the ‘Qbrm ]-(_ = a C'T"c)b o r"l??rﬂ".f‘ni" He air 4)4;21 re
Table A.6.

One Cam use variovs meads To Aa ke Hie Ag}éﬁ L.-‘l— The curve -frji‘
fouhnas 1n ?ackt+ calevlatoes are recommended . Our resuld (3

k= O.0001L7% {tha.eu1 Tiezo) 21000°%¢
o 7

-“““: -~ AT_ T‘-’"GLT_= - —— = O
= .'rc_a; ] J‘i Slh‘-ﬂ%'dc ;"I_r—‘ :Ct'.\-mn..,

m-Lta.,u, -13-'. -E;_—,h('rb*}-[{."mb*l} —C ;1‘12_60’{'..

{whm we hMawm ineluded the upper h.c.)

Thaan: T(x=0 cosy= looo  so o, 0o02213% | /2201
- .o = e O3 . t.tﬂ'm)_
2220 (o0 ™ ¥):st
so C=8227
[ . 3207 .20
. TI 3 =__1_.'ELGT{E.11‘ﬂ o+ 1000
o.co0a1L1y

T = (-54910'x +2.90<105 )>**?

Ia He m.-.JJ.lF. -~y a.i'.' X=0,00L5mm —— T ‘_—'?OI.‘S"":C. -

(mstead of The avemﬁg value
of Tzxl(zeoraese)lz = §éu=c

Mél

g=C = 2221 W/mt —
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2.37T A Odm thick slab with k<34 W/m-% 15 held at 100 % wm the left
side. The right side 15 cooled wibh ayr &t 20°% throuah a heat

tramsfer cocflicient: T = (5.1 W}'h-'ﬁ;‘mJ(Tm o Tm‘;w% Find
a-mdl Tl__,ﬁ“ on the r13|ht. q—

leo'C I (= 20%) Gew'l sal'n . T=2C,+Cex
w=341h2s a7 left b,  |po- S
A
t i raht b.C &
X0 xzo.| \1.1 = tﬁ?—l & 5-1(T'T¢:} q{T‘T»)
A =4, 220, X=0.)
. 5/4 5,
S9% Lk, =SN(C ¥ l0)-T,) -C,= 1.5 (8o ﬂ-tcﬁm

?::':O’L |
Trm':T errar gwES CZ: '233%

s T-20= -2233% ¢ = T[x‘:ﬂ.\,)':"['wm = 5(,1°% —

o

9 =-kal = 3.4(233)= 792.2 W/

.33 ”é’m’i /5 fmir'r._—,/.ﬁ" 5‘354’0 #U/mj n a 0.1ém Aramete .5}3}1-!'!‘:
The Sfj'ift 15 cooled é(? ﬂﬂfihnt! Conves fronm we A 'A’m A?’“
0%¢. h=[R+e(r,  )-n)* w2 Kephas = IW/m-Z.

Find +the wall 'Iifmﬁdwﬂa‘fxr‘f ond center f?mfprm;‘urf d']c The :;p)gc're:.

_'_ciICrT] _ 3 deT Ar? qr* Ca
rdrl-—% 4 -;=-%—£+C* 3 Tt—gﬁi-}ﬂ:.*?
Bi€.s AT\ " Cy :

— =0= - = , So L, =0 _al = Va

arle=o 2 ‘ kd"' r=p.08 @H.’;&T kﬂ\r:u.nﬁ
50 3 r 2on, LA OEE

W =12+ £+C—a})vﬂ+c)
Sl ( Er-k * (sk Kz0.08
‘ . .
oY - 1440 = {14' f;f_ﬁl-—f;..qr)(c,-t-.ﬁ) 3 b‘j '}fmi'{?rwﬁ 3(!' C, =80T
Thew: = -~ (60O r*+ 30 Te = Tlr=0)= BO°C —
Tl =T(rz008= 73.6°C —=
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2 D9 anaer.s a@‘ e:gfua.\ -H-\-.r."dﬂci-s a'{- s?fuce amd Pu'\-dn Iing avré lamm-

kd +o make an insulating maternad. How s hould Yhe lawin-
a.‘\'l.un_ﬂ. be oriented v a -'l—.:mloe\v-awre eam:.l-.c-n{- 4 achieve +he

best e ffect ?
— B/z
araliel | e ey
T o o L BRI
4 /{d ¥ Lﬂrh+ Lﬂ:‘,ﬂ
]"'L-"‘ i“'L—""I _—..1:'-. - - E
consider Lm 1ot paper, A=L'B B o.1440.1 E

Per?ht,‘,‘hcul‘l [2F i

Wi = 7] =5

—{L/2 j B 3 ke Bk
l“'l-_"i\ L—L-—'l- L .4 N&)-g 'll.a

There 1S & VE 5'5.1311'\: ad vantuae t be aamed b aﬂe-nhwj
hEn'\” Qlﬂw “:B;"I'ﬁl h’ ‘Hﬂt Il&ﬁlna.d'!ﬂs ¥ —ll ‘13‘:“{— '-5?4
h.-a\u Ve SIS Thnce , —-

15 &

140 Tlﬁ.t. fﬂ.i\s!l‘mm a‘c & 'Hvlm.l( c |1nAﬂr_a.l lag_‘ra} Infu'lqhm mos+ b-g_
inereased. Will @ be lowered monr

mertase ngl‘na
OD er bj Me Sowe decrease 1a -H-:e ID
b AT
egn (221): Q= 2’1&} T = #/ﬁ“
AQ _ . A0/t 1 LT
dfe - = e C(L!‘-fﬁ.) 15 The lower
\ value s

(
) usl
2 . L Dutel e \ 2 | obvicusly
‘. fi e [dtf ! \ P (.Lr..fr.;) re the qreater
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PROBLEM 2.41: You are in charge of energy conservation at your plant. A 300 m run of 6 in.
O.D. iron pipe carries steam at 125 psig. The pipe hangs in a room at 25°C, with a natural
convection heat transfer coefficient 4 = 6 W/m?K. The pipe has an emittance of & = 0.65. The
thermal resistances are such that the surface of the pipe will stay close to the saturation temperature
of the steam. (a) Find the effective heat transfer coeflicient between the pipe surface and the room,
and the rate of heat loss from this pipe, in kWh/y. (b) It is proposed to add a 2 in. layer of glass
fiber insulation with £ = 0.05 W/m-K. The outside surface of the insulation has of € = 0.7. What
is the rate of heat loss with insulation? (c) If the installed insulation cost is $50/m including labor
and the cost of thermal energy is $0.03/kWh, what is the payback time for adding insulation?

SOLUTION.

a) The pipe loses heat by natural convection and thermal radiation. The saturation temperature
of steam at 125 psig = 140 psia = 0.963 MPa may be found from a steam table: 178.3 °C.
The radiation heat transfer coefficient, with 7, = (178.3 + 25.0)/2 = 101.6 °C, is

heag = 40T = 4(0.65)(5.67 x 1078)(101.6 + 273.15)3 = 7.76 W/m*K

The effective heat transfer coefficient is heg = Econv + hegg = 6+ 7.76 = 13.8 W/m?K.
The annual heat loss is

Qann = hey AT A(365.25 x 24 hly)
= (13.8)(178.3 — 25)7(6)(0.0254) (300) (365.25)(24) = 2.66 x 10° Whly
= 2.66 x 10°® kWh/y

b) The surface temperature of the insulation is not known yet, but it will be much lower than
the bare pipe. If we guess 40 °C, then

hrad = 4(0.7)(5.67 x 107%) (40 + 273.15)° = 4.87 W/m’K
and heg = 6 +4.87 = 10.87 W/m?K. The heat loss is for two thermal resistances in series,
with r, is the radius of the insulated pipe:

1 N 1 1 o
= n
foul T heg(2mrol) | 2mlk  Fpipe

1 1 3+2
= 1
(10.87)27(3 + 2)(0.0254) (300) * 27(300)(0.05) n( 3 )
=384x107%+542%x 107> =5.80x 1073 K/W

Then
AT 178.3 = 25

365.25)(24) = ——— =2
Rw( )Y = S5ox 10

We must check whether our estimate of the surface temperature for A4 is acceptable.
Because the heat flow through the outside resistance equals that through the total resistance,
the fraction of the temperature drop outside the insulation is

Tsurface — 25 _ Rtomside _ 3.84 x 107%
1783-25 R, 5.80x 1073

Qann =

(365.25)(24) = 232 kWhly

=0.0662
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Solving, the surface temperature is Tgyface = 35.1 °C. Recalculating with this value gives
hesg = 10.65 W/m?2K, which represents a 2% reduction of the outside resistance which itself
amounts to only 6.6% of R, . There is no need to repeat the calculation with this slightly
lower resistance.

We note that the increase in outside diameter after adding insulation would lower the
natural convection resistance very slightly. In Chapter 8, we’ll see that heony ~ D™/, For
the present dimensions, ECODV would decrease by about 12% if insulation were added, making
heg = 9.93 W/m2K, a 9% reduction of the outside resistance, but still a very small net
decrease (0.66%) in R;, .

¢) The energy savings is nearly 100%: 2.66 x 106 kWh/y.

Value of energy saved = (2.66 x 10°® kWh/y)(0.03 $/kWh) = $79,800/y
Cost of insulation = (300 m) (50 $/m) = $15,000/y
Payback time = (15, 000)/(79, 800) yr = 2.26 months

Adding insulation is an excellent investment. NB: We have not included the cost of capital
because the payback time is very short (the interest on $15,000 over two months will not
increase the cost significantly).
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Problem 2.42 A large tank made of thin steel plate contains pork fat at 400°F, which is
being rendered into oil. We consider applying a 3-inch layer of 85% magnesia insulation
to the surface of the tank. The average heat transfer coefficient is 1.5 Btu/hr-ft>-°F for
natural convection on the outside. It is far larger on the inside. The outside temperature
Is 70°F. By what percentage would adding the insulation reduce the heat loss?

Solution: We sketch a section of the tank below, with the dimensions converted to Si
units for convenience (See Appendix B for conversion factors). Thus Tinsige = 204.4°C,
Toutside = 21.1°C, the outer heat transfer coefficient is 8.518 W/m?2K, and the wall
thickness is 0.0762 m. We get the thermal conductivity of 85% magnesia as 0.80 W/m-K
directly from Table A.2.

We assume that we can neglect the resistance of the thin steel tank. We are also
confident that the thermal resistance offered by the inner heat transfer coefficient is
negligible. This leaves us with only two significant thermal resistances. They are the
insulation, if it is present, and the outer heat transfer coefficient:

204 °C

( =, \
Mﬂs J wm-K 0.0762”‘ ____t
G PSR .
PSSANKEAN VN 1
h =858 W/wi K
2N s
U = Q/AAT = q /a7 =
i O/ +*A)
= (201.4 - 21.2)
with \n.Sula-{—‘a—n (_L_‘ -« 0.0'161>
8519 ©.030

é{’\w/o l'\SM\q‘\!‘\ov\ = 1561 \A)/ml

Therefore, adding insulation would reduce the heat flux by (1561 -171.3)(100)/1558
or 89 percent
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PROBLEM 2.43: The thermal resistance of a cylinder is R, = (1/27kl) In(ro/r;). If ro=1i + 6,
show that the thermal resistance of a thin-walled cylinder (6 < r;) can be approximated by that for
a slab of thickness ¢6. Thus, R, = 6/(kA;), where A; = 2nr;l is the inside surface area. How
much error is introduced by this approximation if 6/r; = 0.2? Plot Ry, /R;,,, as a function of 6/r;.
Hint: Use a Taylor series.

SOLUTION.

1 ()1 5
Ry=——In[2) = —1mf1+2
o1 = 2kl n(r,-) 2kl n( " r,-)

The Taylor expansion of In(1 + x) around x = 0 is

In(1+x) = Z(—l)"_lx— =x——x"+=-x -
n
n=0

R ! o _1(¢ 2+1 5\ I 9 for 6 <
= |- — =] — —| — — | Y —_— = ri
et 2rkl | r; 2\r; 3\r; 2nkl r;

Letting A; = 2nr;l, we find that, for 6 < r;,

so that

1 6 0
R, ~R, . =—n—=
o T T okl T kA,
For 6/r; = 0.2,
0
27kl Ry, = ln(l + —) =0.1832---
ri
and

5
2kl Ry, = — = 0.2000

The thin wall approximation is high by 9.7% when 6 /r; = 0.2.
The plot is below. To avoid numerical problems as §/r; — 0: a) use a few terms of the Taylor
expansion of In(1 + §/r;) in the denominator for 6 /r; < 0.15; and b) plot only for 6/r; > 0.001.

WO T T T T T T T ]
= 1.4 ! —
< |
~ — | —
R 12 ; —
=T
0 0.2 0.4 0.6 0.8 1
o/ri
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PROBLEM 2.44: A Gardon gage measures radiation heat flux by detecting a temperature differ-
ence. The gage consists of a circular constantan membrane of radius R, thickness ¢, and thermal
conductivity k. which is joined to a heavy copper heat sink at its edges. When a radiant heat
flux gaq is absorbed by the membrane, heat flows from the interior of the membrane to the copper
heat sink at the edge, creating a radial temperature gradient. Copper leads are welded to the center
of the membrane and to the copper heat sink, making two copper-constantan thermocouple junc-
tions. These junctions measure the temperature difference AT between the center of the membrane,
T (r = 0), and the edge of the membrane, T (r = R).

The following approximations can be made:

e The membrane surface has been blackened so that it absorbs all radiation that falls on it.

o The radiant heat flux is much larger than the heat lost from the membrane by convection or
re-radiation. Thus, all absorbed radiation is conducted to the heat sink, and other loses can
be neglected.

e The gage operates in steady state.

e The membrane is thin enough (¢ < R) that the temperature in it varies only with r, i.e.,
T =T(r) only.

Solve the following problems.

a) For a fixed heat sink temperature, 7(R), qualitatively sketch the shape of the temperature
distribution in the membrane, 7(r), for two heat radiant fluxes gr,q; and grag,, Where
qrad| > qrada-

b) Derive the relationship between the radiant heat flux, g4, and the temperature difference
obtained from the thermocouples, AT. Hint: Treat the absorbed radiant heat flux as if it were
a volumetric heat source of magnitude g4/t W/m?3.

SOLUTION.

a) Since heat flows from the center to the edges, the highest temperature will be at r = 0. The
slope of the temperature profile must be zero at r = 0 by symmetry. The temperatures will
be higher when the radiant flux is greater, except at r = R where the temperature is fixed.

{dradq

{drad?

Membrane temp.

T(R
OF o 1

b) With the approximations given, the situation can be modeled as one-dimensional, steady heat
conduction in cylindrical coordinates, with the absorbed radiation acting like a volumetric
heat release. The heat release per unit volume of membrane is g,q/t. With eqns. (2.11) and
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(2.13), the heat conduction equation is:

g 10
V2T + = = —%Z
k
1 19 62 _ ‘Irad
- rz 92 z2 T

— Qrad
r dr dr kt
Integrating this o.d.e. twice gives
d_T _ _ YGrad? + g
dr 2kt r

T(r) = - q“‘zr +Q’1nr+cz

By symmetry, we require that the temperature gradient d7'/dr = 0 at r = O (or equivalently,
that the temperature be finite at » = 0), so C; = 0.
The temperature difference, 7(0) — T'(R), follows by subtraction without finding C5:

_ QradR2
4kt
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PROBLEM 2.45: You have a 12 oz. (375 mL) can of soda at room temperature (70 °F) that you
would like to cool to 45 °F before drinking. You rest the can on its side on the plastic rods of the
refrigerator shelf. The can is 2.5 inches in diameter and 5 inches long. The can’s emittance is
& = 0.4 and the natural convection heat transfer coefficient around it is a function of the temperature
difference between the can and the air: & = 2 AT'/* for AT in kelvin.

Assume that thermal interactions with the refrigerator shelf are negligible and that buoyancy
currents inside the can will keep the soda well mixed.

a) Estimate how long it will take to cool the can in the refrigerator compartment, which is at
40 °F.

b) Estimate how long it will take to cool the can in the freezer compartment, which is at 5 °F.

c) Are your answers for parts a) and b) the same? If not, what is the main reason that they are
different?

SoLuTION. Use a lumped-capacity solution because the liquid in the can is able to circulate,
minimizing internal temperature gradients. Treat the soda as having the properties of water (App. A,
Table A.3).

Radiation and natural convection act in parallel, just as in Example 2.7, and the effective heat
transfer coefficient is the sum of h,q and h.ony. Both depend on the temperature difference between
the can and the surroundings. While a strict solution would numerically integrate eqn. (1.20)
to account for changes in the heat transfer coefficients as the can temperature drops, we will get
sufficient accuracy by evaluating /.q and Aony at a single, intermediate temperature difference and
applying eqn. (1.22).

The time constant is
pcV

A(hrad + Econv)
The volume of the can itself, if calculated, would turn out to be 7% greater than liquid volume.
That’s because an empty "ullage" space is left to accommodate expansion. For this calculation, we

use the true volume of the liquid, since it represents almost all of the mass to be cooled. We’ll use
the entire surface of the can as heat loss area, however, without trying to account for the ullage.

T

A =nDL +2(xD?/4) = 49.09 in® = 0.03167 m?

pcV = (999)(4190)(375 x 107) = 1570 J/kg

a) In this case we begin at 70 °F = 21.11 °C and end at 45 °F = 7.22 °C, with T, = 40 °F =
4.44 °C. If we choose an intermediate can temperature of (21.11 +7.22)/2 = 14.17 °C, we
estimate the heat transfer coeflicients as

heony = 2 (14.17 — 4.44)1/* = 3,53 W/m?K
and, with T, = (14.17 + 4.44)/2 = 9.31 °C,
hiag = 40T = 4(0.4)(5.67 x 1078)(9.31 +273.15)3 = 2.04 W/m*K

The time constant is

T 1570
~ (0.03167)(3.53 +2.04)

= 8900 s
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Then, finally,

T-To _ _yr
To — T
SO
T -Te 7.22 - 4.44
t =-TI = - In| —4m8M8M —
cool n(To —Tm) (8900's) rl(21.11 —4.44)

=1.594 x 10* s = 4 hr 26 min
b) Here T, =5 °F = —15.00 °C, so
heony = 2 (14.17 + 15.00)'/* = 4.65 W/m*K
and, with 7,, = (14.17 — 15.00)/2 = —0.42 °C,
hiad = 40T = 4(0.4)(5.67 x 1078)(—0.42 + 273.15)% = 1.84 W/m’K

1570

T = — 7638
(0.03167)(4.65 + 1.84) °

T-Ty
Icool = _Tln(T() — Too) = —(7638 s) ll’l(

=3709 s = 1 hr 2 min

7.22 +15.00
21.11 +15.00

¢) The time to cool in the freezer is less than 1/4 the time to cool in the refrigerator. The reason
is that the driving temperature difference for heat transfer is substantially larger throughout
the process when cooling in the freezer. The change in the heat transfer coefficients, on the
other hand, lowers the time constant by only about 15%. Of course, one must not forget to
remove the can from the freezer before the liquid solidifies!

NUMERICAL SOLUTIONS. Runga-Kutta integrations of eqn. (1.20) are shown in Fig. 1. In
the refrigerator, heony becomes smaller as the can approaches the refrigerator temperature. The
numerical solution thus takes about 1000 s longer than the lumped capacity solution (the lumped
answer is low by 6%). In the freezer, the heat transfer coefficients do not vary as much, and the
lumped result is in good agreement with the numerical solution.

1 ‘ ‘ ‘ 1 T T ‘ LI T T LI T LI T T
0.81— —— Numerical integration | | 0.8— _
—— Lumped capacity model
8| 4 2loe desired temperature N
'T = 06— ] | 0.6 T ]
| Il 1
= = P L
04— — o 04— —
® o) —— Numerical integration
0.2 — desired temperature N ] 0.2 — —— Lumped capacity model |
Ll [T
0 | | | | ‘ | | | | ‘ | | | | ‘ I | | 0 I ‘ I ‘ | ‘ Y] ‘ I
0 5,000 10,000 15,000 20,000 0 1,000 2,000 3,000 4,000 5,000
Time, t [sec] Time, t [sec]
(A) Refrigerator (B) Freezer

FIGURE 1. Numerical integration with temperature dependent heat transfer coefficients
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PROBLEM 2.46: An exterior wall of a wood-frame house is typically composed, from outside to
inside, of a layer of wooden siding, a layer glass fiber insulation, and a layer of gypsum wall board.
Standard glass fiber insulation has a thickness of 3.5 inch and a conductivity of 0.038 W/m-K.
Gypsum wall board is normally 0.50 inch thick with a conductivity of 0.17 W/m-K, and the siding
can be assumed to be 1.0 inch thick with a conductivity of 0.10 W/m-K.

a) Find the overall thermal resistance of such a wall (in K/W) if it has an area of 400 ft2.

b) The effective heat transfer coefficient (accounting for both convection and radiation) on the
outside of the wall is E(, =20 W/m?K and that on the inside is Ei = 10 W/m2K. Determine
the total thermal resistance for heat loss from the indoor air to the outdoor air. Also obtain
an overall heat transfer coefficient, U, in W/m?2K.

c) If the interior temperature is 20°C and the outdoor temperature is —5°C, find the heat loss
through the wall in watts and the heat flux in W/m?.

d) Which of the five thermal resistances is dominant?

e) The wall is held together with vertical wooden studs between the siding and the gypsum.
The studs are spruce, 3.5 in. by 1.5 in. on a 16 in. center-to-center spacing. If the wall is 8 ft
high, by how much do the studs increase U?

SOLUTION.

a) The wall consists of three thermal resistances in series, each of which is a slab of resistance
L/kA. The area is

A =400 ft*> = (400)(0.3048)> m?> = 37.16 m*
Summing the resistances and converting inches to meters gives
Ri, iy = Rsiding + Rinsul + Rgypsum
(1)(0.0254)  (3.5)(0.0254)  (0.5)(0.0254)
- (0.1)(37.16)  (0.038)(37.16)  (0.17)(37.16)
=6.835%x 107> +6.296 x 1072 +2.010 x 107
=0.0718 K/W

b) Now we must add the two convection resistances, 1/ hA, in series to R, v

Rttom = Rconv, out T Requiv + Rconv, in

1 1
. 4007184 ———
(20)(37.16) T (10)(37.16)
— 0.0758 KIW
Next, since Q = AT/R,,, = UAAT, we have UA = 1/R,,. So
U= ! 0.355 W/m’K
= = = . m
AR, (37.16)(0.0758) ——==—Hi=
c)
AT 20— (=5)
_ AL 330
0=k~ o038 W
0 330 )
g=% = =888 Wim
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d) The insulation is dominant, contributing to 0.0630 K/W or 83% of the total resistance.

e) An 8 ft high wall of 400 ft” area has a length of 50 ft or 600 inches. This allows for 600/16 =
37.5 studs, but the spacing is likely reduced at one end of the wall. Take 38 studs. Each stud
has an area of (1.5/12)(8) = 1 ft?, so the total stud area is Agugs = 38 ft> with the remaining
insulated area being Aj, = 400 — 38 = 362 ft>.

We will approximate the configuration as one dimensional heat conduction through parallel
resistances, one for the studs and one for the insulation. The total resistance of the insulated
portion of the wall is a proportion of that calculated in part b):

400
R; . = —=(0.0758) = 0.0838 K/'W
e = 5¢5(0-0758)
The total resistance of the stud portion is, with kgpryce = 0.11 W/m-K from Appendix A
(Table A.2),
1 1 1(0.0254) 3.5(0.0254 0.5)(0.0254 1
R 1, 100.0254) 3.5(0.0254) (0.5)(0.0254) 1
UE T Agtugs | 20 (0.1) (0.11) (0.17) 10
= ——— (0.050 + 0.254 + 0.808 + 0.0747 + 0.100)
38(0.3048)2
=0.365 K/'W
The parallel resistance is found as in Example 2.7:
1 1
= = =0.0682 K/W
" TR+ R;I T 1/0.0838+1/0.365

The studs reduced the total thermal resistance. The overall heat transfer coefficient rises to

1 1
= =0.395 W/m?K
AR, (0.0682)(37.16) ———"—

Ustuds =

an increase of 11%.
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PROBLEM 2.47: The heat conduction equation in Sect. 2.1 includes a volumetric heat release
rate, ¢. We normally describe heat as a transfer of energy and entropy across a system boundary,
so the notion of volumetric heat release needs some thought. Consider an electrical resistor
carrying a current / with a voltage difference of AV in steady state. Electrical work is done on the
resistor at the rate AV - [.

a) Use eqn. (1.1) to find the rate of heat and entropy flow out of the resistor. Assume that the
resistor’s surface temperature, T, is uniform. What is the rate of entropy generation, S sen?

b) Suppose that the resistor dissipates electrical work uniformly within its volume, V, and that
its thermal conductivity is high enough to provide a nearly uniform internal temperature.
What is the volumetric entropy generation rate, Sgen?

¢) By considering the net heat leaving a differential volume dV, use §g, to define the
volumetric heat release rate, g.

d) If the resistor has a nonuniform internal temperature but a uniform rate of work dissipation,
does the total entropy generation change? Why or why not?

e) If the resistor is insulated, so that no heat flows out, what is the entropy generation rate?
Assume the resistor’s temperature is nearly uniform, starting at 7p at time =0 .

SOLUTION.
a) The heat flow Q info the resistor is related to the work Wk done by the resistor
0

d
:M:#:—MJ
0 T

So, the heat flow out of the resistor is AV - I. The entropy leaving the resistor is simply

g - 2 _Aav-d
out T T
Therefore, the rate of entropy generation in the resistor, by dissipation of electrical work, is
Soon = Som = 2 M
b) Dividing eqn. (1) by V, the entropy generated per unit volume is
. _AV-T
o =

¢) The entropy generated in a differential volume d“V must be the net entropy transfer out of
that volume. The volume’s surface has the local temperature 7', so the net heat flow out is

dQout = TdSout = Tjgen dv
The apparent rate of “volumetric heat release” is therefore

. . AV -1
qEngen:—

Vv
d) The heat flow out of the surface is unchanged, so the rate of entropy flow out of the resistor
is unchanged. Thus, the total rate of entropy generation is unchanged. However, heat
transfer from hotter parts of the resistor is associated with lower entropy transfer (since 7 is
greater), but heat conduction through a temperature difference generates additional entropy,
cf. eqn. (1.7). The net result is the same overall entropy generation rate.
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e) If the resistor is adiabatic, the system is unsteady. With eqn. (1.1),

0 dU

= Wk + —
z T
dU
oAV
dt v

Assuming an incompressible resistor with a uniform temperature, eqn. (1.4) gives
ds 1 dU AV-1I
dt T dt ~ T®)

The temperature as a function of time can be found with eqn. (1.3)

dU dT
— =mc—
dt dt
and an easy calculation leads to
AV -1
T(t)=Ty+ t

Because no entropy was transferred in the heating process, all of the entropy change is by
entropy generation, and Sge, has the same form as in the steady case.
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PROBLEM 2.48: If an overall temperature difference of AT is imposed on N thermal resistances
in series, show that the temperature difference across the i thermal resistance is
R;

N
iz Ri

AT; = AT

SoLUTION. The heat flow through the series of resistors is (cf. Fig. 2.18):

AT AT
Q = = N

Rtequiv i=1 Ri

The same heat flows through the i resistance:

0=
=R
Equating these expressions and rearranging leads to the stated result:

AT, AT

R YN R

i=1 M

R.
AT, = =
iz Ri

AT

In electric circuit theory, this is called the voltage divider relationship.
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PROBLEM 2.49: An electrical resistor is a 1 mm thick annulus of Inconel (Fig. 1). It dissipates
9.4 kW/m. The resistor is insulated on both sides by a 3 mm layer of epoxy (k. = 0.5 W/m-K). A
316 stainless steel pipe inside the resistor is cooled internally by flowing water. The pipe is 5 cm
I.D. and 6 cm O.D. A larger pipe forms an annular passage outside the resistor, through which
water also flows; Einside = Eoutside = 1400 W/m?K. The outer pipe has 8.7 cm I.D. and a 0.5 cm
wall thickness and is wrapped with 2 cm thick glass-fiber pipe insulation, surrounded outside by
ambient air. If the water temperature inside is 47 °C and that outside is 53 °C, find the resistor’s
temperature.

steel
epoxy
Incone
epoxy
water
steel

FIGURE 1. Cross-section of resistor with water cooling

SoLuTION. This problem can be solved with two effective resistances, one from the resistor to
the water inside and one from the resistor to the water outside. (The insulation and outer pipe can
be ignored because the outside water temperature is known.) Further, the epoxy thickness is much
smaller than the radius, so it may be treated as a slab (Prob. 2.43).

The internal resistances, in series, may be summed for a 1 m length

Rinside = Repoxy + Rpipe + Reony

— 4 ln(ro/ri) + 1
[27(ro +06/2)1]k, 2rkgsl (27rril)zinside
0.003 In(0.03/0.025) 1

T 27(0.0315)(05) T 27(14) " 27(0.025)(1400)
=3.03x1072+2.07x 1073 +4.55x 107> = 3.69 x 1072 K/W
The epoxy is clearly the dominant resistance. The exterior resistance is
Routside = Repoxy + Reonv
_ 0.003 .\ 1
27(0.0355)(0.5) ~ 27(0.037)(1400)
=2.69%1072+3.07%x 1072 =3.00 x 1072 K/W
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Heat leaving the resistor goes into both effective resistances. With Q = 9.4 kW,

Tresistor — L water, inside Tresistor - Twater, outside
0= R R
inside outside
Tresistor( 1 + 1 ) _ (Twater, inside + Twater, outside) + Q
Rinside Routside Rinside Routside
1 1 47 53
T 4 - + +9400
resistor (3.69 x 10-2 ~ 3.00 x 10—2) (3.69 x 10-2 ~ 3.00 x 10—2)
64.28 3040
Solving, Tiesistor = 194 °C
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