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Preface

Heat transfer is the process by which energy moves from high temperature
regions to low temperature regions. Mass transfer is the similar process by
which molecules naturally migrate. This textbook describes those physical
phenomena. The book’s objective is to teach the analysis, modeling,
and design of engineered systems that apply heat and mass transfer.
Readers should have a background in elementary thermodynamics and
fluid mechanics, as is typical for junior- and senior-level engineering
students. This book is suitable for a one-semester course in heat and
mass transfer, with some of the more advanced material excluded. The
text is also well suited to self-study of some or all the material.

Organization of the book

The book consists of eleven chapters, divided into five parts. Part 1,
The General Problem of Heat Exchange, contains three chapters that
provide a broad introduction to heat transfer. The first chapter introduces
the modes heat transfer, and the second develops the basic theory of
heat conduction and the essential ideas of thermal resistance and the
overall heat transfer coefficient. The third chapter uses the first law of
thermodynamics and the overall heat transfer coefficient to derive the
relationships for heat exchange between two fluids streams. Together,
these three chapters form a “minicourse” in heat transfer. We use all this
material in later chapters. Readers should understand these topics before
they venture farther into the text.

Part 2, Analysis of Heat Conduction, contains two chapters. We be-
gin Chapter 4 with further discussion of the heat conduction equation,
including well-posed boundary and initial conditions and some general
solutions. We then develop a simplified approach to dimensional analysis,
which we use throughout all chapters that follow. Chapter 4 closes with
a discussion of heat conducting fins. Such fins arise frequently, in forms
both obvious and subtle, throughout the practice of heat transfer.
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Chapter 5 explores unsteady heat conduction and heat conduction
in more than one dimension. One-dimensional unsteady conduction is
at the foundation of heat transfer, with wide-ranging applications. In
fact, unsteady conduction in semi-infinite media provides a conceptual
framework for our study of convective boundary layers in Chapter 6. The
last two sections of this chapter introduce multidimensional steady and
unsteady conduction.

Part 3 addresses Convective Heat Transfer. These four chapters make
up the largest section of the book. Chapter 6 introduces laminar and
turbulent boundary layers. We discuss the physical behavior of boundary
layers in detail. We also derive formulae for the heat transfer coefficient
in various idealized configurations. The last three sections dig into tur-
bulent boundary layers, which are arguably more common than laminar
boundary layers.

Chapter 7 shifts focus to convection inside tubes and in some more
complex external flows. The first three sections—on pipe flows—are of
vital importance throughout heat transfer engineering. The next sections
connect pipe flows to heat exchangers and generalize to noncircular ducts.
Flow across the outside of tubes is the final topic.

Chapter 8 treats convection in which fluid flow is driven by buoyancy,
called natural convection. This chapter also treats condensation from
pure vapors, which bears a substantial physical and analytical similarity
to natural convection. Chapter 8 requires Chapter 6, but not Chapter 7.

Chapter 9 is an introduction to the physics and modeling of boiling
processes. This chapter should offer little difficulty at any point beyond
Chapter 6.

Part 4 of the book consists of Chapter 10, Radiative Heat Transfer. This
stand-alone chapter is accessible at any point after Chapter 2. Radiation
heat transfer is present at any temperature, but it becomes increasingly
important as the temperature rises. Some processes involve both high
and low temperature radiation, as when the sun’s heat is absorbed by the
Earth. And radiative transfer through gases ultimately determines the
temperature and climate on our planet.

Part 5, Mass Transfer, is the single Chapter 11. Many important phase-
change processes occur in mixtures, not pure vapors, as when water
condenses out of or evaporates into air. Mass transfer processes usually
involve both diffusive and convective transport, and we discuss that dis-
tinction in detail. When one species in a mixture is dilute (as for water
vapor in room-temperature air), we can form a simple analogy between
heat and mass transfer. This analogy enables us to adapt many formulae
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from Chapters 6, 7, and 8. In more concentrated or multicomponent
mixtures, however, the analogy breaks down. We discuss alternate formu-
lations in the final sections of this book. Many of the homework problems
in this chapter expand upon ideas mentioned only briefly in the text.
Readers who wish to master the material should attempt all the problems.
This chapter does not require Chapter 9 and 10, nor any prior study of
chemical thermodynamics.

Finally, Appendix A includes the physical property data needed for
solving the end-of-chapter problems and the examples in text.

Changes in this edition

This edition differs from the fifth edition as follows. We have substantially
edited Chapters 1, 2, 3, and 6 for content and clarity. We have entirely
reworked the material on heat transfer in turbulent boundary layers
in Chapter 6. We have extensively revised and rearranged Chapter 11,
on mass transfer: we give greater attention to distinguishing between
convection and diffusion, especially as the mass transfer rate rises; we
treat concentrated mixtures in more detail; we have added a new section
on multicomponent diffusion, for which Fick’s law is inadequate; we have
added many new figures and examples; and we have reviewed, edited,
and changed all of the end-of-chapter problems.

In total, we have redrawn or added more than 40 figures in this edition.
We have also added, revised, or replaced dozens of end-of-chapter prob-
lems throughout the book. In parallel, we have edited and added to the
solutions manual, which now includes more than 520 solved problems.
We have updated the properties of many fluids in Appendix A to accom-
modate new data. We have also made edits throughout the entire text to
improve clarity or to eliminate typos or errors. And, we have reviewed
the references cited, providing links for online access where available.

A Heat Transfer Textbook has now existed for almost half a century.
JHL IV wrote the first edition (1981) during the 1970s at the University of
Kentucky. He based it on many years of teaching heat transfer to junior
and senior level students in mechanical and chemical engineering. We
added the material on mass transfer, by JHL V, to the second edition
(1987). JHL V has led the third edition and all later editions. The third
edition (2001) was primarily distributed as an e-book, and it was one of the
very first engineering textbooks to be available in this format. Hundreds
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of thousands of readers, from seven continents, accessed that e-book. The
fourth (2011) and fifth (2019) editions incorporated many more updates,
changes, and corrections within the existing framework of the text. We
published those editions both as e-books and as low-cost paperbacks
distributed by Dover Publications.

The present sixth edition continues the evolution of A Heat Transfer
Textbook. We hope that readers will find the material to have lasting value.

JHL V, Massachusetts Institute of Technology
JHL IV, University of Houston

April 2024
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Part I

The General Problem of Heat
Exchange
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1. Introduction

The radiation of the sun in which the planet is incessantly plunged,
penetrates the air, the earth, and the waters; its elements are divided,
change direction in every way, and, penetrating the mass of the globe, would
raise its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, J. Fourier

1.1 Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. Scientists of the late eighteenth century
finally decided that all bodies must contain an invisible fluid which they
called caloric. Caloric was assigned a variety of properties, some of which
proved to be inconsistent with nature—for example, caloric had weight
and could not be created or eliminated. But the most important property
was that caloric flowed from hot bodies into cold ones. Caloric provided
a very useful way to think about heat. Later we shall explain the flow of
heat in terms more satisfactory to the modern ear; however, it will seldom
be wrong to imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
region. It would be “dead” in the fullest sense of the word — devoid of
any process of any kind.

3



4 Introduction §1.1

The overall driving force for these heat flow processes is the cooling
(or leveling) of any temperature gradients. The heat flows that result
from the cooling of the sun are the primary processes that we experience
naturally. Earth’s surface is also warmed by the cooling of its core, and
even by radiation from the distant stars, however little those processes
influence our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while most animals are in balance
with these heat flows, we humans have used our minds, our backs, and
our wills to harness and control energy flows that are far more intense
than those we experience naturally.1 To emphasize this point we suggest
that the reader do the following experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your
own weight up a stairwell, against a stopwatch. Express the result in
watts (W). Perhaps you might collect the results in your class. They
should generally be less than 1 kW or even 1 horsepower (746 W). How
much less might be surprising. ♦

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The power consumed by
an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The power consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the output of even
a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the
thirteenth century, the energy we use was drawn indirectly from the sun
using comparatively gentle processes — animal power, wind and water
power, and burning wood. Then population growth and deforestation
drove the English to using coal. By the end of the seventeenth century,

1Some anthropologists think that the term Homo technologicus (those who use
technology) serves to define human beings, as apart from animals, better than the older
term Homo sapiens (those who are wise). We may not be as much wiser than the animals
as we think we are, but only we do serious sustained tool making.
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England had almost completely converted to coal in place of wood. At the
turn of the eighteenth century, the first commercial steam engines were
developed, and that set the stage for enormously increased consumption
of coal. Europe and America followed England in these developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win a
race, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human
proportions. We must understand and control the processes that di-
vide and diffuse intense heat flows down to the level on which we can
interact with them. To see how this works, consider a specific situ-
ation. Suppose we live in a town where coal is processed into fuel-
gas and coke. (This domestic use of coked coal was once widespread.
It has now almost vanished.) Let us list a few of the process heat
transfer problems that must be solved before we can drink a glass of
iced tea.

• A variety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

• The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

• The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

• The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.

• The steam passes through a turbine where it is involved with many
heat transfer processes, possibly including some condensation in
the last turbine stages. The spent steam is then condensed in any
of a variety of heat transfer devices.
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• Cooling must be provided in each stage of the electrical supply
system: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

• The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

• Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal en-
ergy from one substance to another. In a broad sense, all these problems
resolve themselves into collecting and focusing large quantities of energy
for the use of people, and then distributing and interfacing this energy
with people in such a way that they can use it on their own puny level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics

The First Law

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
rate basis:

Q⏞ ⏟⏟ ⏞
positive toward

the system

= Wk⏞ ⏟⏟ ⏞
positive away

from the system

+ dU
dt⏞ ⏟⏟ ⏞

positive when
the system’s

energy increases

(1.1)

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
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Figure 1.1 The First Law of Thermodynamics for a closed system.

dU/dt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done without
reference to any work processes, although heat transfer might subse-
quently be combined with work in the analysis of real systems. If pdV
work is the only work that occurs, then eqn. (1.1) is

Q = p dV
dt

+ dU
dt

(1.2a)

This equation has two well-known special cases:

Constant volume process: Q = dU
dt

=mcv
dT
dt

(1.2b)

Constant pressure process: Q = dH
dt

=mcp
dT
dt

(1.2c)

where H ≡ U + pV is the enthalpy, and cv and cp are the specific heat
capacities at constant volume and constant pressure, respectively.

When the substance undergoing the process is incompressible (so that
V is constant for any pressure variation), the two specific heats are equal:
cv = cp ≡ c. The proper form of eqn. (1.2a) is then

Q = dU
dt

=mc dT
dt

(1.3)

as in Fig. 1.1b. Since solids and liquids can frequently be approximated
as being incompressible, we shall often make use of eqn. (1.3).
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If the heat transfer were reversible, then eqn. (1.2a) would become2

T
dS
dt⏞ ⏟⏟ ⏞

Qrev

= p dV
dt⏞ ⏟⏟ ⏞

Wkrev

+dU
dt

(1.4)

That might seem to suggest that Q can be evaluated independently for
inclusion in either eqn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U(t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description of
heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as T1 > T2, heat will flow spontaneously and irreversibly from
1 to 2. In accordance with our understanding of the Second Law of
Thermodynamics, we expect the entropy of the universe to increase as a
consequence of this process. If T2 ⎯→T1, the process will approach being
quasistatic and reversible. But the rate of heat transfer will also approach
zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at steady
state, the properties of the wall do not vary with time. We know that the
entropy of the wall depends on its state and must therefore be constant.
How, then, does the entropy of the universe increase? We turn to this
question next.

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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Figure 1.2 Irreversible heat flow between
two thermal reservoirs through an
intervening wall.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, ṠUn, resulting from the
preceding heat transfer process through a wall is

ṠUn = Ṡres 1 + Ṡwall⏞ ⏟⏟ ⏞
= 0, since Swall

must be constant

+Ṡres 2 (1.5)

where the dots denote time derivatives (e.g., ẋ ≡ dx/dt). Since the
reservoir temperatures are constant,

Ṡres =
Q
Tres

(1.6)

Now Qres 1 is negative and equal in magnitude to Qres 2, so eqn. (1.5)
becomes

ṠUn =
⃓⃓⃓
Qres 1

⃓⃓⃓(︃ 1
T2
− 1
T1

)︃
(1.7)

The term in parentheses is positive, so ṠUn > 0. This agrees with Clausius’s
statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence ṠUn, is
determined by the wall’s resistance to heat flow. Although the wall is the
agent that causes the entropy of the universe to increase, its own entropy
does not change. Only the entropies of the reservoirs change.



Help! The barn is on fire!

Let the water be analogous to heat. Let the people be analogous to the
heat transfer medium. Then:

Case 1 The hose directs water from the well to the barn, independent of
the medium. This is analogous to thermal radiation in a vacuum
or in most gases.

Case 2 Water passes from the well to the barn through the bucket
brigade medium. This is analogous to heat conduction.

Case 3 The medium is now a single runner carrying a bucket from the
well to the barn. This is analogous to heat convection.

Figure 1.3 An analogy for the three modes of heat transfer.

10
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1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleur in 1822 [1.1]. In it he formulated a
very complete exposition of the theory of heat conduction. The heat flow
rate per unit area, called the heat flux, q (W/m2), has central importance
in the theory.

Fourier began his treatise by stating the empirical law that bears his
name: the heat flux resulting from thermal conduction is proportional to
the magnitude of the temperature gradient and opposite to it in sign. If we
denote the constant of proportionality as k, then

q = −k dT
dx

(1.8)

The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m·K, or J/m·s·K, or Btu/h·ft·◦F if eqn. (1.8) is to be
dimensionally correct.

The heat flux is a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, q will be positive—it will flow in the x-direction. If
T increases with x, q will be negative—it will flow opposite the x-direction.
In either case, q will flow from higher temperatures to lower temperatures.
Equation (1.8) is the one-dimensional form of Fourier’s law. We develop
its three-dimensional form in Chapter 2, namely:

q⃗ = −k∇T

Example 1.1

The front of a slab of lead (k = 34 W/m·K) is kept at 110◦C and the
back is kept at 50◦C. If the area of the slab is A = 0.4 m2 and it is
0.03 m thick, compute the heat flux, q, and the heat transfer rate, Q.

Solution. Take dT/dx ≃ (Tback−Tfront)
/︁
(xback−xfront) throughout

the slab; we verify this in Example 2.2. Thus, eqn. (1.8) becomes

q = −34
(︃

50− 110
0.03

)︃
= +68,000 W/m2 = 68 kW/m2



Figure 1.4 Baron Jean Baptiste Joseph Fourier (1768–1830). Joseph
Fourier lived a remarkable double life. He served as a high government
official in Napoleonic France and he was also an applied mathematician
of great importance. He was with Napoleon in Egypt between 1798
and 1801, and he was subsequently prefect of the administrative area
(or “Department”) of Isère in France until Napoleon’s first fall in 1814.
During the latter period he worked on the theory of heat flow and in
1807 submitted a 234-page monograph on the subject. It was given
to such luminaries as Lagrange and Laplace for review. They found
fault with his adaptation of a series expansion suggested by Daniel
Bernoulli in the eighteenth century. Fourier’s theory of heat flow, his
governing differential equation, and the now-famous “Fourier series”
solution of that equation did not emerge in print from the ensuing
controversy until 1822. (Etching from [1.2]).

12
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and
Q = qA = 68(0.4) = 27 kW

The direction of heat flow, from hotter to cooler, is always clear in
one-dimensional heat conduction problems. Therefore, we can usually
write Fourier’s law in simple scalar form:

q = k ∆T
L

(1.9)

where L is the thickness in the direction of heat flow and q and ∆T are
both written as positive quantities. When we use eqn. (1.9), we must
remember that q always flows from high to low temperatures and that
this equation is only for one-dimensional, steady state conduction.

Thermal conductivity values. Let us consider how conduction works,
starting with conduction in gases. We know that molecular velocities
depend on temperature. Consider conduction from a hot to a cold wall,
in a situation where gravity can be ignored (see Fig. 1.5). The molecules
near the hot wall collide with it and gain energy from the hot molecules
in the wall. They leave with generally higher speeds and collide with their
neighbors to the right, increasing the speed of those molecules. This
process continues until the molecules on the far right pass their kinetic
energy to molecules in the cold wall.3

Comparable processes occur within solids as the molecules vibrate
within their lattice structures, and as the lattice vibrates as a whole. Similar
processes are also at play within the “electron gas” that moves through a
conductor. These processes are more efficient in most solids than they
are in gases. Liquids conduct heat much better than gases, but not as
well as most solids. Notice that

−dT
dx

= q
k
∝ 1

k⏞ ⏟⏟ ⏞
since, in steady
conduction, q is

constant

(1.10)

Thus most solids, with their generally higher k values, yield smaller
temperature gradients than gases or liquids for a given heat flux.

3In Section 6.4, we see that k is proportional to the molecular speed and the specific
heat at constant volume. And in Section 11.10, we see that k is inversely proportional
to the molecules’ cross-sectional area.
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Figure 1.5 Heat conduction through gas
separating two solid walls.

The range of thermal conductivities is enormous. As we see from
Fig. 1.6, k varies by a factor of about 105 between gases and diamond
at room temperature. This variation can be increased to about 107 if we
include the effective conductivity of various cryogenic “superinsulations.”
(These involve powders, fibers, or multilayered materials that have been
evacuated of all air.) The reader should study and remember the order of
magnitude of the thermal conductivities of different types of materials.
This will be a help in avoiding mistakes in future computations, and it
will be a help in making approximations during problem solving. Actual
numerical values of the thermal conductivity are given in Appendix A
(which is a broad listing of many of the physical properties you might
need in this course) and in Figs. 2.2 and 2.3.

This book deals almost exclusively with S.I. units, or Système Interna-
tional d’Unités. Since much reference material will continue to be available
in English units, we should have at hand conversion factors. We shall
present all of our conversion factors as a ratio of equal quantities in both
systems. We can thus write for thermal conductivity:

1 = 1.731
W/m·K

Btu/h·ft·◦F (1.11)

Let us apply this to copper, which has the highest conductivity (398 W/m·K)
of any common substance at ordinary temperatures:

kCu at room temp = (398 W/m·K)
/︃

1.731
W/m·K

Btu/h·ft·◦F = 230 Btu/h·ft·◦F

See Appendix B for more on handling units and conversion factors.

http://www.uh.edu/engines/epi273.htm
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Figure 1.7 Temperature drop through a
copper wall protected by stainless steel
(Example 1.2).

Example 1.2

A copper slab (k = 387 W/m·K) is 3 mm thick. It is protected from
corrosion on each side by a 2-mm-thick layer of stainless steel (k = 17
W/m·K). The temperature is 400◦C on one side of this composite wall
and 100◦C on the other. Find the temperature distribution in the
copper slab and the heat conducted through the wall (see Fig. 1.7).

Solution. Conservation of energy requires that the steady heat flux
through all three slabs must be the same. Therefore, ∆Ts.s. and ∆TCu

are related by Fourier’s law, eqn. (1.9), applied to either steel slab:

q =
(︃
k
∆T
L

)︃
s.s.
=
(︃
k
∆T
L

)︃
Cu

The value of k copper is more than 20 times that for stainless steel,
so the temperature difference in the copper is less than 1/20 that in
the steel. Thus, the copper is nearly isothermal.

As a first estimate, we could treat the copper as exactly isothermal—
as if it were not even there. Then, the two stainless steel slabs can be
treated as a single 4 mm slab. Again using eqn. (1.9), we estimate

q = k∆T
L
= (17 W/m·K)

(︃
400− 100

0.004

)︃
K/m = 1275 kW/m2

The accuracy of this rough calculation can be improved by account-
ing for the temperature drop in the copper. Solving the first equation
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for ∆Ts.s., we can evaluate the overall temperature drop in the wall:

(400− 100)◦C = ∆TCu + 2∆Ts.s.

= ∆TCu

[︃
1+ 2

(k/L)Cu

(k/L)s.s.

]︃
= (31.35)∆TCu

Solving this, we obtain ∆TCu = 9.57 K. So ∆Ts.s. = (300 − 9.57)/2 =
145 K. It follows that TCu, left = 255◦C and TCu, right = 245◦C.

The heat flux can be obtained by applying Fourier’s law to any of
the three layers. We consider either stainless steel layer and get

q = 17
W

m·K
145 K

0.002 m
= 1233 kW/m2

Thus our initial approximation was accurate within a few percent.

One-dimensional heat conduction equation. In Example 1.2 we had to
deal with a major problem that arises in heat conduction problems. The
problem is that Fourier’s law involves two dependent variables, T and
q. To eliminate q and first solve for T , we introduced the First Law of
Thermodynamics implicitly: Conservation of energy required that q was
the same in each metallic slab.

Now let us eliminate q in a more general way. Consider a one-dimen-
sional element, as shown in Fig. 1.8. From Fourier’s law applied at each
side of the element, the net heat conduction out of the element during
unsteady heat flow is

Qnet = Aq
⃓⃓⃓
x+δx−Aq

⃓⃓⃓
x
= −kA

(︃
∂T
∂x

⃓⃓⃓⃓
x+δx

− ∂T
∂x

⃓⃓⃓⃓
x

)︃
≃ −kA ∂

2T
∂x2

δx

(1.12)
To eliminate the heat lossQnet in favor of T , we use the First Law statement,
eqn. (1.3), for an incompressible mass m = ρAδx:

−Qnet =
dU
dt

= ρcA∂T
∂t
δx (1.13)

where ρ is the density of the slab and c is its specific heat capacity.4

Combining eqns. (1.12) and (1.13) gives

∂2T
∂x2

= ρc
k
∂T
∂t

≡ 1
α
∂T
∂t

(1.14)

4The reader may wonder how the equation differs for compressible systems. The
compressible equation involves additional terms, and this particular terms emerges
with cp rather c under the conventional rearrangement of terms.
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Figure 1.8 One-dimensional heat conduction through a differ-
ential element.

This result is the one-dimensional heat conduction equation.5 Its
importance is this: By combining the First Law with Fourier’s law, we have
eliminated the unknown heat transfer rate and obtained a differential
equation that can be solved for the temperature distribution, T(x, t). The
heat conduction equation is the primary equation upon which all of heat
conduction theory is based.

The heat conduction equation includes a new property which is as
important to transient heat conduction as k is to steady-state conduction.
This is the thermal diffusivity, α:

α ≡ k
ρc

J
m·s·K

m3

kg
kg·K

J
= α m2/s (or ft2/hr)

The thermal diffusivity is a measure of how quickly a material can carry
heat away from a hot source. Since material does not just transmit heat
but must be warmed by it as well, α involves both the conductivity, k,
and the volumetric heat capacity, ρc.

5This equation is sometimes called the heat diffusion equation.
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Tbody

T∞

Figure 1.9 The convective cooling of a heated body.

Heat Convection

The physical process. Consider a typical convective cooling situation.
Cool gas flows past a warm body, as shown in Fig. 1.9. The fluid imme-
diately adjacent to the body forms a thin slowed-down region called a
boundary layer. Heat is conducted into this layer, which sweeps it away
and, farther downstream, mixes it into the stream. We call such processes
of carrying heat away by a moving fluid convection.

In 1701, Isaac Newton considered the convective process and sug-
gested that the cooling would be such that

−dTbody

dt
∝ Tbody − T∞ (1.15)

where T∞ is the temperature of the oncoming fluid. Heat flows out of
the body, so the time derivative is negative when Tbody > T∞. By putting
eqn. (1.15) into eqn. (1.3), we get (see Problem 1.2)

−Q ∝ Tbody − T∞ (1.16)

The sign is negative because heat leaves, rather than enters, the body. To
use a positive value, let −Q = Qout. Then eqn. (1.16) can be rephrased in
terms of q = Qout/A and a constant of proportionality, h, as

q = h
(︂
Tbody − T∞

)︂
(1.17)

This result is usually called Newton’s law of cooling, although Newton
never wrote such an expression.

The constant h is the film coefficient or heat transfer coefficient. The
bar over h indicates that it is an average over the surface of the body.
Without the bar, h denotes the “local” value of the heat transfer coefficient
at a point on the surface. The units of h and h are W/m2K or J/s·m2·K.
The conversion factor for English units is:

1 = 0.0009478 Btu
J

· K
1.8◦F

· 3600 s
h

· (0.3048 m)2

ft2
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or

1 = 0.1761
Btu/h·ft2·◦F

W/m2K
(1.18)

Newton somewhat oversimplified convection when he suggested that
the rate of cooling is proportional to the temperature difference. Actually,
h can depend on the temperature difference Tbody−T∞ ≡ ∆T . In Chapter 6,
we find that h really is independent of ∆T in situations in which fluid is
forced past a body and ∆T is not too large. This is called forced convection.

When fluid buoys up from a hot body or down from a cold one, h
varies as some weak power of ∆T—typically as ∆T 1/4 or ∆T 1/3. This is
called free or natural convection. If the body is hot enough to boil a liquid
surrounding it, h will typically vary as ∆T 2.

For the moment, we restrict consideration to situations in which
Newton’s law is either true or at least a reasonable approximation to real
behavior.

We should have some idea of how large hmight be in a given situation.
Table 1.1 provides some illustrative values of h that have been observed
or calculated for different situations. They are only illustrative and should
not be used in calculations because the situations for which they apply
have not been fully described. Most of the values in the table could be
changed a great deal by varying quantities that have not been specified,
such as surface roughness or geometry.

The determination of h or h is a fairly complicated task and one that
will receive a great deal of our attention in Part III. Notice, too, that h can
change dramatically from one situation to the next. Reasonable values of
h range over about six orders of magnitude.

Example 1.3

The heat flux, q, is 6000 W/m2 at the surface of an electrical heater.
The heater temperature is 120◦C when it is cooled by air at 70◦C. What
is the average convective heat transfer coefficient, h? What will the
heater temperature be if the power is reduced so that q is 2000 W/m2?

Solution.

h = q
∆T

= 6000
120− 70

= 120 W/m2K

If h stays fairly constant as the heat flux is reduced,

∆T = Theater − 70◦C = q
h
= 2000 W/m2

120 W/m2K
= 16.67 K

so Theater = 70+ 16.67 = 86.67◦C.
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Table 1.1 Some approximate values of convective heat transfer coefficients

Situation (T∞ near room temperature unless otherwise stated) h, W/m2K

Natural convection in gases
• 0.3 m vertical wall in air, ∆T = 30◦C 4.2
• 1 mm diameter horizontal wire in air, ∆T = 100◦C 29

Natural convection in liquids
• 40 mm O.D. horizontal pipe in water, ∆T = 30◦C 570
• 0.25 mm diameter wire in methanol, ∆T = 50◦C 4,000

Forced convection of gases
• Air at 10 m/s inside 20 mm I.D. tube 45
• Air at 30 m/s over a 1 m flat plate 80

Forced convection of liquids
• Water at 2 m/s over a 60 mm plate 590
• Aniline-alcohol mixture at 3 m/s in a 25 mm I.D. tube 2,600
• Water at 10 m/s inside 20 mm I.D. tube 34,500
• Liquid sodium at 5 m/s in a 13 mm I.D. tube at 370◦C 75,000

Boiling water at 100 ◦C and 1 atm
• During film boiling 300
• In a tea kettle 4,000
• At the highest pool-boiling heat flux 40,000
• During convective-boiling, range of highest values 105–106

Condensation
• In a typical horizontal cold-water-tube steam condenser 15,000
• Same, but condensing benzene 1,700
• Dropwise condensation of water at 1 atm 160,000

Lumped-capacity solution. We now wish to deal with a very simple
but extremely important, kind of convective heat transfer problem. The
problem is that of predicting the transient cooling of a convectively cooled
object, such as we showed in Fig. 1.9, in the case when the body has an
almost uniform internal temperature. When the internal temperature
gradients are small, we can “lump” all of the heat capacitance at a single
body temperature, T = T(t).

With reference to Fig. 1.10, we apply our now-familiar First law state-
ment, eqn. (1.3), to such a body:

Q⏞ ⏟⏟ ⏞
−hA(T − T∞)

= dU
dt⏞ ⏟⏟ ⏞

d
dt
[︁
ρcV(T−Tref)

]︁
(1.19)
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where A and V are the surface area and volume of the body, and Tref is
the arbitrary temperature at which U is taken to be zero. Thus6

d(T − T∞)
dt

= − hA
ρcV

(T − T∞) (1.20)

The general solution to this equation is

ln(T − T∞) = −
t

(ρcV
/︁
hA)

+ C (1.21)

If the initial temperature is T(t = 0) ≡ Ti, then C = ln(Ti − T∞). The
group ρcV

/︁
hA is the time constant, T . The cooling of the body is then

given by

T − T∞
Ti − T∞

= e−t/T (1.22)

All of the physical parameters in the problem are now contained in
the time constant, T . It represents the time required for a body to cool to
1/e, or 37%, of the initial temperature difference above or below T∞. The
time constant can also be written as

T =mc
(︃

1

hA

)︃
(1.23)

where m = ρV is the mass of the body. A body of greater mass or greater
specific heat capacity will have a larger time constant and will take longer
to cool. The quantity 1

/︁
hA may be thought of as a “resistance” to heat

loss by convection (see Section 2.3). In other words, a body with less
surface area or lower h will also take longer to cool.

Notice that the thermal conductivity is missing from eqns. (1.22) and
(1.23). The reason is that we have assumed that the temperature of the
body is nearly uniform, and this means that internal conduction is not
important. We see in Fig. 1.10 that, if L

/︁
(kb/h)≪ 1, the temperature of

the body, Tb, is almost uniform within the body at any time. We name
this group Bi, so

Bi ≡ hL
kb

≪ 1 implies that Tb(x, t) ≃ T(t) ≃ Tsurface

6Is it clear why (T − Tref) has been changed to (T − T∞) under the derivative?
Remember that the derivative of a constant (like Tref or T∞) is zero. We can therefore
change Tref to T∞ without invalidating the equation, so as to get the same dependent
variable on both sides of the equation.
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Figure 1.10 The cooling of a body for which the Biot number,
Bi = hL/kb, is small. The temperature variation within the body
is less than LdT/dx

⃓⃓
surface = (hL/kb)(Tb − T∞). Therefore,

when Bi ≪ 1, the body temperature is nearly uniform.

and the thermal conductivity, kb, becomes irrelevant to the cooling pro-
cess. This condition must be satisfied or the lumped-capacity solution
will not be accurate.

The group Bi = hL
/︁
kb is called the Biot number7. If Bi were large, of

course, the situation would be reversed, as shown in Fig. 1.11. In this
case Bi = hL/kb ≫ 1 and the convection process offers little resistance

7Pronounced Bee-oh. J. B. Biot, although younger than Fourier, worked on the analysis
of heat conduction even earlier—in 1802 or 1803. He grappled with the problem of
including external convection in heat conduction analyses in 1804 but could not see
how to do it. Fourier read Biot’s work and by 1807 had determined how to analyze the
problem. (Later we encounter a similar dimensionless group called the Nusselt number,
Nu ≡ hL/kfluid. The latter relates only to the fluid flowing over a body and not to the
body being cooled. We deal with it extensively in the study of convection.)

https://en.wikipedia.org/wiki/Jean-Baptiste_Biot
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Figure 1.11 The cooling of a body for which the Biot number,
hL/kb, is large.

to heat transfer. We could solve the heat conduction equation

∂2Tb
∂x2

= 1
α
∂Tb
∂t

subject to the simple boundary condition Tb(x, t) = T∞ when x = L, to
determine the temperature in the body and its rate of cooling in this case.
The Biot number will therefore be the basis for determining what sort of
problem we have to solve.

The lumped capacity solution will normally be accurate within about
3% if Bi ❲ 0.1, and much more accurate for still smaller values of Bi [1.3].

Example 1.4

A thermocouple bead is largely solder, 1 mm in diameter. It is initially
in a 20◦C room and is then suddenly placed into a 200◦C gas flow. The
heat transfer coefficient h is 250 W/m2K, and the effective values of k,
ρ, and c are 45 W/m·K, 9300 kg/m3, and 0.18 kJ/kg·K, respectively.
Evaluate the response of the thermocouple.
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Figure 1.12 Thermocouple response to a hot gas flow.

Solution. The time constant, T , is

T = ρcV
hA

= ρc
h
πD3/6
πD2

= ρcD
6h

= (9300)(0.18)(0.001)
6(250)

kg
m3

kJ
kg·K m

m2·K
W

1000 W
kJ/s

= 1.116 s

Therefore, with Ti = 20◦C and T∞ = 200◦C, eqn. (1.22) becomes

T − 200◦C
(20− 200)◦C

= e−t/1.116 or T = 200− 180 e−t/1.116 ◦C

This result is plotted in Fig. 1.12, where we see that, for all practical
purposes, this thermocouple catches up with the gas stream in less
than 5 s. Indeed, it should be apparent that any lumped system will
come within 95% of the change in signal in three time constants, since
e−3 ≃ 0.050.
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This calculation is based entirely on the assumption that Bi ≪ 1
for the thermocouple. We must check that assumption:

Bi ≡ hL
k
= (250 W/m2K)(0.001 m)/2

45 W/m·K = 0.00278

This is very small indeed, so the assumption is valid.

To calculate the rate of entropy production in a lumped-capacity
system, we note that the entropy change of the universe is the sum of the
entropy decrease of the body and the more rapid entropy increase of the
surroundings. The source of irreversibility is heat flow through the finite
temperature difference in the boundary layer. Accordingly, we write the
time rate of change of entropy of the universe, dSUn/dt ≡ ṠUn, in terms
of the entropy transfer out of the body and into the surroundings

ṠUn = Ṡbody + Ṡsurroundings =
−Q
T
+ Q
T∞

where T is now the lumped temperature of the body. Then, with eqn. (1.19):

ṠUn = −ρcV
dT
dt

(︃
1
T∞

− 1
T

)︃
We can multiply both sides of this equation by dt and integrate the
right-hand side from T(t = 0) ≡ T0 to T at the time of interest:

∆S = −ρcV
∫︂ T
T0

(︃
1
T∞

− 1
T

)︃
dT (1.24)

Equation 1.24 will give a positive ∆S whether T > T∞ or T < T∞ because
the sign of dT will always oppose the sign of the integrand.

Experiment 1.2

Invent and carry out a simple procedure for evaluating the time con-
stant of a fever thermometer in your mouth. ♦

Radiation

Heat transfer by thermal radiation. All bodies constantly emit energy
by a process of electromagnetic radiation. The intensity of this radiant
energy flux depends upon the temperature of the body and the nature
of its surface. Most of the heat that reaches you when you sit in front of
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a fire is radiant energy. Radiant energy browns your toast in an electric
toaster, and it warms you when you walk in the sun.

Objects that are cooler than the fire, the toaster, or the sun emit
much less energy because the emission varies as the fourth power of
absolute temperature. Very often, the emission of energy, or radiant heat
transfer, by cooler bodies can be neglected in comparison with forced
convection and conduction. But heat transfer processes that occur at
high temperature, or with conduction and convection suppressed by a
vacuum, usually involve a significant fraction of radiation.

Experiment 1.3

Open the freezer door to your refrigerator. Put your face near it, but
stay far enough away to avoid the downwash of cooled air. This way
you cannot be cooled by convection; nor, because the air between you
and the freezer is a fine insulator, can you be cooled by conduction.
Still your face will feel cooler. The reason is that you radiate heat
directly into the cold region, and it radiates very little heat to you.
Consequently, your face cools perceptibly. ♦

The electromagnetic spectrum. Thermal radiation is a form of electro-
magnetic energy. Accordingly, it exhibits the same wavelike properties as
light or radio waves. Each quantum of radiant energy has a wavelength,
λ, and a frequency, ν , associated with it.

The full electromagnetic spectrum includes an enormous variety of
energy-bearing waves, of which heat is only a small part. Table 1.2 lists
the various forms over a range of wavelengths that spans 17 orders
of magnitude. Only the tiniest “window” of visible light exists in this
spectrum, through which we see the world around us. Thermal radiation,
whose main component is usually the spectrum of infrared radiation,
passes through the much larger window—about three orders of magnitude
in λ or ν .

Black bodies. The model for the perfect thermal radiator is a so-called
black body. This is a body which absorbs all energy that reaches it and
reflects nothing. The term can be a little confusing, since such bodies emit
energy. Thus, if we possessed infrared vision, a black body would glow
with “color” appropriate to its temperature. Perfect radiators are “black”
in the sense that they absorb all visible light (and all other radiation) that
reaches them. Consequently, perfect radiators will look black unless they
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Table 1.2 Forms of the electromagnetic wave spectrum

Characterization Wavelength, λ

Cosmic rays < 0.3 pm

Gamma rays 0.3–100 pm

X rays 0.01–30 nm

Ultraviolet light 3–400 nm

Visible light 0.4–0.7 µm

Near infrared radiation 0.7–30 µm

Far infrared radiation 30–1000 µm

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Thermal Radiation

0.1–1000 µm

Millimeter waves 1–10 mm

Microwaves 10–300 mm

Shortwave radio & TV 300 mm–100 m

Longwave radio 100 m–30 km

are hot enough to radiate heat in the form of visible light, as do the sun
and the orange flames of a fire.

We need to have an experimental method for making a perfectly black
body. The conventional device for approaching this ideal is called by the
German term hohlraum, which literally means “hollow space”. Figure 1.13
shows how a hohlraum is arranged. It is simply a device that traps all the
energy that reaches the aperture.

What are the important features of a thermally black body? Suppose
that a radiant heat flux, q, falls upon a translucent plate that is not black,
as shown in Fig. 1.14. A fraction, α, of the total incident energy, called the
absorptance, is absorbed in the body; a fraction, ρ, called the reflectance,
is reflected from it; and a fraction, τ, called the transmittance, passes
through. Thus

1 = α+ ρ + τ (1.25)

This relation can also be written for the energy carried by each wavelength
in the distribution of wavelengths that makes up heat from a source at
any temperature:

1 = αλ + ρλ + τλ (1.26)

All radiant energy incident on a black body is absorbed, so that αb or
αλb = 1 and ρb = τb = 0. Furthermore, the energy emitted from a
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trapped. The walls absorb
and scatter the energy, and
reflections die out quickly.

The hohlraum is
kept at a uniform

temperature

Figure 1.13 Cross section of a spherical hohlraum. The hole
has the attributes of a nearly perfect thermal black body.

black body reaches a theoretical maximum, which is given by the Stefan-
Boltzmann law. We look at this next.

The Stefan-Boltzmann law. We call the flux of energy radiating from
a body the emissive power, e(T) W/m2. The radiative flux at any sin-
gle wavelength is called the monochromatic emissive power, eλ(λ, T).
(“Monochromatic” means “single color”.) Thus, the emissive power is the
integral of the monochromatic emissive power over all wavelengths

e(T) ≡
∫︂∞

0
eλ(λ, T)dλ (1.27)

Figure 1.14 The distribution of energy
incident on a translucent slab.
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The dependence of e(T) on T for a black body was established experi-
mentally by Stefan in 1879 and explained by Boltzmann on the basis of
thermodynamic arguments in 1884. The Stefan-Boltzmann law is

eb(T) = σT 4 (1.28)

where the Stefan-Boltzmann constant, σ , is 5.670374× 10−8 W/m2·K4 or
1.714× 10−9 Btu/hr·ft2·◦R4, and T is the absolute temperature.

eλ vs. λ. Nature requires that, at a given temperature, a body will emit
a unique distribution of energy in wavelength. Thus, when you heat a
poker in the fire, it first glows a dull red—emitting most of its energy
at long wavelengths and just a little bit in the visible regime. When it is
white-hot, the energy distribution has been both greatly increased and
shifted toward the shorter-wavelength visible range. At each temperature,
a black body yields the highest value of eλ that a body can attain.

The very careful measurements of the black-body energy spectrum
made in 1899 by Lummer and Pringsheim [1.4] are shown in Fig. 1.15. The
wavelength where the emissive power is maximum at any temperature is
given by an exact relation called Wien’s displacement law:

(λT)eλ=max = 2897.77 µm·K (1.29)

Notice that around three-fourths of the area under each curve — that is,
three-fourths of the radiant energy — is carried by wavelengths greater
than that at the maximum. Even as the peak moves toward the visible
range at higher temperatures, the visible fraction of radiation remains
very small.

How physical theory could predict the observed wavelength depen-
dence of black body radiation became more and more perplexing toward
the end of the 19th century. The answer to that question would be the
keystone of the most profound scientific revolution the world has seen.
In 1901, Max Planck developed a theoretical model to explain the depen-
dence, although without yet understanding that he was setting the new
quantum physics in motion. His precise result, Planck’s law, was

eλb =
2πhc2

o
λ5 [exp(hco/kBTλ)− 1]

(1.30)

where co is the speed of light, equal to 2.99792458× 108 m/s in vacuum;
h is Planck’s constant, 6.62607015 × 10−34 J·s; and kB is Boltzmann’s
constant, 1.380649× 10−23 J/K.

https://en.wikipedia.org/wiki/Ludwig_Boltzmann
https://en.wikipedia.org/wiki/Max_Planck
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Figure 1.15 Black body data from
Lummer and Pringsheim (1899). The
curves show the monochromatic emissive
power of black bodies at various
temperatures (in K). The calculated values
were based on a model due to Wien, which
these data showed to run low at higher
wavelengths. This comparison led Planck
to a new model which matched the data
for all wavelengths, using fitted values of
h and kB . (Today’s eλb data, and Planck’s
law with modern h and kB , now in precise
agreement, both lie a bit above these old
curves.)

Radiant heat exchange. Suppose that a heated object (1 in Fig. 1.16a)
radiates only to some other object (2) and that both objects are thermally
black. All heat leaving object 1 arrives at object 2, and all heat arriving
at object 1 comes from object 2. Thus, the net heat transferred from
object 1 to object 2, Qnet, is the difference between Q1 to 2 = A1eb(T1)
and Q2 to 1 = A1eb(T2)

Qnet = A1eb(T1)−A1eb(T2) = A1σ
(︂
T 4

1 − T 4
2

)︂
(1.31)

If the first object “sees” other objects in addition to object 2, as indicated
in Fig. 1.16b, then a view factor (sometimes called a configuration factor
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Figure 1.16 The net radiant heat transfer from one object to
another.

or a shape factor ), F1–2, must be included in eqn. (1.31):

Qnet = A1F1–2σ
(︂
T 4

1 − T 4
2

)︂
(1.32)

We may regard F1–2 as the fraction of energy leaving object 1 that is
intercepted by object 2.

Example 1.5

A black thermocouple is inside a chamber with black walls. If the air
around the thermocouple is at 20◦C, the walls are at 100◦C, and the
heat transfer coefficient between the thermocouple and the air is 75
W/m2K, what temperature will the thermocouple read?

Solution. The heat convected away from the thermocouple by the air
must exactly balance that radiated to it by the hot walls if the system
is in steady state. Furthermore, F1–2 = 1 since the thermocouple (1)
radiates all its energy to the walls (2):

hAtc
(︁
Ttc − Tair

)︁
= −Qnet = −Atcσ

(︂
T 4
tc − T 4

wall

)︂
or, with Ttc in ◦C,

75(Ttc − 20) W/m2 =
5.6704× 10−8

[︂
(100+ 273)4 − (Ttc + 273)4

]︂
W/m2
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since T for radiation must be in kelvin. Trial-and-error solution of
this equation yields Ttc = 28.4◦C.

We have seen that non-black bodies absorb less radiation than black
bodies, which are perfect absorbers. Likewise, non-black bodies emit less
radiation than black bodies, which also happen to be perfect emitters. We
can characterize the emissive power of a non-black body using a property
called emittance, ε:

enon-black = εeb = εσT 4 (1.33)

where 0 < ε ⩽ 1 (emittance is sometimes called emissivity). When ra-
diation is exchanged between two bodies that are not black, we have

Qnet = A1F1–2σ
(︂
T 4

1 − T 4
2

)︂
(1.34)

where the transfer factor, F1–2, depends on the emittances of both bodies
as well as the geometrical “view”.

The expression for F1–2 is particularly simple in the important special
case of a small object, 1, in a much larger isothermal environment, 2:

F1–2 = ε1 for A1 ≪ A2 (1.35)

We prove this result in Example 10.7, in the chapter on radiation.

Example 1.6

Suppose that the thermocouple in Example 1.5 were not black and
had an emittance of εtc = 0.4. Further suppose that the walls were
not black and had a much larger surface area than the thermocouple.
What temperature would the thermocouple read?

Solution. Qnet is now given by eqn. (1.34) and F1–2 is εtc according
to eqn. (1.35):

hAtc
(︁
Ttc − Tair

)︁
= −Atcεtcσ

(︂
T 4
tc − T 4

wall

)︂
or

75(Ttc − 20) W/m2 =
(0.4)

(︁
5.6704× 10−8)︁[︂(100+ 273)4 − (Ttc + 273)4

]︂
W/m2

Trial-and-error yields Ttc = 23.5◦C.
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Radiation shielding. The preceding examples point out an important
practical problem than can be solved with radiation shielding. The idea
is as follows: If we want to measure the true air temperature, we can
place a thin foil casing, or shield, around the thermocouple. The casing
is shaped to obstruct the thermocouple’s “view” of the chamber but to
permit the free flow of the air around the thermocouple. Then the shield,
like the thermocouple in the two examples, will be cooler than the walls,
and the thermocouple it surrounds will be influenced by this much cooler
radiator. If the shield is highly reflecting on the outside, it will assume a
temperature still closer to that of the air and the error will be still less.
Multiple layers of shielding can further reduce the error.

Radiation shielding can take many forms and serve many purposes.
It is an important element in superinsulations. A glass firescreen in
a fireplace serves as a radiation shield because it is largely opaque to
infrared radiation. It absorbs heat radiated by the fire and reradiates that
energy (ineffectively) at a temperature much lower than that of the fire.

Experiment 1.4

Find a small open flame that produces a fair amount of soot. A candle,
kerosene lamp, or a cutting torch with a fuel-rich mixture should work
well. A clean blue flame will not work well because such gases do not
radiate much heat. First, place your finger in a position about 1 to
2 cm to one side of the flame, where it becomes uncomfortably hot.
Now take a piece of fine mesh screen and dip it in some soapy water,
which will fill up the holes. Put it between your finger and the flame.
You will see that your finger is protected from the heating until the
water evaporates. ♦

This experiment dramatizes that fact that water, while relatively trans-
parent to light, is essentially opaque to infrared radiation. That fact is
true of liquids in general. Air and other gases, on the other hand, let most
infrared radiation pass. We treat gases as transparent to thermal radiation,
until we reach Section 10.5. Radiation can be ignored in calculations for
most liquids.

1.4 A look ahead

What we have done up to this point has been no more than to reveal
the tip of the iceberg. The basic mechanisms of heat transfer have been
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explained and some quantitative relations have been presented. However,
this information will barely get you started when you are faced with a
real heat transfer problem. Three tasks, in particular, must be completed
to solve actual problems:

• We must solve the heat conduction equation subject to appropriate
boundary conditions if the problem involves heat conduction of any
complexity (Part II).

• We must determine the convective heat transfer coefficient, h, if
convection is important in a problem (Part III).

• We must calculate F1–2 orF1–2 to evaluate the radiative heat transfer
(Part IV).

Any of these determinations can involve a great deal of complication,
and most of the chapters that lie ahead are devoted to these three basic
problems.

Before becoming engrossed in these three questions, we shall first
look at the archetypical applied problem of heat transfer–namely, the
design of a heat exchanger. Chapter 2 sets up the elementary analytical
apparatus that is needed, and Chapter 3 shows how to do such design if
h is already known. This will make it easier to see the importance of the
detailed study of the three basic problems later in the book.

1.5 About the end-of-chapter problems

We have noted that this book is set down almost exclusively in S.I. units.
The only use of English units appears in some of the problems at the end
of each chapter. A few such problems are included to provide experience
in converting back into English units, since such units will undoubtedly
persist in the U.S.A. for many more years. The student who has problems
with dimensional conversion will find Appendix B helpful.

Partial numerical answers to some of the problems follow them in
brackets. Tables of physical property data that we need to solve the
problems are given in Appendix A.

Another matter often leads to some discussion between students and
teachers in heat transfer courses. That is the question of whether a
problem is “theoretical” or “practical”. Quite often the student is inclined
to view as “theoretical” a problem that does not involve numbers or that
requires the development of algebraic results.
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The problems assigned in this book are all intended to be useful in
that they do one or more of five things:

1. They involve a calculation of a type that actually arises in practice
(e.g., Problems 1.1, 1.3, 1.8 to 1.18, and 1.21 through 1.25).

2. They illustrate a physical principle (e.g., Problems 1.2, 1.4 to 1.7, 1.9,
1.20, 1.32, and 1.39). These are probably closest to having a real
theoretical objective in that they clarify heat transfer’s underlying
principles.

3. They require using methods in the text to develop other results that
are useful in certain applied problems (e.g., Problems 1.10, 1.16,
1.17, and 1.21). Such problems are usually the most difficult and
the most instructive.

4. They anticipate development that will appear in subsequent chapters
(e.g., Problems 1.16, 1.20, 1.40, and 1.41).

5. They require developing our ability to handle numerical and alge-
braic computation. (This is the case with most of the problems
in Chapter 1, but it is especially true of Problems 1.6 to 1.9, 1.15,
and 1.17).

Actually, we wish to look at the theory, analysis, and practice of heat
transfer—all three—according to definitions in Webster’s dictionary:

Theory: “a systematic statement of principles; a formulation of apparent
relationships or underlying principles of certain observed phenom-
ena.”

Analysis: “the solving of problems by the means of equations; the break-
ing up of any whole into its parts so as to find out their nature,
function, relationship, etc.”

Practice: “the doing of something as an application of knowledge.”

Problems

1.1 An unusual composite wall consists of successive layers of fir (5
cm thick), aluminum (1 cm thick), lead (1 cm thick), and corkboard
(6 cm thick). The temperature is 60◦C on the outside surface of
the fir and 10◦C on the outside surface of the corkboard. Plot
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the temperature as a function of position going from one side of
the wall to the other. Does the temperature profile suggest any
simplifying assumptions that might be made in subsequent analysis
of the wall? Hint: See Example 1.2 and Tables A.1 and A.2.

1.2 Verify that eqn. (1.16) is consistent with Newton’s law of cooling,
eqn. (1.15).

1.3 The heat flux in a 1 cm thick slab is q = 5000 W/m2 and the tem-
perature on the cold side is T = −40◦C. Tabulate the temperature
rise going to the opposite hot side of the slab if it is made of:

• Pure silver

• Pure aluminum

• Mild steel (0.5% carbon)

• Ice

• Spruce

• Insulation (85% magnesia)

• Silica aerogel

Indicate which situations would be unreasonable and why. [Silver:
∆T = 0.117◦C]

1.4 Explain in words why the heat conduction equation, eqn. (1.14),
shows that in transient conduction the temperature depends on the
thermal diffusivity, α, but we can solve steady conduction problems
using just k (as in Example 1.1).

1.5 A 1 m rod of pure copper 1 cm2 in cross section connects a 200◦C
thermal reservoir with a 0◦C thermal reservoir. The system has
already reached steady state. What are the resulting rates of change
of entropy of: (a) the hot reservoir; (b) the cold reservoir; (c) the rod;
and (d) the whole universe? Explain whether or not your answer
satisfies the Second Law of Thermodynamics. [(d): +0.0121 W/K]

1.6 Two thermal energy reservoirs at temperatures of 27◦C and −43◦C,
respectively, are separated by a slab of material 10 cm thick and 930
cm2 in cross-sectional area. The slab has a thermal conductivity
of 0.14 W/m·K. The system is operating at steady-state conditions.
What are the rates of change of entropy of (a) the higher temperature
reservoir, (b) the lower temperature reservoir, (c) the slab, and (d)
the whole universe as a result of this process? (e) Does your answer
satisfy the Second Law of Thermodynamics?
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1.7 (a) If the thermal energy reservoirs in Problem 1.6 are suddenly
replaced with adiabatic walls, determine the final equilibrium tem-
perature of the slab. (b) What is the entropy change for the slab
for this process? (c) Does your answer satisfy the Second Law of
Thermodynamics in this instance? Explain. The density of the
slab is 26 lb/ft3 and the specific heat is 0.65 Btu/lb·◦F. Recall from
your thermodynamics course that the specific entropy of a solid is
s − sref = c ln

(︁
T
/︁
Tref

)︁
. [(b): 30.81 J/K]

1.8 A copper sphere 2.5 cm in diameter has a uniform initial tempera-
ture of 40◦C. The sphere is suspended in a slow-moving air stream
at 0◦C. The air stream produces an average convection heat transfer
coefficient of h = 15 W/m2K. Thermal radiation can be neglected.
Since copper is highly conductive and the heat transfer coefficient
is low, temperature gradients in the sphere will be small, and its
temperature will be essentially uniform throughout the cooling pro-
cess (i.e., Bi ≪ 1). Write the instantaneous energy balance between
the sphere and the surrounding air. Solve this simple first-order dif-
ferential equation and plot the resulting temperatures as a function
of time between 40◦C and 0◦C. Also, confirm that Bi ≪ 1.

1.9 After working Problem 1.8, determine the total heat transfer (in J)
in as the sphere cools from 40◦C to 0◦C. Also, plot the net entropy
increase of the universe [eqn. (1.24)] resulting from the cooling
process as a function of the sphere’s temperature, ∆S vs. T (K).
[Total heat transfer = 1125 J]

1.10 A truncated cone 30 cm high is constructed of Portland cement.
The diameter at the top is 15 cm and at the bottom is 7.5 cm. The
lower surface is maintained at 6◦C and the top at 40◦C. The side
surface is insulated. Assume one-dimensional heat transfer and
calculate the rate of heat transfer in watts from top to bottom.
To do this, note that in steady state the rate of heat transfer, Q,
must be the same at every cross section. Write Fourier’s law locally,
and integrate it from top to bottom to get a relation between this
unknown Q and the known end temperatures. [|Q| = 0.70 W]

1.11 A hot water heater contains 100 kg of water at an initial temper-
ature of 75◦C in a 20◦C room. Its surface area is 1.3 m2. Select
an insulating material and specify the minimum thickness of insu-
lation to keep the water from cooling more than 3◦C/h when the
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heat is off. (Notice that this problem is greatly simplified if the
temperature drop in the steel casing and the temperature drop in
the convective boundary layers are neglected. Are these reasonable
approximations? Explain why or why not.)

𝖳∞ = 𝟣𝟢𝟢 °C
𝗁
=

𝟧𝟢
W
/m

𝟤 K
Vacuum

𝗁
=

𝟤𝟢
W
/m

𝟤 K

𝖳∞ = 𝟤𝟢 °C

Figure 1.17 Configuration for
Problem 1.12

1.12 Two walls facing each other are thin, very large in extent, highly
conducting, and radiatively black on the facing surfaces (Fig. 1.17).
They are separated by a vacuum. The outsides of the plates experi-
ence convection (without radiation) as shown. Set up an equation
for the temperature of the left-hand plate and solve it by iteration.
Then find the temperature of the right-hand plate. [Tright = 42.5◦C]

1.13 Develop S.I. to English conversion factors for:

• The thermal diffusivity, α

• The heat flux, q

• The density, ρ

• The Stefan-Boltzmann constant, σ

• The view factor, F1–2

• The molar entropy

• The specific heat per unit mass, c

In each case, begin with basic dimensions J, m, kg, s, ◦C. Check your
answers against Appendix B if possible. [1 m2/s = 10.764 ft2/s]

1.14 Three infinite, parallel, black, opaque plates exchange heat by
radiation, as shown in Fig. 1.18. Find T2.

1.15 Four infinite, parallel, black, opaque plates transfer heat by radia-
tion, as shown in Fig. 1.19. Find T2 and T3. [T2 = 75.53◦C]
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Figure 1.18 Configuration for
Problem 1.14

Figure 1.19 Configuration for
Problem 1.15

1.16 Two large, black, horizontal plates are spaced a distance L from
one another. The top one is warm at a controllable temperature,
Th, and the bottom one is cool at a specified temperature, Tc . A
gas separates them. The gas is at rest because it is warm (less
dense) toward the top and cold (more dense) toward the bottom.
Let Θ ≡ Th/Tc , and write an equation for the ratio of radiation
to conduction heat flux through between the plates, qrad/qcond =
fn(N,Θ), where N is a dimensionless group containing σ , k, L, and
Tc , which you will identify.

a. Plot N as a function of Θ for qrad/qcond = 0.8, 1, and 1.2 (and
for other values if you wish).

b. Suppose that you have a system in which L = 10 cm, Tc =
100 K, and the gas is hydrogen with an average k of 0.1 W/m·K.
Find the value of Th for which the conduction and radiation
heat fluxes are identical.

1.17 A blackened copper sphere 2 cm in diameter and uniformly at
200◦C is introduced into a large evacuated black chamber that is
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maintained at 20◦C.

a. Write a differential equation that expresses T(t) for the sphere,
assuming the lumped thermal capacity.

b. Divide the radiation heat flux by temperature difference to
find a “radiation heat transfer coefficient.” Then identify a
dimensionless group, analogous to the Biot number, than
indicates whether the lumped-capacity solution is valid.

c. Show that the lumped-capacity solution is valid in this case.

d. Integrate your differential equation and plot the temperature
response for the sphere.

1.18 A small instrumentation package is released from a space vehicle.
It can be approximated as a solid aluminum sphere, 4 cm in diame-
ter. The sphere is initially at 303 K and it contains a pressurized
hydrogen component that will condense and malfunction at 30 K.
If we approximate outer space to be at 0 K, how long will the instru-
mentation package function properly? Is it legitimate to use the
lumped-capacity method for this problem? Hint: See the directions
for Problem 1.17. [Time = 41 days]

𝖳∞ = 𝟣𝟢𝟢 °C

0.5 m

𝗄 = 𝟤 W/m⋅K

𝗁
=

𝟥
W
/m

𝟤 K

𝖳∞ = 𝟢 °C

Figure 1.20 Configuration for
Problem 1.19

1.19 Consider heat conduction through the wall as shown in Fig. 1.20.
Calculate q and the temperature of the right-hand side of the wall.

1.20 Throughout Chapter 1 we have assumed that the steady tempera-
ture distribution in a uniform plane wall is a straight line. To prove
this, simplify the heat conduction equation to the form appropri-
ate for steady flow. Then integrate it twice and eliminate the two
constants using the known outside temperatures Tleft and Tright at
x = 0 and x = wall thickness, L.
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1.21 The thermal conductivity in a particular plane wall depends as
follows on the wall temperature, T (◦C): k = A+BT , where A and B
are constants. The temperatures are T1 and T2 on either side if the
wall, and its thickness is L. By integration of Fourier’s law, develop
an expression for q. At what temperature should k be evaluated to
avoid the need for integration?

Figure 1.21 Configuration for
Problem 1.22

𝖳∞ = 𝟣𝟢𝟢 °C

𝖳∞ = 𝟤𝟢 °C

0.08 m

𝖳∞ = 𝟢 °C
𝗁
=

𝟤𝟢
𝟢
W
/m

𝟤 K

1.22 Find k for the wall shown in Fig. 1.21. Of what might it be made?

1.23 What are Ti, Tj , and Tr in the wall shown in Fig. 1.22? [Tj = 16.44◦C]

1.24 An aluminum can of soda pop is removed from a refrigerator and set
on a table. If h is 13.5 W/m2K, estimate the time until the beverage
will be at 15◦C. Use reasonable values for the size of the can and
for any other information that is not given. The liquid in the can
circulates as a result of temperature-induced density changes, so
that internal temperature gradients remain small. Assume thermal
radiation is accounted for by an effective value of h (as will be
discussed in Section 2.3) and that humidity is low.

1.25 One large, black wall at 27◦C faces a second whose surface is at
127◦C. The gap between the walls is evacuated. If the second wall is
0.1 m thick and has a thermal conductivity of 17.5 W/m·K, what is
the temperature on the back side of that wall? Assume steady state.

1.26 A 1 cm diameter, 1% carbon steel sphere, initially at 200◦C, is
cooled by natural convection in air at 20◦C. In this case, h is not
independent of temperature. Instead, h = 3.51(∆T)1/4 W/m2K for
∆T = (Tsphere − Tair)◦C. Plot Tsphere as a function of t. Verify the
lumped-capacity assumption.
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2 cm 6 cm 4 cm 4 cm

𝟣𝟢𝟢 °C 𝖳𝗂 𝟤𝟧 °C 𝖳𝗃 𝖳𝗋

𝗄 =
𝟤W/m⋅K

𝗄 = 𝟣 W/m⋅K 𝗄 = 𝟧 W/m⋅K 𝗄 = 𝟦 W/m⋅K

Figure 1.22 Configuration for Problem 1.23

1.27 A 3 cm diameter, black spherical heater is kept at 1100◦C. It radiates
through an evacuated space to a surrounding spherical shell of
Nichrome V. The shell has a 9 cm inside diameter and is 0.3 cm
thick. It is black on the inside and is held at 25◦C on the outside.
Find: (a) the temperature of the inner wall of the shell; and (b) the
heat transfer rate, Q. Model conduction in the shell as if it were a
plane wall. An iterative solution is needed. [Q = 568 W]

1.28 The sun radiates 650 W/m2 on the surface of a particular lake.
At what rate (in mm/hr) would the lake evaporate if all of this
energy went to evaporating water (hfg for water is 2,450,000 J/kg)?
Discuss as many other ways as you can think of that the solar
energy reaching the surface can be distributed. Do you suppose
much of the 650 W/m2 goes to evaporation?

1.29 It is proposed to make picnic cups, 0.005 m thick, of a new plastic
for which k = ko(1 + aT 2), where T is expressed in ◦C, ko =
0.15 W/m·K, and a = 10−4 ◦C−2. We are concerned with thermal
behavior in the extreme case in which T = 100◦C inside the cup
(as for boiling water) and T = 0◦C outside. Find the heat flux,
q, through the cup, and plot T against position in the cup wall.
Assume that this thin wall has reached steady state quickly. Hint:
To make the plot, find x(T).
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1.30 A disk-shaped wafer of diamond IIb is the target of a very high
intensity laser. The disk is 5 mm in diameter and 1 mm deep. The
flat side is pulsed intermittently with 1010 W/m2 of energy for one
microsecond. It then cools by natural convection from that same
side until the next pulse. If h = 10 W/m2K and T∞ = 30◦C, plot
Tdisk as a function of time for pulses that are either 50 s apart
or 100 s apart. Note that you must determine the temperature
the disk reaches before it is pulsed each time, assuming that the
process has been repeating over and over again.

1.31 An old-fashioned incandescent 60 W light bulb is roughly a 0.06
m diameter sphere. Its steady surface temperature is 115◦C in a
room at 25◦C, and h on the outside is 8.2 W/m2K.

a. Show that the wavelength of peak radiation from the glass to
the room is a near infrared wavelength.

b. Calculate the heat loss from the glass surface (take εglass =
0.94).

c. How much heat transfer remains to occur by direct radiation
from the filament through the glass? (Most of that energy is
not in the visible spectrum. These bulbs were very inefficient.)

1.32 How much entropy does the light bulb in Problem 1.31 produce?

1.33 Air at 20◦C flows over one side of a thin metal sheet (h = 10.6
W/m2K). Methanol at 87◦C flows over the other side (h = 141
W/m2K). The metal functions as an electrical resistance heater,
releasing 1000 W/m2. Calculate: (a) the heater temperature; (b)
the heat transfer from the methanol to the heater; and (c) the heat
transfer from the heater to the air. [(b): −270 W/m2]

1.34 One side of a planar black heater is simultaneously cooled by 20◦C
air (h = 14.6 W/m2K) and by radiation to a parallel black wall at
80◦C. The other side of the heater is perfectly insulated. What is
the temperature of the heater if it delivers 9000 W/m2?

1.35 A 250 mL (8.3 oz.) aluminum beverage can is taken from a 3◦C
refrigerator and placed in a low humidity, 25◦C room (h = 7.3
W/m2K). The 53.3 mm diameter by 112 mm high can is placed
on an insulated surface. How long will it take to reach 12◦C?
Assume that emittance of this can is very low, so thermal radiation
is negligible. Discuss your other approximations.
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1.36 A resistance heater in the form of a thin sheet runs parallel with
3 cm slabs of cast iron on either side of an evacuated cavity. The
heater, which releases 8000 W/m2, and the cast iron are very nearly
black. The outside surfaces of the cast iron slabs are kept at 10◦C.
Determine the heater temperature and the inside slab temperatures.
[Theater = 254◦C]

1.37 A black wall at 1200◦C radiates to the left side of a parallel slab of
type 316 stainless steel, 5 mm thick. The right side of the slab is
to be cooled convectively and is not to exceed 0◦C. Find the heat
flux. Can you suggest a convective process that will achieve the
desired right-side temperature? Discuss several possibilities for
the coolant and the configuration. (Obviously, you are not yet able
do a detailed design!)

1.38 A cooler keeps the lower side of a 2 cm layer of ice at −10◦C. The
upper side is exposed to air at 15◦C. What is h if the upper side is
just on the edge of melting? Must h be raised or lowered if melting
is to progress?

1.39 At what minimum temperature does a black radiator have its max-
imum monochromatic emissive power in the visible wavelength
range? Look at Fig. 10.2; then describe the difference between what
you might see looking at this object in comparison to looking at
the sun. (Do not try to check your answer by looking directly at
the sun, since doing so is harmful to your eyes.)

1.40 The local heat transfer coefficient for laminar flow of fluid over
a flat plate of length L is h(x) = F/x1/2, where x is the distance
from the leading edge of the plate and F is a constant that depends
on fluid properties and the flow velocity. How does h compare to
h(x = L)?

1.41 An object is initially at a temperature above that of its surroundings.
We have seen that many kinds of convective processes will bring
the object into equilibrium with its surroundings. Describe the
characteristics of a process that will do so with the least net increase
of the entropy of the universe.

1.42 A 250◦C cylindrical copper billet, 4 cm in diameter and 8 cm long, is
cooled in air at 25◦C. The heat transfer coefficient is 5 W/m2K. Can
this be treated as lumped-capacity cooling? What is the temperature
of the billet after 10 minutes?
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1.43 The diameter of the sun is roughly 1,391,000 km and it emits energy
as if it were a black body at 5772 K. Determine the rate at which
it emits energy. Compare this with the known value. How much
energy does the sun emit per year? [1.21× 1034 J/y]

1.44 Room temperature objects at 300 K and the sun at 5772 K each
radiate thermal energy; but Planck’s law, eqn. (1.30), shows that
the wavelengths of importance are quite different.

a. Find λmax in micrometers for each of these temperatures from
Wien’s Law, eqn. (1.29).

b. Using a spreadsheet or other software, plot eqn. (1.30) for
T = 300 K as a function of wavelength from 0 to 50 µm and
for T = 5772 K for wavelengths from 0 to 5 µm.

c. By numerical integration, find the total area under each of
these curves and compare the value to the Stefan-Boltzmann
law, eqn. (1.28). Explain any differences.

d. Show that about 1 ⁄4 of the area under each curve is to the
left of λmax (in other words, 3 ⁄4 of the energy radiated is on
wavelengths greater than λmax).

e. What fraction of the energy radiated by the 300 K surface
is carried on wavelengths less than 4 µm? What fraction of
the energy radiated by the 5772 K surface is on wavelengths
greater than 4 µm? [5772 K: 1%]

1.45 A crucible of molten metal at 1800◦C is placed on a foundry floor.
The foundryman covers it with a metal sheet to reduce heat loss to
the room. If the transfer factor, F , between the melt and the sheet
is 0.4, and that between the top of the sheet and the room is 0.8,
by what percentage will the heat loss to the room be reduced by
the sheet if the transfer factor between the uncovered melt and the
room had originally been 0.8? [66.7%]

1.46 Integration of Planck’s law, eqn. (1.30) over all wavelengths leads
to the Stefan-Boltzmann law, eqn. (1.28). Perform this integration
and determine the Stefan-Boltzmann constant in terms of other
fundamental physical constants. Hint: The integral can be written
in terms of Riemann’s zeta function, ζ(s), by using this beautiful
relationship between the zeta and gamma functions

ζ(s) Γ(s) =
∫︂∞

0

ts−1

et − 1
dt
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for s > 1. When s is a positive integer, Γ(s) = (s − 1)! is just a
factorial. Further, several values of ζ(s) are known in terms of
powers of π and can be looked up.

Bibliography of Historical and Advanced Texts

Other than [1.1–1.4], we include no specific citations for the ideas intro-
duced in Chapter 1 since these are common to introductory thermody-
namics or physics books. References [1.1, 1.5–1.10] are some texts which
have strongly influenced the field. The rest are relatively advanced texts
or handbooks which go beyond the present textbook.
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2. Heat conduction concepts,
thermal resistance, and the
overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the
general coin that purchases all things. . .

Don Quixote, M. de Cervantes, 1615

2.1 The heat conduction equation

Objective

Now we must develop some basic tools for dealing with heat transfer.
This means going farther in solving heat conduction problems in one
dimension. Those solutions reveal the very helpful analogy of thermal and
electrical resistance. With thermal resistance networks, we can describe
heat transfer in many settings. For example, the combined resistances
to convection and conduction in a heat exchanger form the overall heat
transfer coefficient, which is central to Chapter 3.

We need values of h to treat convection. For now, we defer calculating
h to Chapters 6, 7, and 8. Instead, we regard h as a number that we can
look up. We likewise use only basic ideas about radiation, and leave the
details for Chapter 10.

Let us begin with heat conduction analysis. The first step is to go
beyond the planar treatments of Chapter 1 and derive the full heat con-
duction (or heat diffusion) equation.
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Figure 2.1 A three-dimensional, transient temperature field.

Fourier’s law

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason, say heating from one
side, the temperature of the body varies with time and space. This field
T = T(x,y, z, t) or T(r⃗ , t), defines instantaneous isothermal surfaces,
T1, T2, and so on.

We next consider a very important vector associated with the scalar,
T . The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
∇T :

∇T ≡ ∂T
∂x

ı⃗+ ∂T
∂y

ȷ⃗+ ∂T
∂z
k⃗ (2.1)

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
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These are:

⃓⃓
q⃗
⃓⃓
∝
⃓⃓
∇T

⃓⃓ {︃
This says that the magnitude of the heat flux is
directly proportional to the temperature gradient

and

q⃓⃓⃗
q⃗
⃓⃓ = − ∇T⃓⃓

∇T
⃓⃓ {︃

This says that q⃗ and ∇T are exactly opposite one
another in direction

The heat flux is thus a quantity with a specified magnitude and a specified
direction. Fourier’s law summarizes this physical experience succinctly
as

q⃗ = −k∇T (2.2)

which resolves itself into three components:

qx = −k
∂T
∂x

qy = −k
∂T
∂y

qz = −k
∂T
∂z

The coefficient k—the thermal conductivity—also depends on position
and temperature in the most general case:

k = k
[︁
r⃗ , T (r⃗ , t)

]︁
(2.3)

Fortunately, most materials (though not all of them) are very nearly
homogeneous. Thus we can usually write k = k(T). The most convenient
assumption would be to take k as constant. Whether or not that is
legitimate must be determined in each case. As is apparent from Fig. 2.2
and Fig. 2.3, k almost always varies with temperature. It always rises with
T in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0◦ and 40◦C (see Fig. 2.2), but we would incur error between
−100◦ and 800◦C.

It is easy to prove (Problem 2.1) that if k varies as a straight line with T ,
and if heat transfer is plane and steady, then q = k∆T/L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar or if
k is not simply A+ BT , it can be much harder to specify a single accurate
effective value of k. If ∆T is not large, one can still make a reasonably
accurate approximation using a constant average value of k.



Figure 2.2 Variation of thermal conductivity of metallic solids
with temperature
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Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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Figure 2.4 Control volume in a
heat-flow field.

The three-dimensional heat conduction equation

Now that we have Fourier’s law in three dimensions, we see that heat
conduction is more complex than it appeared to be in Chapter 1. We must
now write the heat conduction equation in three dimensions. We begin,
as we did in Chapter 1, with the First Law statement, eqn. (1.3):

Q = dU
dt

(1.3)

This time we apply eqn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.1 The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume as R; both are at rest. An element of the surface, dS, is identified
and two vectors are shown on dS: one is the outward unit normal vector,
n⃗ (with

⃓⃓
n⃗
⃓⃓

= 1), and the other is the heat flux vector, q⃗ = −k∇T , at that
point on the surface.

We also allow the possibility that a volumetric heat release equal to
q̇(r⃗ ) W/m3 is distributed through the region. This might be the result
of electrical resistance heating, of chemical or nuclear reaction, of ex-
ternal radiation absorbed within the region, or of still other causes (see
Problem 2.47).

With reference to Fig. 2.4, we can write the increment of heat conducted
out of dS, in watts, as

(−k∇T) ·
(︁
n⃗ dS

)︁
(2.4)

The heat released within the region R must be added to the total heat
flow into S to get the overall rate of heat addition to R:

Q = −
∫︂
S
(−k∇T) ·

(︁
n⃗ dS

)︁
+
∫︂
R
q̇ dR (2.5)

1Figure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

dU
dt

=
∫︂
R

(︃
ρc
∂T
∂t

)︃
dR (2.6)

where the derivative of T is in partial form because T is a function of
both r⃗ and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain∫︂

S
k∇T · n⃗ dS =

∫︂
R

[︃
ρc
∂T
∂t
− q̇

]︃
dR (2.7)

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if A⃗ is any continuous function of position, then∫︂

S
A⃗ · n⃗ dS =

∫︂
R
∇ · A⃗ dR (2.8)

Therefore, if we identify A⃗ with (k∇T), eqn. (2.7) reduces to∫︂
R

(︃
∇ · k∇T − ρc ∂T

∂t
+ q̇

)︃
dR = 0 (2.9)

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.2 We therefore get the heat conduction equation in three dimensions:

∇ · k∇T + q̇ = ρc ∂T
∂t

(2.10)

The limitations on this equation are:

• Incompressible medium. (This was implied when no expansion work
term was included.)

• The medium cannot undergo any relative motion. If it is liquid or
gas, it must sit still. (Fluid motion is added in Section 6.3.)

2Consider
∫︁
f(x)dx = 0. If f(x) were, say, sin x, then this could only be true

over intervals of x = 2π or multiples of it. For eqn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must sum to zero everywhere.
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If the variation of k with T is small, k can be factored out of eqn. (2.10)
to get

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

This is a three-dimensional version of the heat conduction equation de-
rived in Chapter 1, eqn. (1.14). As before, the thermal diffusivity is
α ≡ k/ρc. The term ∇2T ≡ ∇ ·∇T is called the Laplacian. It arises thus
in a Cartesian coordinate system:

∇·k∇T ≃ k∇·∇T = k
(︄
i⃗
∂
∂x

+ j⃗ ∂
∂y

+ k⃗ ∂
∂x

)︄
·
(︄
∂T
∂x

i⃗+ ∂T
∂y

j⃗ + ∂T
∂z
k⃗
)︄

or

∇2T = ∂
2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

(2.12)

The Laplacian can also be expressed in cylindrical or spherical coordi-
nates. The results are:

• Cylindrical:

∇2T = 1
r
∂
∂r

(︃
r
∂T
∂r

)︃
+ 1
r2

∂2T
∂θ2

+ ∂
2T
∂z2

(2.13)

• Spherical:

∇2T =1
r
∂2(rT)
∂r2

+ 1
r2 sinθ

∂
∂θ

(︃
sinθ

∂T
∂θ

)︃
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14a)

or

= 1
r2

∂
∂r

(︃
r2 ∂T
∂r

)︃
+ 1
r2 sinθ

∂
∂θ

(︃
sinθ

∂T
∂θ

)︃
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14b)

where the coordinates are as displayed in Fig. 2.5.

2.2 Steady heat conduction in a slab: method

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat conduction equation. In every
case, we first calculate T(r⃗ , t). Then, if we want the heat flux as well, we
differentiate T to get q from Fourier’s law.



Figure 2.5 Cylindrical and spherical coordinate systems.
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The heat conduction equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do
a lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat conduction equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is linear,
and therefore not too formidable, in any case.

We begin with a simple problem. But we use it to set forth a step-by-
step procedure that will serve us well when we solve more complex heat
conduction problems.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases heat volumetrically, q̇ (W/m3). The
outside surfaces are kept at the ambient temperature, so Tw = T∞.
What is the maximum internal temperature?

Solution.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T . In the example,
T will probably vary only along the thin dimension, which we
will call the x-direction. (If the edges are insulated and L is much
smaller than the width or height, this approximation should be
quite good.) Since the interior temperature will reach its maxi-
mum value when the process becomes steady, we will solve for
the final steady-state case T = T(x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2⏞ ⏟⏟ ⏞

= 0, since
T ≠ T(y or z)

+ q̇
k
= 1

α
∂T
∂t⏞ ⏟⏟ ⏞

= 0, since
steady

Therefore, since T = T(x only), the equation reduces to the
o.d.e.

d2T
dx2

= − q̇
k

Step 3. Obtain the general solution of the d.e. (This is usually the
easiest step.) We simply integrate the d.e. twice and get

T = − q̇
2k
x2 + C1x + C2
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Step 4. Write the “side conditions” on the d.e.—the initial and boundary
conditions. This is the trickiest part and the one that most
seriously tests our physical or “practical” understanding any
heat conduction problem.

Normally, we must specify the temperature at two different
locations on each coordinate (for all times) and at one point in
time (for all locations) to get rid of the constants of integration
in the general solution. These matters are discussed at greater
length in Chapter 4.

In this case we know two boundary conditions:

T(x = 0) = Tw and T(x = L) = Tw

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial
conditions and solve for the constants. This process gets very
complicated in the transient and multidimensional cases. Numer-
ical methods are often needed to solve the problem. However,
the steady one-dimensional problems are usually easy. In the
example, by evaluating at x = 0 and x = L, we get:

Tw = −0+ 0+ C2 so C2 = Tw

Tw = −
q̇L2

2k
+ C1L+ C2⏞ ⏟⏟ ⏞

=Tw

so C1 =
q̇L
2k

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

T = − q̇
2k
x2 + q̇L

2k
x + Tw

When we put this in neat dimensionless form, we can plot the
result in Fig. 2.6 without having to know specific values of its
parameters:

T − Tw
q̇L2

/︁
k
= 1

2

[︄
x
L
−
(︃
x
L

)︃2
]︄

(2.15)
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Eqn (2.15)

Dimensionless position, x/L

Figure 2.6 Temperature distribution in a setting concrete slab
(Example 2.1).

Step 7. Play with the solution—look it over—see what it has to tell
you. Make any checks you can think of to be sure it is correct.
In this case, the resulting temperature distribution is parabolic
and, as we would expect, symmetrical. It satisfies the boundary
conditions at the wall and reaches a maximum in the center. By
nondimensionalizing the result, we can represent all situations
with a simple curve. That is highly desirable when the calcu-
lations are not simple, as they are here. (Even here T actually
depends on five different things, but its nondimensional solution
is a single curve on a two-coordinate graph.)

Finally, we check to see if the heat flux at the wall is correct:

qwall = −k
∂T
∂x

⃓⃓⃓⃓
x=0

= k
[︃
q̇
k
x − q̇L

2k

]︃
x=0

= − q̇L
2

Thus, half of the total energy generated in the slab comes out
of the front side, in the −x direction, as we would expect. The
solution appears to be correct.

Step 8. If the temperature field is now correctly established, we can,
if we wish, calculate the heat flux at any point in the body by
substituting T(r⃗ , t) back into Fourier’s law. We did this already,
in Step 7, to check our solution.



§2.2 Steady heat conduction in a slab: method 61

We offer additional examples in this section and the following one. In
the process, we develop some important results for future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

Solution. These can be found quickly by following the steps set
down in Example 2.1:

Step 1. T = T(x) for steady x-direction heat flow

Step 2.
d2T
dx2

= 0, the steady 1-D heat equation with q̇ = 0

Step 3. T = C1x + C2 is the general solution of that equation

Step 4. T(x = 0) = T1 and T(x = L) = T2 are the b.c.s

Step 5. T1 = 0+C2, so C2 = T1; and T2 = C1L+C2, so C1 = −
T1 − T2

L

Step 6. T = T1 −
T1 − T2

L
x; or

T1 − T
T1 − T2

= x
L

Figure 2.7 Heat conduction in a slab (Example 2.2).
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∆V = ∆T 

I = Q

Figure 2.8 Ohm’s law analogy to conduction through a slab.

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.

Step 8. q = −kdT
dx

= −k d
dx

(︃
T1 −

T1 − T2

L
x
)︃
= k ∆T

L

which is the formula we obtained previously, as eqn. (1.9).

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law, if we think of the temperature difference as being a
potential difference that drives a current. Thus, if we note that Q = qA,

Q = ∆T
L/kA

≡ ∆T
Rtslab

is like I = ∆V
R

(2.16)

where L/kA assumes the role of a thermal resistance for the slab, to which
we give the symbol Rtslab . Rt has the dimensions of (K/W). Figure 2.8
shows how we can represent heat flow through the slab with a diagram
that is perfectly analogous to an electric circuit.
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∆V

A
I

L

Resistor

Figure 2.9 The one-dimensional flow
of current.

2.3 Thermal resistance and the electrical analogy

Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogs in other kinds
of physical behavior, of which the electrical analogy is only one. These
analogous processes provide us with a good deal of guidance in the
solution of heat transfer problems. And, conversely, heat conduction
analyses can often be adapted to describe those other processes.

Let us first consider Ohm’s law in three dimensions:

flux of electrical charge = I⃗
A
≡ i⃗ = −γ∇V (2.17a)

I⃗ is the vectorial electrical current in amperes, A is an area normal to
the current vector, i⃗ is the flux of current or current density, γ is the
electrical conductivity in (Ω·m)−1, and V is the electric potential in volts.
Like Fourier’s law, eqn. (2.2), Ohm’s law states that a flux is proportional
to a gradient.

To apply eqn. (2.17a) to a one-dimensional current flow, as pictured
in Fig. 2.9, we write eqn. (2.17a) as

i = −γdV
dx

= γ∆V
L

(2.17b)

∆V is the applied voltage difference, and the electrical resistance of the
wire is R ≡ L

/︁
γA. Then, since I = iA, eqn. (2.17b) becomes

I = ∆V
R

(2.18)

which is the familiar, but restrictive, one-dimensional form of Ohm’s law.
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Fick’s law is another analogous relation. It states that during mass
diffusion, the mass flux, j⃗1, of a dilute component, 1, into a second
substance, 2, is proportional to the gradient of its mass concentration,
m1. Thus

j⃗1 = −ρD12∇m1 (2.19)

where the constant D12 is the binary diffusion coefficient. We discuss
Fick’s law in detail in Chapter 11.

Example 2.3

Air fills a thin tube 1 m in length. A small water leak at one end causes
the water vapor concentration in air to build to a mass fraction of
mwater = 0.01 at that end. A desiccator maintains the concentration
at zero at the other end. What is the steady flux of water vapor from
one side to the other if D12 = 2.84× 10−5 m2/s and ρ = 1.18 kg/m3?

Solution.

jwater =
(︃

1.18
kg
m3

)︃(︃
2.84× 10−5 m2

s

)︃(︃
0.01

kg H2O/kg mixture
1 m

)︃
= 3.35× 10−7 kg

m2·s = 0.335
mg

m2·s

Resistances for cylinders and for convection

Many avenues of conduction can be reduced to thermal resistances. Here,
we focus on cylindrical geometries and deal with convective boundary
conditions. We begin with an example.

Example 2.4 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.10.

Solution.

Step 1. T = T(r)
Step 2.

1
r
∂
∂r

(︃
r
∂T
∂r

)︃
+ 1

r2

∂2T
∂φ2

+ ∂
2T
∂z2⏞ ⏟⏟ ⏞

= 0, since T ≠ T(φ, z)

+ q̇
k⏞⏟⏟⏞
= 0

= 1
α
∂T
∂t⏞ ⏟⏟ ⏞

= 0, since steady
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Figure 2.10 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.4).

Step 3. Integrate once: r
∂T
∂r

= C1; integrate again: T = C1 ln r + C2

Step 4. T(r = ri) = Ti and T(r = ro) = To
Step 5.

Ti = C1 ln ri + C2

To = C1 ln ro + C2

═⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C1 =

Ti − To
ln(ri/ro)

= − ∆T
ln(ro/ri)

C2 = Ti +
∆T

ln(ro/ri)
ln ri

Step 6. T = Ti −
∆T

ln(ro/ri)
(ln r − ln ri) or

T − Ti
To − Ti

= ln(r/ri)
ln(ro/ri)

(2.20)

Step 7. The solution is plotted in Fig. 2.10. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when ri/ro is close
to 1. In this case:

ln(r/ri) ≃
r
ri
− 1 = r − ri

ri
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and
ln(ro/ri) ≃

ro − ri
ri

Thus eqn. (2.20) becomes

T − Ti
To − Ti

= r − ri
ro − ri

which is a simple linear profile. This is the same solution that
we would get in a plane slab (see Problem 2.43).

Step 8. At any station, r , with ∆T = Ti − To:

qradial = −k
∂T
∂r

= + k∆T
ln(ro/ri)

1
r

So the heat flux falls off inversely with radius. That is reasonable,
since the same heat flow must pass through an increasingly
large cylindrical area as the radius increases. The total heat flow
should be constant regardless of radial position, of course. Let
us see if this is the case for a cylinder of length l:

Q (W) = (2πrl)q = 2πkl∆T
ln(ro/ri)

≠ fn(r) (2.21)

Finally, we again recognize the similarity to Ohm’s law and write
the thermal resistance for a cylinder:

Rtcyl =
ln(ro/ri)

2πlk
(2.22)

This resistance can be compared to that for a plane slab:

Rtslab =
L
kA

Both resistances are inversely proportional to k and have units
of K/W, but each reflects a different geometry. When the cylinder
has a thin wall, its resistance may be approximated using the
slab formula because the cylindrical area does not vary much
(see Problem 2.43).

In the preceding examples, the boundary conditions were all the same—
a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.
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Figure 2.11 Heat transfer through a cylinder with a convective
boundary condition (Example 2.5).

Example 2.5 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylinder
in Example 2.4 provides thermal resistance between the cylinder and
an environment at T = T∞, as shown in Fig. 2.11. Find the temperature
distribution and heat flux in this case.

Solution.

Step 1 through 3. These are the same as in Example 2.4.

Step 4. The first boundary condition is T(r = ri) = Ti. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

qconvection = qconduction
at the wall

or

h(T − T∞)r=ro = −k
∂T
∂r

⃓⃓⃓⃓
r=ro

Step 5. From the first boundary condition we obtain Ti = C1 ln ri+C2.
It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it
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in detail:

h
[︂
(C1 ln r + C2)− T∞

]︂
r=ro

= −k
[︃
∂
∂r
(C1 ln r + C2)

]︃
r=ro

(2.23)

A common error is to substitute T = To on the lefthand side
instead of substituting the entire general solution. That will do
no good, because To is not an accessible piece of information.
Equation (2.23) reduces to:

h(T∞ − C1 ln ro − C2) = −
kC1

ro
When we combine this with the result of the first boundary
condition to eliminate C2:

C1 =
T∞ − Ti

k
/︁
(hro)+ ln(ro/ri)

= T∞ − Ti
1/Bi+ ln(ro/ri)

Then

C2 = Ti −
T∞ − Ti

1/Bi + ln(ro/ri)
ln ri

Step 6. Substitute into T = C1 ln r + C2:

T = T∞ − Ti
1/Bi + ln(ro/ri)

ln(r/ri)+ Ti

This can be rearranged in fully dimensionless form:

T − Ti
T∞ − Ti

= ln(r/ri)
1/Bi + ln(ro/ri)

(2.24)

Step 7. Let us fix a value of ro/ri—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included in
Fig. 2.11. Some very important things show up in this plot. When
Bi ≫ 1, the solution reduces to the solution given in Example 2.4,
as if the convective resistance to heat flow were not there. That
is exactly what we anticipated in Section 1.3 for Bi ≫ 1. When
Bi ≪ 1, the opposite is true: (T − Ti)

/︁
(T∞ − Ti) remains on

the order of Bi, and internal conduction can be neglected. How
big is big and how small is small? We do not really have to
specify exactly. But in this case Bi < 0.1 signals constancy of
temperature inside the cylinder with about ±3%. Bi > 20 means
that we can neglect convection with about 5% error.
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Figure 2.12 Thermal circuit
with two resistances.

Step 8. qradial = −k
∂T
∂r

= k Ti − T∞
1/Bi + ln(ro/ri)

1
r

This can be written in terms of Q (W) = qradial (2πrl) for a
cylinder of length l:

Q = Ti − T∞
1

h2πrol
+ ln(ro/ri)

2πkl

= Ti − T∞
Rtconv + Rtcond

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.12.

The presence of convection on the outside surface of the cylinder adds
a new thermal resistance of the form

Rtconv =
1

hA
(2.26)

where A is the surface area over which convection occurs.

Example 2.6 Critical Radius of Insulation

An interesting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia (k = 0.074 W/m·K) to prevent the steam
from condensing too rapidly. The steam is under pressure and stays
at 150◦C. The copper is thin and highly conductive—obviously a tiny
resistance in series with the convective and insulation resistances,
as we see in Fig. 2.13. The condensation of steam inside the tube
also offers very little resistance.3 But on the outside, a heat transfer

3Condensation heat transfer is discussed in Chapter 8. It turns out that h is generally
enormous during condensation so that Rtcondensation is tiny.
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Figure 2.13 Thermal circuit for an
insulated tube.

coefficient of h = 20 W/m2K offers fairly high resistance. It turns out
that insulation can actually improve heat transfer in this case.

The two significant resistances, for a cylinder of unit length (l =
1 m), are

Rtcond =
ln(ro/ri)

2πkl
= ln(ro/ri)

2π(0.074)
K/W

Rtconv =
1

2πrolh
= 1

2π(20)ro
K/W

Figure 2.14 is a plot of these resistances and their sum. A very inter-
esting thing occurs here. Rtconv falls off rapidly when ro is increased,
because the outside area is increasing. Accordingly, the total resis-
tance passes through a minimum in this case. Will it always do so?
To find out, we differentiate eqn. (2.25), again setting l = 1 m:

dQ
dro

= (Ti − T∞)(︄
1

2πroh
+ ln(ro/ri)

2πk

)︄2

(︄
− 1

2πr2
oh

+ 1
2πkro

)︄
= 0

When we solve this for the value of ro = rcrit at which Q is maximum
and the total resistance is minimum, we obtain

Bi = 1 = hrcrit

k
(2.27)

In the present example, adding insulation will increase heat loss instead
of reducing it, until rcrit = k

/︁
h = 0.0037 m or rcrit/ri = 1.48. Indeed,

insulation will not even start to do any good until ro/ri = 2.32 or
ro = 0.0058 m. We call rcrit the critical radius of insulation.
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Rt = Rtconv+ Rtcond
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Figure 2.14 How the conductive and convective resistances
combine to give a critical radius of insulation in the specific case
of Example 2.6, written for a cylinder of unit length l = 1 m.

There is an interesting catch here. For most cylinders, rcrit < ri and
the critical radius idiosyncrasy is of no concern. If our steam line had a
1 cm outside diameter, the critical radius difficulty would not have arisen.
When we cool smaller cylinders, the critical radius can be important—in
electrical wiring, for example. But critical radius is seldom a concern in
large process equipment.

Resistance for thermal radiation

We saw in Chapter 1 that the net radiation exchanged by two objects
separated by a gas or a vacuum is given by eqn. (1.34):

Qnet = A1F1–2σ
(︂
T 4

1 − T 4
2

)︂
(1.34)

When T1 and T2 are close, we can approximate this equation using a
radiation heat transfer coefficient, hrad. Specifically, suppose that the
temperature difference, ∆T = T1 − T2, is small compared to the mean
temperature, Tm = (T1+T2)

/︁
2. Then we can make the following expansion
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and approximation:

Qnet = A1F1–2σ
(︂
T 4

1 − T 4
2

)︂
= A1F1–2σ(T 2

1 + T 2
2 )(T

2
1 − T 2

2 )

= A1F1–2σ (T 2
1 + T 2

2 )⏞ ⏟⏟ ⏞
= 2T2

m + (∆T)2/2

(T1 + T2)⏞ ⏟⏟ ⏞
=2Tm

(T1 − T2)⏞ ⏟⏟ ⏞
=∆T

≊ A1

(︂
4σT 3

mF1–2

)︂
⏞ ⏟⏟ ⏞

≡hrad

∆T (2.28)

where the last step assumes that (∆T)2/2 ≪ 2T 2
m or (∆T/Tm)2

/︁
4 ≪ 1.

Thus, we have identified the radiation heat transfer coefficient

Qnet = A1hrad∆T

hrad = 4σT 3
mF1–2

⎫⎬⎭ for
(︁
∆T

/︁
Tm

)︁2/︁
4 ≪ 1 (2.29)

This leads us immediately to the introduction of a radiation thermal
resistance, Rtrad , analogous to that for convection, Rtconv :

Rtrad =
1

A1hrad
(2.30)

For the special case of a small object (1) in a much larger environment
(2), the transfer factor is given by eqn. (1.35) as F1–2 = ε1, so that

hrad = 4σT 3
mε1 (2.31)

If the small object is black, its emittance is ε1 = 1 and hrad is maximized.
For a black object radiating near room temperature, say Tm = 300 K,

hrad = 4
(︁
5.67× 10−8)︁(300)3 ≊ 6 W/m2K

This value is about the same size as h for natural convection in a gas.
Thus, both effects must be taken into account near room temperature. In
forced convection of a gas, however, h could be an order of magnitude
larger than hrad, making thermal radiation negligible.

Example 2.7

An electrical resistor dissipating 0.1 W has been mounted well away
from other components in an electronics cabinet (Fig. 2.15). It is
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Tresistor

Qconv Qrad

Qconv

Qrad

Tresistor Tair

Rtconv
= 1

– 
hA

Rtrad
= 1

h
rad

A

Figure 2.15 An electrical resistor cooled
by convection and radiation.

cylindrical with a 3.6 mm O.D. and a length of 10 mm. If the air in the
cabinet is at 35◦C and at rest, and the resistor has h = 13 W/m2K for
natural convection and ε = 0.9, what is the resistor’s temperature?
Assume that the electrical leads are configured so that little heat is
conducted into them.

Solution. The resistor may be treated as a small object in a large
isothermal environment. To compute hrad, let us estimate the resis-
tor’s temperature as 50◦C. Then

Tm = (35+ 50)/2 ≊ 43◦C = 316 K

so

hrad = 4σT 3
mε = 4

(︁
5.67× 10−8)︁(316)3(0.9) = 6.44 W/m2K

Heat is lost by natural convection and thermal radiation acting in
parallel. To find the equivalent thermal resistance, we combine the
two parallel resistances as follows:

1
Rtequiv

= 1
Rtrad

+ 1
Rtconv

= Ahrad +Ah = A
(︁
hrad + h

)︁
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Thus,

Rtequiv =
1

A
(︁
hrad + h

)︁
A calculation shows A = 133 mm2 = 1.33× 10−4 m2 for the resistor
surface. Thus, the equivalent thermal resistance is

Rtequiv =
1

(1.33× 10−4)(13+ 6.44)
= 386.8 K/W

Since

Q = Tresistor − Tair

Rtequiv

We find

Tresistor = Tair +Q · Rtequiv = 35+ (0.1)(386.8) = 73.68 ◦C

We guessed a resistor temperature of 50◦C in finding hrad. Re-
computing with this higher temperature, we have Tm = 327 K and
hrad = 7.17 W/m2K. If we repeat the rest of the calculation, we get a
new value Tresistor = 72.3◦C. Further iteration is not needed.

Since the use of hrad is an approximation, we should check its
applicability:

1
4

(︃
∆T
Tm

)︃2

= 1
4

(︃
72.3− 35.0

327

)︃2

= 0.00325 ≪ 1

In this case, the approximation is a very good one.

Example 2.8

Suppose that power to the resistor in Example 2.7 is turned off. How
long does it take to cool? The resistor has k ≊ 10 W/m·K, ρ ≊
2000 kg/m3, and cp ≊ 700 J/kg·K.

Solution. The lumped capacity model, eqn. (1.22), may be applicable.
To find out, we check the resistor’s Biot number, noting that the
parallel convection and radiation processes have an effective heat
transfer coefficient heff = h+ hrad = 20.17 W/m2K. Then,

Bi = heffro
k

= (20.17)(0.0036/2)
10

= 0.0036 ≪ 1
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so eqn. (1.22) can be used to describe the cooling process. The time
constant is

T = ρcpV
heffA

= (2000)(700)π(0.010)(0.0036)2/4
(20.17)(1.33× 10−4)

= 53.1 s

From eqn. (1.22) with T0 = 72.3◦C

Tresistor = 35.0+ (72.3− 35.0)e−t/53.1 ◦C

Ninety-five percent of the total temperature drop has occurred when
t = 3T = 159 s.

Contact resistance

The usefulness of the electrical resistance analogy is particularly apparent
at the interface of two conducting media. No two solid surfaces ever
form perfect thermal contact when they are pressed together, owing to
tiny gaps that result from unavoidable roughness in the surfaces. A
typical plane of contact between two surfaces is shown in Fig. 2.16 with
an enormously exaggerated vertical scale.

Heat transfer follows two paths through such an interface. Conduction
through points of solid-to-solid contact is very effective, but conduction
through the gas-filled interstices is less efficient. These gaps are normally
small, but gases have low thermal conductivities. If temperatures are
modest, thermal radiation across the gap will be completely negligible.

Figure 2.16 Heat transfer through the contact plane between
two solid surfaces.
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Table 2.1 Some typical interfacial conductances for normal
surface finishes and moderate contact pressures (about 1 to 10
atm). Air gaps not evacuated unless so indicated.

Situation hc (W/m2K)

Iron/aluminum (70 atm pressure) 45,000

Copper/copper 10,000–25,000
Aluminum/aluminum 2,200–12,000
Graphite/metals 3,000–6,000
Ceramic/metals 1,500–8,500
Stainless steel/stainless steel 2,000–3,700
Ceramic/ceramic 500–3,000
Stainless steel/stainless steel

(evacuated interstices)
200–1,100

Aluminum/aluminum (low pressure
and evacuated interstices)

100–400

These gaps create a resistance to heat transfer which results in additional
temperature change across the interface, as shown in Fig. 2.16.

We model the temperature change using an interfacial conductance,
hc , in series with the solid materials on either side. The coefficient hc is
similar to a heat transfer coefficient and has the same units, W/m2K. If
∆T is the additional temperature difference across an interface of area
A, then Q = Ahc∆T . It follows that Q = ∆T/Rt for a contact resistance
Rt ≡ 1/(hcA) in K/W.

The interfacial conductance, hc , depends on the following factors:

• The surface finish and cleanliness of the contacting solids.

• The materials that are in contact.

• The pressure with which the surfaces are forced together. This may
vary over the surface, for example, in the vicinity of a bolt.

• The substance (or lack of it) in the interstitial spaces. Malleable shims
or conductive filler pastes can raise the interfacial conductance.

The influence of contact pressure is usually a modest one up to around
10 atm in most metals. Beyond that, increasing plastic deformation of
the local contact points causes hc to increase more dramatically at high
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Figure 2.17 Conduction through two unit-area slabs with a
contact resistance.

pressure. Table 2.1 gives typical values of contact resistances which
bear out most of the preceding points. These values have been adapted
from [2.1, Chpt. 3] and [2.2]. Theories of contact resistance are discussed
in [2.3] and [2.4].

Example 2.9

Heat flows through two stainless steel slabs (k = 18 W/m·K) that are
pressed together. The slab area is A = 1 m2. How thick must the slabs
be for contact resistance to be negligible?

Solution. With reference to Fig. 2.17, the total or equivalent resis-
tance is found by adding these resistances, which are in series:

Rtequiv =
L
kA

+ 1
hcA

+ L
kA

= 1
A

(︃
L
18
+ 1
hc
+ L

18

)︃
Since hc is about 3,000 W/m2K,

2L
18

must be ≫ 1
3000

= 0.00033

Thus, L must be large compared to 18(0.00033)/2 = 0.003 m if contact
resistance is to be ignored. If L = 3 cm, the error is about 10%.
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Figure 2.18 A thermal circuit with many
resistances in series. The equivalent
resistance is Rtequiv =

∑︁
i Ri.

2.4 Overall heat transfer coefficient, U
Definition

We often want to transfer heat through composite resistances, such as
the series of resistances shown in Fig. 2.18. Calculations can be greatly
streamlined by combining the resistance into a single overall heat transfer
coefficient4, U , such that

Q = UA∆T (2.32)

The value of U is determined by the details of the system. It is often
nearly constant over a range of operating conditions.

In Example 2.5, for instance, two resistances are in series. We can use
the value of Q given by eqn. (2.25) to get

U = Q(W)[︁
2πrol (m2)

]︁
∆T (K)

= 1
1

h
+ ro ln(ro/ri)

k

(W/m2K) (2.33)

We have based U on the outside area, Ao = 2πrol, in this case. We might
instead have based it on inside area, Ai = 2πril, and obtained

U = 1
ri
hro

+ ri ln(ro/ri)
k

(2.34)

It is therefore important to remember which area an overall heat transfer
coefficient is based on. In particular, A and U must be consistent when
we write Q = UA∆T .

In general, for any composite resistance, the overall heat transfer
coefficient may be obtained from the equivalent resistance. The equivalent
resistance is calculated taking account of series and parallel resistors,
as in Examples 2.9 and 2.7. Then, because Q = ∆T/Rtequiv = UA∆T , it
follows that UA = 1/Rtequiv .

4This U must not be confused with internal energy. The two terms should always be
distinct in context.
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Figure 2.19 Heat transfer through the bottom of a tea kettle.

Example 2.10

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.19. The hot gas of the flame convects heat to the thin alu-
minum. The heat is then conducted through the aluminum and finally
convected by boiling into the water. Neglect radiation from the flame.

Solution. We need not worry about deciding which area to base A
on, in this case, because the area normal to the heat flux vector does
not change. We simply write the heat flow

Q = ∆T∑︁
Rt
= Tflame − Tboiling water

1

hA
+ L
kAlA

+ 1

hbA

and apply the definition of U

U = Q
A∆T

= 1
1

h
+ L
kAl

+ 1

hb

Let us see what typical numbers would look like in this example: h
might be around 200 W/m2K; L

/︁
kAl might be 0.001 m/(160 W/m·K)
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or 1/160,000 W/m2K; andhb is quite large, perhaps about 5000 W/m2K.
Thus:

U ≃ 1
1

200
+ 1

160,000
+ 1

5000

= 192.1 W/m2K

The first resistance is clearly dominant. Notice that in such cases

UA ⎯→ 1/Rtdominant (2.35)

where A is any area (inside or outside) in the thermal circuit.

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall eqn. (2.35) and see Problem 2.12.] ♦

Example 2.11

A wall consists of alternating layers of pine and sawdust, as shown in
Fig. 2.20. The sheathes on the outside have negligible resistance and
h is known on the sides. Compute Q and U for the wall.

Solution. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.5 The
equivalent thermal resistance of the circuit is

Rtequiv = Rtconv +
1(︄

1
Rtpine

+ 1
Rtsawdust

)︄+ Rtconv

Thus

Q = ∆T
Rtequiv

=
T∞l − T∞r

1

hA
+

1(︄
kpAp
L

+
ksAs
L

)︄+ 1

hA

and

U = Q
A∆T

=
1

2

h
+

1(︄
kp
L
Ap
A
+
ks
L
As
A

)︄
5For this approximation to be exact, the resistances must be equal. If they differ

radically, the problem must be treated as two-dimensional.
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Figure 2.20 Heat transfer through a composite wall.

The approach illustrated in this example is very widely used in calcu-
lating U values for the walls and roofs houses and buildings. The thermal
resistances of each structural element — insulation, studs, siding, doors,
windows, etc. — are combined to calculate U or Rtequiv , which is then used
together with weather data to estimate heating and cooling loads [2.5].

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U shown in Table 2.2, which
were assembled from a variety of technical sources. If the exchanger is
intended to improve heat exchange, U will generally be much greater than
40 W/m2K. If it is intended to impede heat flow, it will be less than 10
W/m2K—anywhere down to almost perfect insulation. You should have
some numerical concept of relative values of U , so we recommend that
you scrutinize the numbers in Table 2.2. Some things worth bearing in
mind are:

• The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.
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Table 2.2 Typical ranges or magnitudes of U

Heat Exchange Configuration U (W/m2K)

Walls and roofs dwellings with a 24 km/h
outdoor wind:
• Insulated roofs 0.3−2
• Finished masonry walls 0.5−6
• Frame walls 0.3−5
• Uninsulated roofs 1.2−4

Single-pane windows ∼ 6†

Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60−550
Steam or water to oil 60−340
Liquids in coils immersed in liquids 110−2,000
Feedwater heaters 110−8,500
Steam-jacketed, agitated vessels 500−1,900
Shell-and-tube ammonia condensers 800−1,400
Steam condensers with 25◦C water 1,500−5,000
Condensing steam to high-pressure

boiling water
1,500−10,000

† Main heat loss is by infiltration.

• Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.10.)

• For a high U , all resistances in the exchanger must be low.

• The highly conducting liquids, such as water and liquid metals, give
high values of h and U .

Fouling resistance

Figure 2.21 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the
resistance offered by these deposits, we must include an additional, highly
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Figure 2.21 The fouling of a pipe.

empirical resistance when we calculate U . Thus, for the pipe shown in
Fig. 2.21,

U
⃓⃓⃓

older pipe
based on Ai

=
1

1

hi
+
ri ln(ro/rp)

kinsul
+
ri ln(rp/ri)

kpipe
+

ri
roho

+ Rf

where Rf is a fouling resistance for a unit area of pipe (in m2K/W). And
clearly

Rf ≡
1
Uold

− 1
Unew

(2.36)

Some typical values of Rf are given in Table 2.3. These values have
been adapted from [2.6] and [2.7]. Notice that fouling has the effect of
adding a resistance in series on the order of 10−4 m2K/W. It is rather like
another heat transfer coefficient, hf , on the order of 10,000 W/m2K in
series with the other resistances in the exchanger.

The tabulated values of Rf are given to only one significant figure
because they are very approximate. Clearly, exact values would have
to be referred to specific heat exchanger configurations, to particular
fluids, to fluid velocities, to operating temperatures, and to age [2.8, 2.9].
The resistance generally drops with increased velocity and increases
with temperature and age. The values given in the table are based on
reasonable maintenance and the use of conventional shell-and-tube heat
exchangers. With misuse, a given heat exchanger can yield much higher
values of Rf .
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Table 2.3 Some typical fouling resistances for a unit area.

Fluid and Situation
Fouling Resistance

Rf (m2K/W)

Distilled water 0.0001
Seawater 0.0001–0.0004
Treated boiler feedwater 0.0001–0.0002
Clean river or lake water 0.0002–0.0006
About the worst waters used in heat

exchangers
< 0.0020

No. 6 fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002–0.0009
Steam, non-oil-bearing 0.0001
Steam, oil-bearing (e.g., turbine exhaust) 0.0003
Most stable gases 0.0002–0.0004
Flue gases 0.0010–0.0020
Refrigerant vapors (oil-bearing) 0.0040

Notice too, that if U ❲ 1,000 W/m2K, fouling will be unimportant
because it will introduce a negligibly small resistance in series. Thus,
in a water-to-water heat exchanger, for which U is on the order of 2000
W/m2K, fouling might be important; but in a finned-tube heat exchanger
with hot gas in the tubes and cold gas passing across the fins on them, U
might be around 200 W/m2K, and fouling will be usually be insignificant.

Example 2.12

You have unpainted aluminum siding on your house and the engineer
has based a heat loss calculation on U = 5 W/m2K. You discover that
air pollution levels are such that Rf is 0.0005 m2K/W on the siding.
Should the engineer redesign the siding?

Solution. From eqn. (2.36) we get

1
Ucorrected

= 1
Uuncorrected

+ Rf = 0.2000+ 0.0005 m2K/W

Therefore, fouling is entirely irrelevant to domestic heat loads.
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Example 2.13

Since the engineer did not fail you in the preceding calculation, you
entrust him with the installation of a heat exchanger at your plant. He
installs a water-cooled steam condenser with U = 4000 W/m2K. You
discover that he used water-side fouling resistance for distilled water
but that the water flowing in the tubes is not clear at all. How did he
do this time?

Solution. Equation (2.36) and Table 2.3 give

1
Ucorrected

= 1
4000

+ (0.0006 to 0.0020)

= 0.00085 to 0.00225 m2K/W

Thus, U is reduced from 4,000 to between 444 and 1,176 W/m2K.
Fouling is crucial here, and the engineer was in serious error.

2.5 Summary

We have done four things in this chapter:

• We have established the heat conduction equation. We have provided
a method for solving it in simple problems. And we have presented
some important results. (We say much more about solving the heat
conduction equation in Part II of this book.)

• We have explored the electrical analogy to steady heat flow, paying
special attention to the concept of thermal resistance. We exploited
the analogy to solve heat transfer problems in the same way we
solve electrical circuit problems.

• We have defined the overall heat transfer coefficient and seen how
to build it up out of component resistances.

• We have treated some practical problems that arise in evaluating
overall heat transfer coefficients.

We have put off three important issues until later chapters:

• In all evaluations of U that involve values of h, we have taken these
values as given information. In any real situation, we must determine
correct values of h for the specific situation. Part III deals with such
determinations.
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• When fluids flow through heat exchangers, they give up or gain
energy. Thus, the driving temperature difference varies along the
exchanger. This variation complicates heat exchanger design, and
we learn how to deal with it in Chapter 3. (Problem 2.14 asks you to
consider this difficulty in its simplest form.)

• The heat transfer coefficients themselves vary with position inside
many types of heat exchangers, causing U to be position-dependent.

Problems

2.1 Heat conduction in a slab is one dimensional and steady; and k
varies linearly with T . Prove that q can then be evaluated precisely
with eqn. (1.9) by taking k at the mean temperature in the slab.

2.2 For steady heat flow through a plane wall of thickness L, show that

qL =
∫︂ Tright

Tleft

k(T)dT

for k(T) an arbitrary function. Use a simple numerical integration
to find q in a pure iron slab 1 cm thick if the temperature varies
from −100◦C on the left to 400◦C on the right. How far would
you have erred if you had just taken kaverage = (kleft+kright)

/︁
2 and

used eqn. (1.9)? [Error: +6.5%]

2.3 The steady heat flux at one side of a slab has a known value qo,
and the thermal conductivity varies with temperature in the slab
as k(T). (a) Starting with eqn. (2.10), show that the heat flux is the
same at every position x in the slab, and derive the integral given
in Problem 2.2. (b) If the conductivity can be written as a power
series in temperature

k =
i=n∑︂
i=0

AiT i

find the heat flux in terms of the temperature difference across the
slab and a single effective conductivity. What is this conductivity
when n = 0 or n = 1?

2.4 Combine Fick’s law, eqn. (2.19), with the principle of conservation
of mass (of the dilute species), similar to what was done for energy
in developing eqn. (2.7). Note that the mass of species 1 per unit
volume is the mass fraction, m1, times the density of the mixture,
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ρ. Eliminate j1 to obtain a second-order differential equation in
m1. Discuss the importance and the use of the result. For this
exercise, you may approximate ρ and D12 as constants.

2.5 Solve for the temperature distribution in a thick-walled pipe if the
bulk interior temperature and the exterior air temperature, T∞i ,
and T∞o , are known. The interior and the exterior heat transfer
coefficients are hi and ho, respectively. Follow the method in
Example 2.5 and put your result in the dimensionless form:

T − T∞i
T∞i − T∞o

= fn
(︁
Bii,Bio, r/ri, ro/ri

)︁
2.6 Put the boundary conditions from Problem 2.5 into dimensionless

form so that the Biot numbers appear in them. Let the Biot num-
bers approach infinity. This should get you back to the boundary
conditions for Example 2.4. Therefore, the solution that you obtain
in Problem 2.5 should reduce to the solution of Example 2.4 when
the Biot numbers approach infinity. Show that this is the case.

2.7 Write an accurate explanation of the idea of critical radius of insu-
lation that your kid brother or sister, who is still in grade school,
could understand. (If you do not have an available kid, borrow one
to see if your explanation really works.)

2.8 The slab shown in Fig. 2.22 is embedded in insulating materials
on five sides. The sixth side is exposed to an ambient temperature
through a heat transfer coefficient. Heat is generated in the slab at
the rate of 1.0 kW/m3. The thermal conductivity of the slab is 0.2
W/m·K. (a) Solve for the temperature distribution in the slab, noting
any assumptions you must make. Be careful to clearly identify the
boundary conditions. (b) Evaluate T at the exposed front face and
opposing back face of the slab. (c) Show that your solution gives the
expected heat fluxes at the back and front faces. [(b): Tback = 55◦C]

2.9 Consider the composite wall shown in Fig. 2.23. The concrete
and brick sections are of equal thickness. Determine T1, T2, q,
and the percentage of q that flows through the brick. To do this,
approximate the heat flow as one-dimensional. Draw the thermal
circuit for the wall and identify all four resistances before you begin.
Neglect heat flow through the interface between the brick and the
concrete. Was it valid to treat the problem as one dimensional?
[47.6% through brick]
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Figure 2.22 Configuration for
Problem 2.8.

W/m2K

2.10 Compute Q and U for Example 2.11 if the wall is 0.3 m thick. Five
(each) pine and sawdust layers are 5 and 8 cm thick, respectively;
and the heat transfer coefficients are 10 W/m2K on the left and
18 W/m2K on the right. T∞l = 30◦C and T∞r = 10◦C.

2.11 Compute U for the slab in Example 1.2.

2.12 Consider the tea kettle in Example 2.10. Suppose that the kettle
holds 1 kg of water (about 1 liter) and that the flame impinges on
0.02 m2 of the bottom. (a) Find out how fast the water temperature
is increasing when it reaches its boiling point, and calculate the
temperature of the bottom of the kettle immediately below the
water if the gases from the flame are at 500◦C when they touch
the bottom of the kettle. Assume that the heat capacitance of the
aluminum kettle is negligible. (b) There is an old parlor trick in
which one puts a paper cup of water over an open flame and boils
the water without burning the paper (see Experiment 2.1). Explain
this using an electrical analogy. [(a): dT/dt = 0.36◦C/s.]

2.13 Copper plates 2 mm and 3 mm thick are pressed rather lightly
together. Non-oil-bearing steam condenses under pressure at Tsat =
200◦C on one side (h = 12,000 W/m2K) and methanol boils under
pressure at 130◦C on the other (h = 9,000 W/m2K). Estimate U
and q initially and after extended service. List the relevant thermal
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2.5 cm 7.5 cm 5 cm

𝟥𝟩𝟢 °C 𝖳𝟣 𝖳𝟤 𝟨𝟨 °C

Fi
r

𝗄
=

𝟢.
𝟣𝟣

W
/m

⋅K Concrete cinder block
𝗄 = 𝟢.𝟩𝟨 W/m⋅K

Building brick
𝗄 = 𝟢.𝟨𝟫 W/m⋅K

Yellow pine
𝗄 = 𝟢.𝟣𝟦 W/m⋅K

Figure 2.23 Configuration for Problem 2.9.

resistances in order of decreasing importance and suggest whether
or not any of them can be ignored. Comment on the accuracy of
this calculation.

2.14 0.5 kg/s of air at 20◦C flows down a channel that is 1 m wide and of
unspecified height. The bottom of the channel is a heat exchange
surface (U = 300 W/m2K) with steam condensing at 120◦C on its
exterior. Determine: (a) q at the entrance; (b) the rate of increase
of the air temperature with x at the entrance; (c) the temperature
and heat flux 2 m downstream. [(c): T2 m = 89.7◦C.]

2.15 An isothermal sphere 3 cm in diameter at 80◦C is embedded in a
large clay region. The temperature of the clay far from the sphere
is kept at 10◦C. How much heat must be supplied to the sphere to
maintain its temperature if kclay = 1.28 W/m·K? Hint: You must
solve the heat conduction equation not in the sphere but in the
clay surrounding it. [Q = 16.9 W.]

2.16 Is it ever possible to increase the heat transfer from a convectively
cooled isothermal sphere by adding insulation? Explain fully.

2.17 A wall consists of layers of metals and plastic with heat transfer
coefficients on either side. U is 255 W/m2K and the overall tem-
perature difference is 200◦C. One layer in the wall is 3 mm thick
stainless steel (k = 18 W/m·K). What is ∆T across the stainless
steel?
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2.18 A 1% carbon-steel sphere 20 cm in diameter is kept at 250◦C on the
outside. It has an 8 cm diameter cavity containing boiling water
(hinside is very high) which is vented to the atmosphere. What is Q
through the shell? Hint: Solve the heat conduction equation.

2.19 A slab is insulated on one side and exposed to a surrounding
temperature, T∞, through a heat transfer coefficient on the other.
Heat is generated nonuniformly in the slab such that q̇ = Ax, where
x = 0 at the insulated wall, x = L at the cooled wall, and A is a
constant. Derive the temperature distribution in the slab. [If you
work this correctly, the temperature difference will vary as a cubic
equation in position.]

2.20 800 W/m3 of heat is generated within a 10 cm diameter nickel-
steel sphere for which k = 10 W/m·K. The environment is at
20◦C and there is a natural convection heat transfer coefficient
of 10 W/m2K around the outside of the sphere. Solve the heat
conduction equation to find the center temperature at the steady
state. [21.37◦C.]

2.21 Derive an expression for the thermal resistance of a spherical shell
of inner radius ri and outer radius ro.

2.22 Consider the hot water heater in Problem 1.11. Suppose that it is
covered with 2 cm of insulation with k = 0.12 W/m·K, and suppose
that h = 16 W/m2K. Find: (a) the time constant T for the tank,
accounting for these two thermal resistances but neglecting the
casing; (b) the initial rate of cooling in ◦C/h; (c) the time required
for the water to cool from its initial temperature of 75◦C to 40◦C;
(d) the percentage increase in heat loss that would result if an outer
casing for the insulation were held on by eight segments of 1 cm
diameter, 1% carbon steel rod between the inner and outer casings.

2.23 A slab of thickness L is subjected to a constant heat flux, q1, on
the left side. The right-hand side is cooled convectively by an
environment at T∞. (a) Develop a dimensionless equation for the
temperature of the slab. (b) Present dimensionless equation for the
left- and right-hand wall temperatures as well. (c) If the wall is made
from facing brick, 10 cm thick, ql is 400 W/m2, h = 20 W/m2K,
and T∞ = 20◦C, compute the lefthand and righthand temperatures.
[(c): Tl = 40◦C]
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2.24 Heat flows steadily through a stainless steel wall of thickness Lss =
0.06 m, with a variable thermal conductivity of kss = 1.67+0.0143T
for T in ◦C. The wall is partially insulated on the right side with glass
wool of thickness Lgw = 0.1 m and conductivity kgw = 0.04 W/m·K.
The temperature on the left-hand side of the stainless steel is 400◦C
and on the right-hand side of the glass wool is 100◦C. Evaluate q
and Ti. Hint: See Problem 2.1

2.25 Rework Problem 1.29 with a heat transfer coefficient on the outside
of the cup, ho = 40 W/m2K, keeping the air at 0◦C. [q = 2,200 W/m2]

2.26 We must illuminate a Space Station experiment in a large tank of
water at 20◦C. What is the maximum wattage of a submerged 3 cm
diameter spherical light bulb that will illuminate the tank without
boiling the surrounding water. The bulb is an LED that converts
70% of the power to light. Bear in mind that this will occur in zero
gravity.

2.27 A cylindrical shell is made of two concentric layers: an inner one
with inner radius ri and outer radius rc and an outer one with inner
radius rc and outer radius ro. There is a contact resistance, hc ,
between two layers. The layers have different conductivities, and
T1(r = ri) = Ti and T2(r = ro) = To. Find the inner temperature
of the outer shell, T2(rc), in terms of To and Ti.

2.28 A 1 kW commercial electric heating rod, 8 mm in diameter and 0.3
m long, is to be used in a highly corrosive gaseous environment.
Therefore, it must be covered by a cylindrical sheath of fireclay.
The gas flows by at 120◦C, and h is 230 W/m2K outside the sheath.
The surface of the heating rod cannot exceed 800◦C. Determine
the maximum allowable sheath thickness and find the outer tem-
perature of the fireclay. Hint: Use the heat flow and temperature
boundary conditions with thermal resistances in series.

2.29 A very small diameter, electrically insulated heating wire runs down
the center of a 7.5 mm diameter rod of type 304 stainless steel. The
outside is cooled by natural convection (h = 6.7 W/m2K) in room air
at 22◦C. The wire releases 12 W/m. Find the surface temperature
of the rod, and plot Trod vs. radial position, r , in the rod, for r > 0.
Neglect any contact resistance. Hint: Is it clear why you cannot use
a boundary condition at r = 0?
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2.30 A contact resistance experiment involves pressing two slabs of
different materials together, putting a known heat flux through
them, and measuring the outside temperatures of each slab. Write
the general expression for hc in terms of known quantities. Then
calculate hc if the slabs are 2 cm thick copper and 1.5 cm thick
aluminum, if q is 30,000 W/m2, and if the two temperatures are
15◦C and 22.1◦C. [hc = 8,122 W/m2K]

2.31 A student working heat transfer problems late at night needs a
cup of hot cocoa to stay awake. She puts milk in a pan on an
electric stove and seeks to heat it as rapidly as she can, without
burning the milk, by turning the stove on high and stirring the milk
continuously. Explain how this works using an analogous electric
circuit. Is it possible to bring the entire bulk of the milk up to the
burn temperature without burning part of it?

2.32 A small, spherical hot air balloon, 10 m in diameter, weighs 130
kg with a small gondola and one passenger. How much fuel must
be consumed (in kJ/h) if it is to hover at low altitude in still 27◦C
air? Take houtside = 215 W/m2K and hinside = 126 W/m2K, as the
result of natural convection. Hint: First determine the temperature
inside the balloon that will keep it neutrally buoyant. [7.21 ×
106 kJ/h]

2.33 A slab of 0.5% carbon steel, 4 cm thick, is held at 1,000◦C on the back
side. The front side is approximately black and radiates through
a vacuum to black surroundings at 100◦C. What is the temperature
of the front side? [872◦C]

2.34 Using the data in Fig. 2.3, develop an empirical equation for k(T) for
ammonia vapor. (The data form a nearly straight line on semilog-
arithmic coordinates, so the curve-fit must take an exponential
form.) Then imagine a hot horizontal surface parallel to a cold
surface a distance H below with ammonia vapor between them.
Derive equations for T(x) and q, with x = 0 at the cold surface and
x = H at the hot surface. Compute q if Thot = 150◦C, Tcold = −5◦C,
and H = 0.15 m.

2.35 A type 316 stainless steel pipe has a 6 cm inside diameter and an
8 cm outside diameter with a 2 mm layer of 85% magnesia insula-
tion around it. Liquid at 112◦C flows inside with hi = 346 W/m2K.
The air around the pipe is at 20◦C, and ho = 6 W/m2K. Calculate
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U based on the inside area. Sketch the equivalent electrical circuit,
showing all known temperatures. Discuss the results and suggest
an improved design. [To = 96.36◦C]

2.36 Two highly reflecting, horizontal plates are 5 mm apart. The upper
one is kept at 1000◦C and the lower one at 200◦C. Air is between
them. Neglect radiation and compute the heat flux and the mid-
point temperature in the air. Use a fit of the form k = aTb, for T
in kelvin, to represent the air data in Table A.6.

2.37 A 0.1 m thick slab with k = 3.4 W/m·K is held at 100◦C on the
left side. The right side is cooled with air at 20◦C through a
heat transfer coefficient, and h = (5.1 W/m2K−5/4)(Twall − T∞)1/4.
Find q and Twall on the right. Hint: Trial and error solution re-
quired.

2.38 Heat is generated at 54,000 W/m3 in a 0.16 m diameter sphere.
The sphere is cooled by natural convection with fluid at 0◦C, h =
[2+ 6(Tsurface − T∞)1/4] W/m2K, and ksphere = 9 W/m·K. Find the
surface temperature and center temperature of the sphere.

2.39 Layers of equal thickness of spruce and pitch pine are laminated
to make an insulating material. Does it matter how laminations
are oriented relative to the temperature gradient?

2.40 The resistance of a thick cylindrical layer of insulation must be in-
creased. Will Q be lowered more by a small increase of the outside
diameter or by the same decrease in the inside diameter?

2.41 You are in charge of energy conservation at your plant. A 300 m run
of 6 in. O.D. iron pipe carries steam at 125 psig. The pipe hangs in
a room at 25◦C, with a natural convection heat transfer coefficient
h = 6 W/m2K. The pipe has an emittance of ε = 0.65. The thermal
resistances are such that the surface of the pipe will stay close to
the saturation temperature of the steam. (a) Find the effective heat
transfer coefficient between the pipe surface and the room, and
the rate of heat loss from this pipe, in kWh/y. (b) It is proposed to
add a 2 in. layer of glass fiber insulation with k = 0.05 W/m·K. The
outside surface of the insulation has of ε = 0.7. What is the rate
of heat loss with insulation? (c) If the installed insulation cost is
$50/m including labor and the cost of thermal energy is $0.03/kWh,
what is the payback time for adding insulation?
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2.42 A large tank made of thin steel plate contains pork fat at 400◦F,
which is being rendered into oil. We consider applying a 3-inch layer
of 85% magnesia insulation to the surface of the tank. The average
heat transfer coefficient is 1.5 Btu/h·ft2·◦F for natural convection
on the outside. It is far larger on the inside. The outside tem-
perature is 70◦F. By what percentage would adding the insulation
reduce the heat loss? [89%]

2.43 The thermal resistance of a cylinder is Rtcyl = (1/2πkl) ln(ro/ri). If
ro = ri + δ, show that the thermal resistance of a thin-walled cylin-
der (δ≪ ri) can be approximated by that for a slab of thickness δ.
Thus, Rtthin = δ/(kAi), where Ai = 2πril is the inside surface area.
How much error is introduced by this approximation if δ/ri = 0.2?
Plot Rtthin/Rtcyl as a function of δ/ri. Hint: Use a Taylor series.

2.44 A Gardon gage measures radiation heat flux by detecting a temper-
ature difference [2.10]. The gage consists of a circular constantan
membrane of radius R, thickness t, and thermal conductivity kct

which is joined to a heavy copper heat sink at its edges. When a
radiant heat flux qrad is absorbed by the membrane, heat flows from
the interior of the membrane to the copper heat sink at the edge,
creating a radial temperature gradient. Copper leads are welded to
the center of the membrane and to the copper heat sink, making
two copper-constantan thermocouple junctions. These junctions
measure the temperature difference ∆T between the center of the
membrane, T(r = 0), and the edge of the membrane, T(r = R).

The following approximations can be made:

• The membrane surface has been blackened so that it absorbs
all radiation that falls on it.

• The radiant heat flux is much larger than the heat lost from the
membrane by convection or re-radiation. Thus, all absorbed
radiation is conducted to the heat sink, and other loses can
be neglected.

• The gage operates in steady state.

• The membrane is thin enough (t ≪ R) that the temperature
in it varies only with r , i.e., T = T(r) only.

Solve the following problems.
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a. For a fixed heat sink temperature, T(R), qualitatively sketch
the shape of the temperature distribution in the membrane,
T(r), for two heat radiant fluxes qrad1 and qrad2, where qrad1 >
qrad2.

b. Derive the relationship between the radiant heat flux, qrad, and
the temperature difference obtained from the thermocouples,
∆T . Hint: Treat the absorbed radiant heat flux as if it were a
volumetric heat source of magnitude qrad/t W/m3.

2.45 You have a 12 oz. (375 mL) can of soda at room temperature (70◦F)
that you would like to cool to 45◦F before drinking. You rest the
can on its side on the plastic rods of the refrigerator shelf. The can
is 2.5 inches in diameter and 5 inches long. The can’s emittance is
ε = 0.4 and the natural convection heat transfer coefficient around
it is a function of the temperature difference between the can and
the air: h = 2∆T 1/4 for ∆T in kelvin.

Assume that thermal interactions with the refrigerator shelf are
negligible and that buoyancy currents inside the can will keep the
soda well mixed.

a. Estimate how long it will take to cool the can in the refrigerator
compartment, which is at 40◦F.

b. Estimate how long it will take to cool the can in the freezer
compartment, which is at 5◦F. (Continues on next page.)

c. Are your answers for parts a and b the same? If not, what is
the main reason that they are different?

2.46 An exterior wall of a wood-frame house is typically composed,
from outside to inside, of a layer of wooden siding, a layer glass
fiber insulation, and a layer of gypsum wall board. Standard glass
fiber insulation has a thickness of 3.5 inch and a conductivity of
0.038 W/m·K. Gypsum wall board is normally 0.50 inch thick with
a conductivity of 0.17 W/m·K, and the siding can be assumed to
be 1.0 inch thick with a conductivity of 0.10 W/m·K.

a. Find the overall thermal resistance of such a wall (in K/W) if
it has an area of 400 ft2.

b. The effective heat transfer coefficient (accounting for both
convection and radiation) on the outside of the wall is ho = 20
W/m2K and that on the inside is hi = 10 W/m2K. Determine the



96 Chapter 2: Heat conduction, thermal resistance, and the overall heat transfer coefficient

total thermal resistance for heat loss from the indoor air to the
outdoor air. Also obtain an overall heat transfer coefficient,
U , in W/m2K.

c. If the interior temperature is 20◦C and the outdoor temper-
ature is −5◦C, find the heat loss through the wall in watts and
the heat flux in W/m2.

d. Which of the five thermal resistances is dominant?

e. The wall is held together with vertical wooden studs between
the siding and the gypsum. The studs are spruce, 3.5 in. by
1.5 in. on a 16 in. center-to-center spacing. If the wall is 8 ft
high, by how much do the studs increase U?

2.47 The heat conduction equation in Section 2.1 includes a volumetric
heat release rate, q̇. We normally describe heat as a transfer of
energy and entropy across a system boundary, so the notion of
volumetric heat release needs some thought. Consider an electrical
resistor carrying a current I with a voltage difference of∆V in steady
state. Electrical work is done on the resistor at the rate ∆V · I.

a. Use eqn. (1.1) to find the rate of heat and entropy flow out of
the resistor. Assume that the resistor’s surface temperature,
T , is uniform. What is the rate of entropy generation, Ṡgen?

b. Suppose that the resistor dissipates electrical work uniformly
within its volume, V , and that its thermal conductivity is
high enough to provide a nearly uniform internal temperature.
What is the volumetric entropy generation rate, ṡgen?

c. By considering the net heat leaving a differential volume dV ,
use ṡgen to define the volumetric heat release rate, q̇.

d. If the resistor has a nonuniform internal temperature but
a uniform rate of work dissipation, does the total entropy
generation change? Why or why not?

e. If the resistor is insulated, so that no heat flows out, what is the
entropy generation rate? Assume the resistor’s temperature
is nearly uniform, starting at T0 at time t = 0 .

2.48 If a temperature difference of ∆T is imposed across N thermal
resistances in series, show that the temperature difference across
the ith thermal resistance is

∆Ti =
Ri∑︁N
i=1Ri

∆T

The electrical analogy to this result is called the voltage divider.
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steel
epoxy
Inconel
epoxy
water
steel

water

insulation

Figure 2.24 Configuration for
Problem 2.49.

2.49 An electrical resistor is a 1 mm thick annulus of Inconel (Fig. 2.24).
It dissipates 9.4 kW/m. The resistor is insulated on both sides by
a 3 mm layer of epoxy (ke = 0.5 W/m·K). A 316 stainless steel
pipe inside the resistor is cooled internally by flowing water. The
pipe is 5 cm I.D. and 6 cm O.D. A larger pipe forms an annular pas-
sage outside the resistor, through which water also flows; hinside =
houtside = 1400 W/m2K. The outer pipe has 8.7 cm I.D. and a 0.5 cm
wall thickness and is wrapped with 2 cm thick glass-fiber pipe insula-
tion, surrounded outside by ambient air. If the water temperature in-
side is 47◦C and that outside is 53◦C, find the resistor’s temperature.
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3. Heat exchanger design

The great object to be effected in the boilers of these engines is, to keep
a small quantity of water at an excessive temperature, by means of a
small amount of fuel kept in the most active state of combustion. . .No
contrivance can be less adapted for the attainment of this end than one
or two large tubes traversing the boiler, as in the earliest locomotive
engines. The Steam Engine Familiarly Explained and Illustrated,

Dionysus Lardner, 1836

3.1 Function and configuration of heat exchangers

The archetypical function of any heat exchanger is getting energy from one
fluid mass to another, as we see in Fig. 3.1. Some kind of wall separates the
two flows and introduces some thermal resistance to heat exchange. We
normally want to minimize this resistance. (In some cases, the separator
resistance can be entirely eliminated, as in the direct steam condenser of
Fig. 3.2.)

Heat exchangers come in a vast variety of configurations. However,
most commercial exchangers reduce to one of three types. Figure 3.3
shows these types in schematic form. They are:

• The simple parallel or counterflow configuration. These arrange-
ments are versatile. Figure 3.4 shows how the counterflow arrange-
ment is bent around in a so-called Heliflow compact heat exchanger
configuration.

• The shell-and-tube configuration. Figure 3.5 shows the U-tubes of
a two-tube-pass, one-shell-pass exchanger being installed in the
supporting baffles. The shell is yet to be added. Most of the really
large heat exchangers are of the shell-and-tube form.
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Figure 3.1 The basic concept of a heat exchanger and some
common applications.

• The cross-flow configuration. Figure 3.6 shows typical cross-flow
units. In Fig. 3.6a and c, both flows are unmixed. Each flow must
stay in a prescribed path through the exchanger and is not allowed
to “mix” to the right or left. Figure 3.6b shows a typical plate-fin
cross-flow element. Here the flows are also unmixed.

Figure 3.2 A direct-contact heat exchanger.



Figure 3.3 The three basic types of heat exchangers.
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Figure 3.4 Heliflow compact counterflow heat exchanger. (Pho-
tograph courtesy of Graham Manufacturing Co., Batavia, NY.)

Figure 3.7, taken from the standards of the Tubular Exchanger Manu-
facturer’s Association (TEMA) [3.1], shows four typical single-shell-pass
heat exchangers and establishes nomenclature for such units.

These pictures also show some of the complications that arise in
translating simple concepts into hardware. Figure 3.7a shows an exchan-
ger with a single tube pass. Although the shell flow is baffled so that it
crisscrosses the tubes, it still proceeds from the hot to cold (or cold to
hot) end of the shell. Therefore, this exchanger is like a simple parallel
(or counterflow) unit. The kettle reboiler in Fig. 3.7d involves a divided
shell-pass flow configuration over two tube passes (from left to right and
back to the “channel header”). The shell-side liquid is nearly isothermal
at the saturation temperature, so its flow direction makes no difference.
Therefore, this exchanger is also equivalent to either the simple parallel
or counterflow configuration.

Notice that a salient feature of shell-and-tube exchangers is the pres-
ence of baffles. Baffles serve to direct the flow normal to the tubes. We
find in Part III that heat transfer from a tube to a flowing fluid is usually
better when the flow moves across the tube than when the flow moves
along the tube. This augmentation of heat transfer gives the compli-
cated shell-and-tube exchanger an advantage over the simpler single-pass
parallel and counterflow exchangers.

However, baffles bring with them a variety of problems. The flow
patterns are very complicated and almost defy analysis. A good deal of
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the shell-side fluid might unpredictably leak through the baffle holes in
the axial direction, or it might bypass the baffles near the wall. In certain
shell-flow configurations, unanticipated vibrational modes of the tubes
might be excited.

Heat exchangers between liquids and gases often include fins outside
the tubes (Fig. 3.6a and b). Heat transfer coefficients for gases are much
lower than for liquids. The fins offset this thermal resistance by increasing
the surface area in contact with the gas. Fig. 3.6c shows a gas-to-gas
exchanger with fins in both gas streams.

In all of these heat exchanger arrangements, vast human ingenuity
has been directed towards the task of augmenting the heat transfer from
one flow to another. The variations are endless, as you will quickly see if
you try Experiment 3.1.

Experiment 3.1

Carry a notebook with you for a day and mark down every heat ex-
changer you encounter in home, university, or automobile. Classify
each according to type and note any special augmentation features.♦

Many specialized and sophisticated software packages now aid the
use and design of heat exchangers. Our task as engineers is to use those
tools effectively—and to select and assess them critically before we rely
on them. When a new heat exchange configurations arises, we must be
able to “look under the hood” at the tools available to decide whether
they are still applicable. We may need to modify existing analyses, or
even create new analyses of our own.

This under-the-hood analysis of heat exchangers first becomes com-
plicated when we account for the fact that two flow streams change
one another’s temperature. We turn next, in Section 3.2, to the prob-
lem of predicting an appropriate mean temperature difference. Then,
in Section 3.3 we develop a strategy for use when this mean cannot be
determined initially.

3.2 Evaluation of the mean temperature difference in
a heat exchanger

Logarithmic mean temperature difference (LMTD)

To begin with, we take U to be a constant value. This is fairly reasonable in
compact single-phase heat exchangers. In larger exchangers, particularly
in shell-and-tube configurations and large condensers, U is apt to vary
with position in the exchanger and/or with local temperature. But in



Figure 3.5 Typical commercial one-shell-pass, two-tube-pass
heat exchangers.
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a. A 1980 Chevette radiator. Cross-flow exchanger
with neither flow mixed. Edges of flat vertical tubes
can be seen.

b. A section of an automotive air conditioning
condenser. The flow through the horizontal wavy
fins is allowed to mix with itself while the two-
pass flow through the U-tubes remains unmixed.

c. The basic 1 ft. × 1 ft.× 2 ft. module for
a waste heat recuperator. It is a plate-fin,
gas-to-air cross-flow heat exchanger with
neither flow mixed.

Figure 3.6 Several commercial cross-flow heat exchangers. (Pho-
tographs courtesy of Harrison Radiator Division, General Motors
Corporation.)
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Figure 3.7 Four typical heat exchanger configurations (contin-
ued on next page). (Drawings courtesy of the Tubular Exchanger
Manufacturers’ Association.)
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Figure 3.7 Continued

situations in which U is fairly constant, we can deal with the varying
temperatures of the fluid streams by writing the overall heat transfer in
terms of a mean temperature difference between the two fluid streams:

Q = UA∆Tmean (3.1)

Our problem then reduces to finding the appropriate mean temperature
difference that will make this equation true. Let us do this for the simple
parallel and counterflow configurations, as sketched in Fig. 3.8.

The temperature of both streams is plotted in Fig. 3.8 for both single-
pass arrangements—the parallel and counterflow configurations—as a
function of the length of travel (or area passed over). Notice that, in the
parallel-flow configuration, temperatures tend to change more rapidly
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Figure 3.8 The temperature variation through single-pass heat
exchangers.

with position and less length is required. But the counterflow arrangement
generally achieves more complete heat exchange between the two streams.

Figure 3.9 shows another variation on the single-pass configuration.
This is a condenser in which one stream flows through with its temperature
changing, but the other simply condenses at uniform temperature. This
arrangement has some special characteristics, which we point out in
Example 3.3.

The determination of ∆Tmean for such arrangements goes thus: the
differential heat transfer within either arrangement is (see Fig. 3.8)

dQ = U∆T dA = −(ṁcp)h dTh = ±(ṁcp)c dTc (3.2)

where the subscriptsh and c denote the hot and cold streams, respectively;
the upper and lower signs are for the parallel and counterflow cases,
respectively; and dT denotes a change from left to right in the exchanger.
We give symbols to the total heat capacities of the hot and cold streams:

Ch ≡ (ṁcp)hW/K and Cc ≡ (ṁcp)c W/K (3.3)
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Figure 3.9 The temperature distribution through a condenser.

Thus, for either heat exchanger, ∓ChdTh = CcdTc . This equation can
be integrated from the lefthand side, where Th = Thin and Tc = Tcin for
parallel flow or Th = Thin and Tc = Tcout for counterflow, to some arbitrary
point inside the exchanger. The temperatures inside are thus:

parallel flow: Th = Thin −
Cc
Ch
(Tc − Tcin) = Thin −

Q
Ch

(3.4a)

counterflow: Th = Thin −
Cc
Ch
(Tcout − Tc) = Thin −

Q
Ch

(3.4b)

whereQ is the total heat transfer from the entrance to the point of interest.
Equations (3.4) can be solved for the local temperature differences:

∆Tparallel = Th − Tc = Thin −
(︃

1+ Cc
Ch

)︃
Tc +

Cc
Ch
Tcin (3.5a)

∆Tcounter = Th − Tc = Thin −
(︃

1− Cc
Ch

)︃
Tc −

Cc
Ch
Tcout (3.5b)
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Substitution of these in dQ = CcdTc = U∆T dA yields

UdA
Cc

⃓⃓⃓⃓
parallel

= dTc[︃
−
(︃

1+ Cc
Ch

)︃
Tc +

Cc
Ch
Tcin + Thin

]︃ (3.6a)

UdA
Cc

⃓⃓⃓⃓
counter

= dTc[︃
−
(︃

1− Cc
Ch

)︃
Tc −

Cc
Ch
Tcout + Thin

]︃ (3.6b)

Equations (3.6) can be integrated across the exchanger:∫︂ A
0

U
Cc
dA =

∫︂ Tcout

Tc in

dTc
[−−−] (3.7)

If U and Cc can be treated as constant, this integration gives

parallel: ln

⎡⎢⎢⎢⎣
−
(︃

1+ Cc
Ch

)︃
Tcout +

Cc
Ch
Tcin + Thin

−
(︃

1+ Cc
Ch

)︃
Tcin +

Cc
Ch
Tcin + Thin

⎤⎥⎥⎥⎦ = −UACc
(︃

1+ Cc
Ch

)︃

(3.8a)

counter: ln

⎡⎢⎢⎢⎣
−
(︃

1− Cc
Ch

)︃
Tcout −

Cc
Ch
Tcout + Thin

−
(︃

1− Cc
Ch

)︃
Tcin −

Cc
Ch
Tcout + Thin

⎤⎥⎥⎥⎦= −UACc
(︃

1− Cc
Ch

)︃

(3.8b)

If U were variable, the integration leading from eqn. (3.7) to eqns. (3.8) is
where its variability would have to be considered. Any such variability of
U can complicate eqns. (3.8) terribly.

We can simplify eqns. (3.8) with the help of the definitions of ∆Ta and
∆Tb, given in Fig. 3.8:

parallel: ln
[︃(1+ Cc/Ch)(Tcin − Tcout)+∆Tb

∆Tb

]︃
= −UA

(︃
1
Cc
+ 1
Ch

)︃
(3.9a)

counter: ln
∆Ta

(−1+ Cc/Ch)(Tcin − Tcout)+∆Ta
= −UA

(︃
1
Cc
− 1
Ch

)︃
(3.9b)

In every heat exchanger, Qc = Qh, by energy conservation. Therefore,

Cc
Ch

= −Thout − Thin

Tcout − Tcin

(3.10)
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Then eqns. (3.9) and eqn. (3.10) give

parallel: ln

⎡⎣
∆Ta−∆Tb⏟ ⏞⏞ ⏟

(Tcin − Tcout)+ (Thout − Thin)+∆Tb
∆Tb

⎤⎦
= ln

(︃
∆Ta
∆Tb

)︃
= −UA

(︃
1
Cc
+ 1
Ch

)︃
(3.11a)

counter: ln
(︃

∆Ta
∆Tb −∆Ta +∆Ta

)︃
= ln

(︃
∆Ta
∆Tb

)︃
= −UA

(︃
1
Cc
− 1
Ch

)︃
(3.11b)

Finally, we write 1/Cc = (Tcout − Tcin)/Q and 1/Ch = (Thin − Thout)/Q on
the right-hand side of either of eqns. (3.11) and get for either parallel or
counterflow,

Q = UA
(︃
∆Ta −∆Tb

ln(∆Ta/∆Tb)

)︃
(3.12)

The appropriate ∆Tmean for use in eqn. (3.1) is the group on the right. We
call it the logarithmic mean temperature difference (LMTD). It allows us
to write Q = UA(LMTD):

∆Tmean = LMTD ≡ ∆Ta −∆Tb
ln
(︃
∆Ta
∆Tb

)︃ (3.13)

Example 3.1

The idea of a logarithmic mean difference is not new to us. We have
already encountered it in Chapter 2. Suppose that we had asked,
“What mean radius of pipe would have allowed us to compute the
conduction through the wall of a pipe as though it were a slab of
thickness L = ro − ri?” (see Fig. 3.10). To answer this, we write

Q = kA ∆T
L
= k (2πrmeanl)

(︃
∆T

ro − ri

)︃
and then compare it to eqn. (2.21):

Q = 2πkl∆T
1

ln(ro/ri)
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Figure 3.10 Calculation of the mean radius for heat conduction
through a pipe.

It follows that

rmean =
ro − ri

ln(ro/ri)
= logarithmic mean radius

Example 3.2 Balanced Counterflow Heat Exchanger

Suppose that the heat capacity rates of a counterflow heat exchanger
are equal, Ch = Cc . Such an exchanger is said to be balanced. From
eqn. (3.5b), it follows the local temperature different in the exchanger
is constant throughout, ∆Tcounter = Thin − Tcout = ∆Ta = ∆Tb. Does
the LMTD reduce to this value?

Solution. If we substitute ∆Ta = ∆Tb in eqn. (3.13), we get

LMTD = ∆Tb −∆Tb
ln (∆Tb/∆Tb)

= 0
0
= indeterminate

Therefore it is necessary to use L’Hospital’s rule:

limit
∆Ta→∆Tb

∆Ta −∆Tb
ln (∆Ta/∆Tb)

=

∂
∂∆Ta

(︁
∆Ta −∆Tb

)︁
∆Ta=∆Tb

∂
∂∆Ta

ln
(︃
∆Ta
∆Tb

)︃
⃓
∆Ta=∆Tb

=
(︃

1
1/∆Ta

)︃
⃓
∆Ta=∆Tb

= ∆Ta = ∆Tb
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So LMTD does indeed reduce to the intuitively obvious result when
the capacity rates are balanced.

Example 3.3

Water enters the tubes of a small single-pass heat exchanger at 20◦C
and leaves at 40◦C. On the shell side, 25 kg/min of steam condenses at
60◦C. Calculate the overall heat transfer coefficient and the required
flow rate of water if the area of the exchanger is 12 m2. (The latent
heat, hfg , is 2358.7 kJ/kg at 60◦C.)

Solution.

Q = ṁcondensate · hfg⃓⃓⃓ 60◦C
= 25(2358.7)

60
= 983 kJ/s

and with reference to Fig. 3.9, we can calculate the LMTD without
naming the exchanger “parallel” or “counterflow”, since the condensate
temperature is constant.

LMTD = (60− 20)− (60− 40)

ln
(︃

60− 20
60− 40

)︃ = 28.85 K

Then

U = Q
A(LMTD)

= 983(1000)
12(28.85)

= 2839 W/m2K

and

ṁH2O =
Q

cp∆T
= 983,000

4180(20)
= 11.76 kg/s

Extended use of the LMTD

Limitations. The use of an LMTD is limited in two basic ways. The first
is that it is restricted to the single-pass parallel and counterflow configu-
rations. This restriction can be overcome by adjusting the LMTD for other
configurations—a matter that we take up in the following subsection.

The second limitation—our use of a constant value of U—is harder
to deal with. The value of U must be negligibly dependent on T to
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Figure 3.11 A typical case of a heat exchanger in which U varies
dramatically: flow boiling in a tube followed by dry out.

complete the integration of eqn. (3.7). Even if U ≠ fn(T), the changing
flow configuration and the variation of temperature can still give rise to
large variations of U within a given heat exchanger. Figure 3.11 shows a
typical situation in which U might vary greatly within a heat exchanger.
Here, the mechanism of heat transfer completely changes as water boils
into steam. If U were uniform in each portion of the heat exchanger, then
we could treat it as two different exchangers in series.

However, the more common difficulty is that of designing heat ex-
changers in which U varies continuously with position within it. This
problem is most severe in large industrial shell-and-tube configurations1

(see, e.g., Fig. 3.5 or Fig. 3.12) and less serious in compact heat exchangers
that have less surface area. If U depends on the location, analyses such
as we have just completed [eqn. (3.1) to eqn. (3.13)] must be done using
an average U defined as

∫︁A
0 UdA

/︁
A.

1Actual heat exchangers can have areas in excess of 10,000 m2. Large power plant
condensers and other large exchangers are often remarkably big pieces of equipment.



Figure 3.12 A package boiler with a heat transfer surface of
4560 m2. The burners at right heat water within tubing in the
furnace walls, boiler tubing (far left), and superheater tubing
(middle left). The steam then drives a turbine. (These units
actually come in much larger sizes. Image courtesy of Babcock &
Wilcox Co.)
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LMTD correction factor, F . Suppose we have a heat exchanger in which
U can reasonably be taken constant, but one that involves such config-
urational complications as multiple passes and/or cross-flow. In these
cases we must rederive the appropriate mean temperature difference
in the same way as we derived the LMTD. Each configuration must be
analyzed separately and the results are generally more complicated than
eqn. (3.13).

This task was undertaken on an ad hoc basis during the early twenti-
eth century. In 1940, Bowman, Mueller, and Nagle [3.2] organized such
calculations for the common range of heat exchanger configurations. In
each case they wrote

Q = UA(LMTD) · F
⎛⎝ Ttout − Ttin
Tsin − Ttin⏞ ⏟⏟ ⏞

P

,
Tsin − Tsout

Ttout − Ttin⏞ ⏟⏟ ⏞
R

⎞⎠ (3.14)

where Tt and Ts are temperatures of tube and shell flows, respectively.
The factor F is an LMTD correction that varies from one to zero, depending
on conditions. The dimensionless groups P and R have the following
physical significance:

• P is the relative influence of the overall temperature difference
(Tsin − Ttin) on the tube flow temperature. It must obviously be less
than one.

• R, according to eqn. (3.10), equals the heat capacity ratio Ct/Cs .

• If one flow remains at constant temperature (as, for example, in
Fig. 3.9), then either P or R will equal zero. In this case the simple
LMTD will be the correct ∆Tmean and F must go to one.

The factor F is defined in such a way that the LMTD should always be
calculated for the equivalent counterflow single-pass exchanger with the
same hot and cold temperatures. This is explained in Fig. 3.13.

Bowman et al. [3.2] summarized all the equations for F , in various
configurations, that had been derived by 1940. They presented them in
figures that were widely reproduced at the time, but which proved to be
somewhat inaccurate. Accurate versions of these charts are shown in
Fig. 3.14 for two shell-and-tube configuration and for the two simplest
cross-flow configurations. Figures 3.14(a) and 3.14(d) are plotted from
equations given by Shah and Sekulíc [3.3], and Fig. 3.14(c) is plotted from
an equation due to Roetzel and Nicole [3.4]. Figure 3.14(b) is plotted from
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Figure 3.13 The basis of the LMTD in a multipass exchanger,
prior to correction.

the equation given by Bowman et al. [3.2]. TEMA presents many additional
curves for more complex shell-and-tube configurations.

Gardner and Taborek [3.5] examined the effect of the number of shell-
and-tube baffles on F . A one-shell pass, one-tube pass counterflow heat
exchanger [Fig. 3.7(a)] is more like a series of cross-flow exchangers than
a counterflow device if fewer than 10 baffles are used, so F is less than
the expected counterflow value of one. They also discussed the effect of
flow by-passing the baffles, e.g., through the holes where tubes pass.

We have simplified Figs. 3.14(a) through 3.14(d) by including curves
only for R ⩽ 1. Shamsundar [3.6] noted that for R > 1, one may obtain
F using a simple reciprocal rule. He showed that so long as a heat
exchanger has a uniform heat transfer coefficient and the fluid properties
are constant,

F(P,R) = F(PR,1/R) (3.15)

Thus, if R is greater than one, we need only evaluate F using PR in place
of P and 1/R in place of R.
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b. F for a two-shell-pass, four or more tube-pass exchanger.

Figure 3.14 LMTD correction factors, F , for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
R = (Tsin−Tsout)

/︁
(Ttout−Ttin) = Ct/Cs . For R > 1, use eqn. (3.15).

118



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1.0

0.2
0.4

0.60.8

P =
Ttout − Ttin
Tsin − Ttin

C
or

re
ct

io
n

fa
ct

or
,F

R
=

1

c. F for a one-pass cross-flow exchanger with both passes unmixed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1.0

0.1

0.2

0.4

0.6

0.8

P =
Ttout − Ttin
Tsin − Ttin

C
or

re
ct

io
n

fa
ct

or
,F

R
=

1

d. F for a one-pass cross-flow exchanger with one pass (Ts ) mixed.

Figure 3.14 Continued. R = (Tsin − Tsout)
/︁
(Ttout − Ttin) = Ct/Cs .
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Example 3.4

5.795 kg/s of oil flows through the shell side of a two-shell pass, four-
tube-pass oil cooler. The oil enters at 181◦C and leaves at 38◦C. Water
flows in the tubes, entering at 32◦C and leaving at 49◦C. In addition,
cp,oil = 2282 J/kg·K and U = 416 W/m2K. Find how much area the
heat exchanger must have.

Solution.

LMTD =
(︁
Thin − Tcout

)︁
−
(︁
Thout − Tcin

)︁
ln

(︄
Thin − Tcout

Thout − Tcin

)︄

= (181− 49)− (38− 32)

ln
(︃

181− 49
38− 32

)︃ = 40.76 K

R = 181− 38
49− 32

= 8.412 P = 49− 32
181− 32

= 0.114

Since R > 1, we use eqn. (3.15). For P = 8.412(0.114) = 0.959 and
R = 1/8.412 = 0.119, Fig. 3.14(b) shows F = 0.92.2 It follows that:

Q = ṁoilcp,oil
(︁
Thin − Thout

)︁
= UAF(LMTD)

5.795(2282)(181− 38) = 416(A)(0.92)(40.76)

A = 121.2 m2

3.3 Heat exchanger effectiveness

We are now able to use the LMTD to predict the performance of an
exchanger once we know its configuration and the imposed temperature
differences. Unfortunately, we do not often know that much about a
system before the design is complete.

Often we begin with information such as is shown in Fig. 3.15. If
we sought to calculate Q in such a case, we would have to do so by
guessing an exit temperature such as to makeQh = Qc = Ch∆Th = Cc∆Tc .
Then we could calculate Q from UA(LMTD) or UAF (LMTD) and check it

2Notice that, for a 1 shell-pass exchanger, these R and P lines do not quite intersect
[see Fig. 3.14(a)]. Therefore, no single-shell exchanger would give these values.
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Figure 3.15 A design problem in which the LMTD cannot be
calculated a priori.

against Qh. The answers would differ, so we would have to guess new
exit temperatures and try again.

Such problems can be greatly simplified with the help of the so-called
effectiveness-NTU method. It was first developed in full detail in 1955
by Kays and London [3.7] in a book titled Compact Heat Exchangers. We
should take particular note of the title. This method works if the overall
heat transfer coefficient is fairly uniform, which is far more likely in a
compact heat exchanger than in larger equipment.

The heat exchanger effectiveness is defined as

ε ≡ actual heat transferred
maximum heat that could possibly be

transferred from one stream to the other

In mathematical terms, this is

ε = Ch(Thin − Thout)
Cmin(Thin − Tcin)

= Cc(Tcout − Tcin)
Cmin(Thin − Tcin)

(3.16)

where Cmin is the smaller of Cc and Ch. It follows that

Q = εCmin(Thin − Tcin) (3.17)
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A second definition was originally made by E. K. W. Nusselt, whom we
meet again in Part III. This is the number of transfer units (NTU):

NTU ≡ UA
Cmin

(3.18)

This dimensionless group compares the exchanger’s capacity for trans-
ferring heat to the minimum capacity rate of the streams—both in W/K.

We can immediately reduce the parallel-flow result from eqn. (3.9) to
the following equation, based on these definitions:

−
(︃
Cmin

Cc
+ Cmin

Ch

)︃
NTU = ln

[︃
−
(︃

1+ Cc
Ch

)︃
ε
Cmin

Cc
+ 1

]︃
(3.19)

We solve this for ε and, regardless of whether Cmin is associated with the
hot or cold flow, obtain for the parallel single-pass heat exchanger:

ε ≡ 1− exp
[︁
−(1+ Cmin/Cmax)NTU

]︁
1+ Cmin/Cmax

= fn
(︃
Cmin

Cmax
,NTU only

)︃
(3.20)

The corresponding expression for the counterflow case is:

ε = 1− exp
[︁
−(1− Cmin/Cmax)NTU

]︁
1− (Cmin/Cmax) exp

[︁
−(1− Cmin/Cmax)NTU

]︁ (3.21)

Equations (3.20) and (3.21) are plotted in Fig. 3.16. Similar calculations
can be made for other heat exchanger configurations (see [3.7] and Problem
3.38). We include some additional situations in Fig. 3.17 and Table 3.1. In
every case, when NTU is small ε is also small: neither stream’s temperature
will change much (Problem 3.23).

We illustrate the use of effectiveness to rate the performance of an
existing heat exchanger, and to fix the size of a new one, in the following
two examples.

Example 3.5

Consider the following parallel-flow heat exchanger specification:

cold flow enters at 40◦C: Cc = 20,000 W/K

hot flow enters at 150◦C: Ch = 10,000 W/K

A = 30 m2 U = 500 W/m2K

Determine the heat transfer and the exit temperatures.
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Figure 3.16 The effectiveness of parallel and counterflow heat
exchangers, eqns. (3.20) and (3.21).

Solution. In this case we do not know the exit temperatures, so it is
not possible to calculate the LMTD. Instead, we can go either to the
parallel-flow effectiveness chart in Fig. 3.16 or to eqn. (3.20), using

NTU = UA
Cmin

= 500(30)
10,000

= 1.5

Cmin

Cmax
= 0.5

and we obtain ε = 0.596. Now from eqn. (3.17), we find that

Q = ε Cmin
(︁
Thin − Tcin

)︁
= 0.596(10,000)(150− 40)
= 655,600 W = 655.6 kW

Finally, from energy balances, such as are expressed in eqn. (3.4), we
get

Thout = Thin −
Q
Ch

= 150− 655,600
10,000

= 84.44◦C

Tcout = Tcin +
Q
Cc

= 40+ 655,600
20,000

= 72.78◦C



Figure 3.17 The effectiveness of some other heat exchanger
configurations.
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Table 3.1 Effectiveness-NTU relationships for configurations
in Fig. 3.17. R = Cmin/Cmax. Most of these equations can be
rearranged to give NTU as a function of ε and R [3.7, 3.8].

Configuration Effectiveness, ε

Crossflow, neither stream mixed

R > 0.3 and NTU > 1 ε ≃
[︁
1+ 0.44(1− R)

]︁{︃
1−

[︂
0.92+

(︁
πR0.15NTU

)︁1.25
]︂−0.4

}︃
R ⩽ 0.3 or NTU ⩽ 1 ε ≃ 1− exp

{︂[︁
exp

(︁
−R1.15NTU

)︁
− 1

]︁/︁
R1.15

}︂
Crossflow, one stream mixed

Cmin mixed, Cmax unmixed ε = 1− exp
{︂
−
[︁
1− exp(−NTU · R)

]︁/︁
R
}︂

Cmax mixed, Cmin unmixed ε = 1
R

(︃
1− exp

{︂
−R

[︁
1− exp(−NTU)

]︁}︂)︃

One shell pass, two tube pass ε = 2(︁
1+ R

)︁
+
√︁

1+ R2 coth(Γ/2)

where Γ = NTU
√︁

1+ R2

N shell passes, 2N tube passes ε =
[︃(︃

1− εpR
1− εp

)︃N
−1
]︃[︃(︃

1− εpR
1− εp

)︃N
−R

]︃−1

where εp is the effectiveness of each shell pass

Example 3.6

Suppose that we had the same kind of exchanger as we considered in
Example 3.5, but that the area remained an unspecified design variable.
Calculate the area that would bring the hot flow out at 90◦C.

Solution. Once the exit cold fluid temperature is known, the problem
can be solved with equal ease by either the LMTD or the effectiveness
approach. An energy balance [eqn. (3.4a)] gives

Tcout = Tcin +
Ch
Cc
(Thin − Thout) = 40+ 1

2
(150− 90) = 70◦C

Then, using the effectiveness method,

ε = Ch(Thin − Thout)
Cmin(Thin − Tcin)

= 10,000(150− 90)
10,000(150− 40)

= 0.5455
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so from Fig. 3.16 we read NTU ≃1.15 = UA/Cmin. Thus

A = 10,000(1.15)
500

= 23.00 m2

We could also have calculated the LMTD:

LMTD = (150− 40)− (90− 70)
ln(110/20)

= 52.79 K

so from Q = UA(LMTD), we obtain

A = 10,000(150− 90)
500(52.79)

= 22.73 m2

The answers differ by 1%, which reflects graph-reading inaccuracy.

Single-stream heat exchangers. When the temperature of either fluid in
a heat exchanger is uniform, the problem of analyzing heat transfer is
greatly simplified. We have already noted that no F -correction is needed
to adjust the LMTD in this case. The reason is that when only one fluid
changes in temperature, the configuration of the exchanger becomes
irrelevant. Any such exchanger is equivalent to a single fluid stream
flowing through an isothermal pipe.3

The single-stream limit, in which one stream’s temperature is constant,
occurs when heat capacity rate ratio Cmin/Cmax goes to zero. The heat
capacity rate ratio might approach zero because the flow rate or specific
heat of one stream is very large compared to the other, as when a high
mass flow rate of water cools a very low mass flow rate of air. Alterna-
tively, it might effectively be infinite. That would be the case if one fluid
were boiling or condensing and underwent phase change at a constant
temperature, as in Fig. 3.9.

Since all heat exchangers are equivalent in this case, the equation for
the effectiveness in any configuration must reduce to the same common
expression. This limiting expression can be derived directly from energy-
balance considerations (see Problem 3.11), but we obtain it here by letting
Cmin/Cmax ⎯→ 0 in either eqn. (3.20) or eqn. (3.21). The result is

εsingle stream = 1− e−NTU (3.22)

Equation (3.22) defines the curve for Cmin/Cmax = 0 in all six of the
effectiveness graphs in Fig. 3.16 and Fig. 3.17.

3We make use of this notion in Section 7.4, when we analyze heat convection in pipes
and tubes.
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Balanced counterflow heat exchangers. In Example 3.2, we saw that
when the heat capacity rates are balanced in a counterflow heat exchanger,
so that Ch = Cc (or Cmax = Cmin), the temperature difference between
the hot and cold streams is constant. In this case, the effectiveness,
eqn. (3.21), limits to

ε = NTU
1+NTU

(3.23)

(see Problem 3.35). The balanced counterflow arrangement is used for heat
recovery in power cycles and ventilation systems. For example, a warm
exhaust air stream may be used to preheat an incoming cold air stream.

The P-NTU method. A more general NTU method is the P -NTU method,
in which P is the “temperature effectiveness” defined in eqn. (3.14). In
this approach, a separate value of P is given for each stream, Pt and Ps ,
by interchanging t and s in the definition. Then

Q = PtCt|Ttin − Tsin| = PsCs|Tsin − Ttin| (3.24)

By comparison, we see that this approach is equivalent to eqn. (3.17)
with P replacing ε when Cmin is, respectively, the tube side or the shell
side. The key difference is that Rt = Ct/Cs can take any value from 0
to ∞ in the P -NTU method, whereas Cmin ⩽ Cmax in the ε-NTU method.
The P -NTU method thus has greater flexibility when the stream with Cmin

is unknown or varying. Formulas for Pt = fn(Rt,NTUt) are available for
many heat exchanger configurations (see [3.3]).

3.4 Heat exchanger design

The methods of this chapter provide basic estimates of heat transfer
and temperature change in a heat exchanger configuration for which U
is known. Alternatively, these methods give the approximate size of an
exchanger of a given type that can accomplish the required temperature
changes in the process streams.

We use the term rating for the calculation of the heat transfer and
outlet temperatures of a known heat exchanger. In a rating calculation,
we find the performance of an already fully specified device. That will
establish whether the exchanger meets the process requirements. We
should also calculate the pressure drop of each fluid stream, to ensure
that the head loss also meets requirements.
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Very often, an engineer simply selects a heat exchanger from among
off-the-shelf units. The selection is normally based on a rating calculation.
We will choose a device that has at least the minimum heat transfer
needed and no more than the maximum pressure drop allowed. Devices
selected this way are not optimized for the application. But they may
suffice for relatively small heat exchangers integrated into single projects.
For larger exchangers (such as in chemical or LNG plants, for example)
and for mass-produced heat exchangers (such as in automobiles or HVAC
equipment) economics become a primary design consideration. Cost and
performance must then be tailored for the specific application.

Tailored heat exchangers pose the more open-ended problem of heat
exchanger design—the entire heat exchanger configuration must be deter-
mined. The designer must choose the layout, the tube sizes and lengths,
the number of passes, the shell size and arrangement of baffles, and even
the number of individual heat exchangers to be placed in parallel or in
series. Such a problem clearly has multiple solutions. But further, the de-
sign must account for fouling conditions, material corrosion, maintenance
access, mechanical stresses, tube vibration, assembly, and possibly other
considerations. An engineer will seek the best alternative for performance,
cost, and reliability while meeting any other constraints of the specific
application, such as size, weight, material availability,…the list goes on.
It might even include aesthetics.

To better understand the design process, faced with such an array of
trade-offs between advantages and penalties, consider Taborek’s list [3.9]
of design considerations for a large shell-and-tube exchanger:

• Make a rough estimate of the size of the heat exchanger using,
for example, U values from Table 2.2 and/or anything else that
we might know from experience. This serves to circumscribe the
subsequent work; it will help to size flow rates and to anticipate
temperature variations; and it will help to avoid subsequent errors.
Such a calculation should consider the range of possible U , given the
uncertainties in estimating h and the progressive impact of fouling.

• Decide which fluid should flow on the shell side and which should
flow in the tubes. The higher-pressure fluid should usually go
inside the tubes. An especially corrosive fluid should go in the
tubes, to minimize the use of expensive corrosion-resistant material.
Generally, the more fouling-prone fluid should also go in the tubes
because the insides of tubes in a tube bundle are easier to access
for cleaning (by removing the headers) than the outsides of tubes.
The more viscous fluid should go on the shell side, to help limit
pressure drop.
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• Early in the process, the designer should assess the cost of making
calculations in comparison with:

(a) The level of accuracy that is really needed.

(b) The investment in the exchanger.

(c) The cost of miscalculation.

• Evaluate the heat transfer, pressure drop, and cost of various ex-
changer configurations that appear reasonable for the application.
We often do this with specialized software for heat exchanger de-
sign, which can account for a variety of configurations, complex flow
patterns on the shell side, and engineering considerations beyond
heat transfer and pressure drop. This process may be iterative, as
options are evaluated and then discarded or refined.

Obviously, the selection of a specific heat configuration can benefit
greatly from experience. The descriptions in this chapter provide a kind
of first level of experience. References [3.3, 3.7, 3.11–3.13] provide a
second level. Manufacturer’s catalogues are also an excellent source of
information for specific types of exchangers.

Once we have set the configuration and approximated U , the area
becomes the basic design variable. The design can then proceed along
the lines of Section 3.2 or 3.3. If it is possible to begin with a complete
specification of inlet and outlet temperatures, we can write

Q⏞⏟⏟⏞
C∆T

= U⏞⏟⏟⏞
known

A F(LMTD)⏞ ⏟⏟ ⏞
calculable

and solve for A. A rough design can then be completed. We must then
reevaluateU , check pressure loss, look for low velocity zones that promote
fouling, high velocity zones that promote erosion or vibration, and then
adjust the design as required by these and various other factors [3.9].

More often, we begin without full knowledge of the outlet temperatures.
In such cases, we must apply trial-and-error to get the area, and then
bring in a more complicated sequence of trials if we seek to optimize
pressure drop and cost by varying the configuration as well. If the C’s
are design variables, U will change significantly because h’s are generally
velocity-dependent. More iteration will then be needed.

We conclude Part I of this book facing many incomplete issues. We
need to be able to estimate the convective heat transfer coefficient in all
kinds of heat transfer situations, of which designing heat exchanger is
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only one. But before we undertake the calculation of h, we must turn, in
Part II, to a far more thorough study of heat conduction. There, in addition
to setting up the methods we will need to predict h’s, we shall deal with
many other issues of great practical importance in their own right.

Problems

3.1 Explain the meaning of “mixed” in a heat exchanger context. Can
you have a cross-flow exchanger in which both flows are mixed?
Discuss.

3.2 For one-dimensional heat conduction through a thick spherical
shell, find the appropriate mean radius, r , that will make Q =
k∆T ·A(r)

/︁
(ro − ri), where A(r) = 4πr2 (cf. Example 3.1).

3.3 Rework Problem 2.14, using the LMTD. (Hint: Trial-and-error solu-
tion required.)

3.4 2.4 kg/s of a fluid having a specific heat of 0.80 kJ/kg·K enter a
counterflow heat exchanger at 0◦C and are heated to 400◦C by
2 kg/s of a fluid having a specific heat of 0.96 kJ/kg·K entering the
unit at 700◦C. Show that heating the cooler fluid to 500◦C would
require the surface area for a heat transfer to be increased by 87.5%,
if all other conditions remained unchanged.

3.5 A cross-flow heat exchanger with both fluids unmixed is used to
heat water (cp = 4.18 kJ/kg·K) flowing at 1.0 kg/s from 40◦C to 80◦C.
Hot engine oil (cp = 1.9 kJ/kg·K) flowing at 2.6 kg/s enters at 100◦C.
What is the overall heat transfer coefficient if the heat transfer
area is 20 m2? (Note that you can use either an effectiveness or an
LMTD method. It would be wise to use both as a check on graphical
accuracy.)

3.6 Saturated, non-oil-bearing steam at 1 atm enters the shell pass of
a two-tube-pass shell condenser with thirty, 20 ft. tubes in each
tube pass. The tubes are 3 ⁄4 in., schedule 160 steel pipe (nominal
diameter). Water at 60◦F enters each tube at a volume flow rate of
0.01 ft3/s (per tube). The condensation heat transfer coefficient is
2000 Btu/h·ft2·◦F, and h = 1380 Btu/h·ft2·◦F for the water inside
the tubes. Estimate the exit temperature of the water and the mass
rate of condensation. [ṁc ≃ 8393 lbm/h]
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3.7 Consider a counterflow heat exchanger that must cool 3000 kg/h
of mercury from 150◦F to 128◦F. The coolant is 100 kg/h of water,
supplied at 70◦F. If U is 300 W/m2K, complete the design by deter-
mining the necessary area and the exit temperature of water. [A =
0.147 m2]

3.8 An automobile air-conditioner condenses refrigerant by rejecting
heat to the air outside the car. A particular condenser gives up
18 kW at 65 km/h when the outside temperature is 35◦C. The
refrigerant temperature is constant at 65◦C while condensing, and
the air rises 6◦C in temperature as it flows across the heat exchanger
tubes. The heat exchanger is of the finned-tube type shown in
Fig. 3.6b, withU ≃ 200 W/m2K. IfU ∼ (air velocity)0.7 and the mass
flow rate increases directly with the velocity, plot the percentage
reduction of the heat transfer from the condenser as a function of
air velocity between 15 and 65 km/h.

3.9 Derive eqn. (3.21).

3.10 Derive the infinite NTU limit of the effectiveness for both parallel
and counterflow heat exchangers for arbitrary values of Cmin/Cmax.
Use common sense, the definition of effectiveness, and the First
Law of Thermodynamics. Refer to eqn. (3.20) and eqn. (3.21) only
to check your results.

3.11 Derive the equation ε = (NTU, Cmin/Cmax) for the heat exchanger
depicted in Fig. 3.9.

3.12 A single-pass heat exchanger condenses steam at 1 atm on the shell
side and heats water from 10◦C to 30◦C on the tube side with U =
2500 W/m2K. The tubing is thin-walled, 5 cm in diameter, and 2 m
in length. (a) How do you advise your boss, who wants to know
whether the exchanger should be counterflow or parallel-flow?
Evaluate: (b) the LMTD; (c) ṁH2O; and (d) ε. [ε ≃ 0.222]

3.13 Air at 2 kg/s and 27◦C and a stream of water at 1.5 kg/s and 60◦C
each enter a heat exchanger. Evaluate the exit temperatures if A =
12 m2, U = 185 W/m2K, and:

a. The exchanger is parallel flow;

b. The exchanger is counterflow [Thout ≃ 54.0◦C];

c. The exchanger is cross flow, one stream mixed;
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d. The exchanger is cross flow, neither stream mixed.
[Thout = 53.65◦C]

3.14 Air at 0.25 kg/s and 0◦C enters a cross-flow heat exchanger. The air
must be warmed to 20◦C by 0.14 kg/s of air at 50◦C. The streams
are unmixed. As a first step in the design process, plot U against
A and, with reference to Table 2.2, identify the approximate range
of area for the exchanger.

3.15 A particular two shell-pass, four tube-pass heat exchanger uses
20 kg/s of river water at 10◦C on the shell side to cool 8 kg/s
of process water from 80◦C to 25◦C on the tube side. At what
temperature will the coolant be returned to the river? If U is 800
W/m2K, how large must the exchanger be?

3.16 A particular cross-flow heat exchanger operates with the fluid mixed
on one side only. When it is new, U = 2000 W/m2K, Tcin = 25◦C, Tcout

= 80◦C, Thin = 160◦C, and Thout = 70◦C. After 6 months of operation,
the plant manager reports that the hot fluid is only being cooled to
90◦C and that he is suffering a 30% reduction in total heat transfer.
What is the fouling resistance after 6 months of use? (Assume no
reduction of cold-side flow rate by fouling.)

3.17 Water at 15◦C is supplied to a one-shell-pass, two-tube-pass heat
exchanger to cool 10 kg/s of liquid ammonia from 120◦C to 40◦C.
You anticipate a U on the order of 1500 W/m2K when the water
flows in the tubes. If A is to be 90 m2, choose the correct flow rate
of water.

3.18 Suppose that the heat exchanger in Example 3.5 had been a two
shell-pass, four tube-pass exchanger with the hot fluid moving in
the tubes. (a) What would be the exit temperature in this case?
(b) What would be the area if we wanted the hot fluid to leave at
the same temperature as in the example? [(a) Tcout = 76.85◦C]

3.19 Plot the maximum tolerable fouling resistance as a function of Unew

for a counterflow exchanger, with given inlet temperatures, if a 30%
reduction in U is the maximum that can be tolerated.

3.20 Water at 0.8 kg/s enters the tubes of a two-shell-pass, four-tube-
pass heat exchanger at 17◦C and leaves at 37◦C. It cools 0.5 kg/s
of air entering the shell at 250◦C with U = 432 W/m2K. Determine:
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(a) the exit air temperature; (b) the area of the heat exchanger; and
(c) the exit temperature if, after some time, the tubes become fouled
with Rf = 0.0005 m2K/W. [(c) Tairout = 135.7◦C]

3.21 You must cool 78 kg/min of a 60%-by-mass mixture of glycerin in wa-
ter from 108◦C to 50◦C using cooling water available at 7◦C. Design
a one-shell-pass, two-tube-pass heat exchanger if U = 637 W/m2K.
Which side should the water flow through? Explain any design
decision you make and report the area, TH2Oout , and any other
relevant features.

3.22 A mixture of 40%-by-weight glycerin, 60% water, enters a smooth
0.113 m I.D. tube at 30◦C. The tube is kept at 50◦C, and ṁmixture =
8 kg/s. The heat transfer coefficient inside the pipe is 1600 W/m2K.
Plot the liquid temperature as a function of position in the pipe.

3.23 Explain in physical terms why all effectiveness curves in Fig. 3.16
and Fig. 3.17 have the same slope as NTU ⎯→ 0. Obtain this slope
from eqns. (3.20) and (3.21) and give an approximate equation for
Q in this limit.

3.24 You want to cool air from 150◦C to 60◦C but you cannot afford a
custom-built heat exchanger. You find a used cross-flow exchanger
(both fluids unmixed) in storage. It was previously used to cool
136 kg/min of NH3 vapor from 200◦C to 100◦C using 320 kg/min
of water at 7◦C; U was previously 480 W/m2K. How much air can
you cool with this exchanger, using the same water supply, if U is
approximately unchanged? (Actually, you would have to modify U
using the methods of Chapters 6 and 7 once you had the new air
flow rate, but that is beyond our present scope.)

3.25 A one tube-pass, one shell-pass, parallel-flow, process heat exchan-
ger cools 5 kg/s of gaseous ammonia entering the shell side at
250◦C and boils 4.8 kg/s of water in the tubes. The water enters
subcooled at 27◦C and boils when it reaches 100◦C. U = 480 W/m2K
before boiling begins and 964 W/m2K thereafter. The area of the
exchanger is 45 m2, and hfg for water is 2.257× 106 J/kg. Deter-
mine the quality, x (recall your thermodynamics), of the water at
the exit.

3.26 0.72 kg/s of superheated steam enters a cross-flow heat exchanger
at 240◦C and leaves at 120◦C. It heats 0.6 kg/s of water entering
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at 17◦C. U = 612 W/m2K. By what percentage will the area differ
if a both-fluids-unmixed exchanger is used instead of a one-fluid-
unmixed exchanger? [−1.8%]

3.27 Compare values of F from Fig. 3.14(c) and Fig. 3.14(d) for the same
conditions of inlet and outlet temperatures. Is the one with the
higher F automatically the more desirable exchanger? Discuss.

3.28 Compare values of ε for the same NTU and Cmin/Cmax in parallel
and counterflow heat exchangers. Is the one with the higher ε
automatically the more desirable exchanger? Discuss and elaborate
on your various criteria for desirability.

3.29 The irreversibility rate of a process is equal to the rate of entropy
production times the lowest absolute sink temperature accessible
to the process. Calculate the irreversibility rate (i.e., the lost work
or exergy destruction rate) for the heat exchanger in Example 3.4.
Could a different configuration would reduce the irreversibility,
given the same end temperatures? [314 kW]

3.30 Plot Toil and TH2O as a function of position in a very long counterflow
heat exchanger where water enters at 0◦C, with CH2O = 460 W/K,
and oil enters at 90◦C, with Coil = 920 W/K, U = 742 W/m2K, and
A = 10 m2. Criticize the design.

3.31 Liquid ammonia at 2 kg/s is cooled from 100◦C to 30◦C in the shell
side of a two shell-pass, four tube-pass heat exchanger by 3 kg/s
of water at 10◦C. When the exchanger is new, U = 750 W/m2K. Plot
the exit ammonia temperature as a function of the increasing tube
fouling factor.

3.32 Before Freon 12 was banned as a refrigerant, a one shell-pass, two
tube-pass heat exchanger cooled 0.403 kg/s of methanol from 47◦C
to 7◦C on the shell side. The coolant was 2.2 kg/s of Freon 12,
entering the tubes at −33◦C, with U = 538 W/m2K. A colleague
suggested that this arrangement wastes refrigerant. She thought
you could do almost as well if you cut the refrigerant flow rate
all the way down to 0.8 kg/s. Calculate the new methanol outlet
temperature that would result from this flow rate, and evaluate her
suggestion.

3.33 The factors dictating the heat transfer coefficients in a certain two
shell-pass, four tube-pass heat exchanger are such that U increases
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as (ṁshell)0.6. The exchanger cools 2 kg/s of air from 200◦C to
40◦C using 4.4 kg/s of water at 7◦C, and U = 312 W/m2K under
these circumstances. If we double the air flow rate, what will its
temperature be leaving the exchanger? [Tairout = 61◦C.]

3.34 A flow rate of 1.4 kg/s of water enters the tubes of a two-shell-pass,
four-tube-pass heat exchanger at 7◦C. A flow rate of 0.6 kg/s of
liquid ammonia at 100◦C is to be cooled to 30◦C on the shell side;
U = 573 W/m2K. (a) How large must the heat exchanger be? (b)
How large must it be if, after some months, a fouling factor of
0.0015 m2K/W is expected to build up in the tubes but we still
want to deliver ammonia at 30◦C? (c) If we make it large enough to
accommodate fouling, to what temperature will it cool the ammonia
when it is new? (d) At what temperature does water leave the new,
enlarged exchanger? [(d) TH2O = 49.9◦C.]

3.35 Equation (3.21) is troublesome when Cmin/Cmax ⎯→ 1. Show that ε
is given by eqn. (3.23) in this limit. Compare it with Fig. 3.16.

3.36 Both C ’s in a parallel-flow heat exchanger are equal to 156 W/K, U
= 327 W/m2K and A = 2 m2. The hot fluid enters at 140◦C and
leaves at 90◦C. The cold fluid enters at 40◦C. If both C ’s are halved,
what will be the exit temperature of the hot fluid?

3.37 A 1.68 ft2 cross-flow heat exchanger with one fluid mixed condenses
steam at atmospheric pressure (h = 2000 Btu/h·ft2·◦F) and boils
methanol (Tsat = 170◦F and h = 1500 Btu/h·ft2·◦F) on the other
side. Evaluate U (neglecting resistance of the metal), F , LMTD, and
Q. Can we evaluate NTU and ε? [Q = 60,470 Btu/h]

3.38 The effectiveness of a cross-flow exchanger with neither fluid mixed
is approximated by the following formula due to R. M. Drake [3.8]

ε ≃ 1− exp
{︂[︁

exp
(︁
−NTU0.78R

)︁
− 1

]︁(︁
NTU0.22/︁R)︁}︂

where R ≡ Cmin/Cmax. How closely does this correspond to exact
results known for limiting cases? Present your results graphically.

3.39 Calculate the area required in a two-tube-pass, one-shell-pass con-
denser that is to condense 106 kg/h of steam at 40◦C using wa-
ter at 17◦C. Assume that U = 4700 W/m2K, the maximum allow-
able temperature rise of the water is 10◦C, and hfg = 2406 kJ/kg.
[A = 8,112 m2]
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3.40 An engineer wants to divert 1 gal/min of water at 180◦F from his
car radiator through a small cross-flow heat exchanger with neither
flow mixed, to heat 40◦F water to 140◦F for shaving when he goes
camping. If he produces a pint per minute of hot water, what will
be the area of the exchanger and the temperature of the returning
radiator coolant if U = 720 W/m2K?

3.41 To make lead shot, molten droplets of lead are showered into the
top of a tall tower. The droplets fall through air and solidify before
they reach the bottom of the tower, where they are collected. Cool
air is introduced at the bottom of the tower and warm air flows
out the top. For a particular tower, 5,000 kg/hr of 2.8 mm diam.
droplets are released at their melting temperature of 600 K. The
latent heat of solidification is 23.1 kJ/kg. The droplets have a
density of 6,700 droplets/m3 in the tower. Air enters the bottom
at 20◦C with a mass flow rate of 2,400 kg/hr. The tower has an
internal diameter of 0.6 m with adiabatic walls.

a. Sketch, qualitatively, the temperature distributions of the shot
and the air along the height of the tower.

b. If it is desired to remove the shot at a temperature of 60◦C,
what will be the temperature of the air leaving the top of the
tower?

c. Determine the air temperature at the point where the lead has
just finished solidifying.

d. Determine the height that the tower must have in order to
function as desired. The heat transfer coefficient between the
air and the droplets is h = 170 W/m2K.

3.42 The entropy change per unit mass of a fluid taken from temperature
Ti to temperature To at constant pressure is so−si = cp ln(To/Ti) in
J/K·kg. (a) Apply the Second Law of Thermodynamics to a control
volume surrounding a counterflow heat exchanger to determine
the rate of entropy generation, Ṡgen, in W/K. (b) Write Ṡgen/Cmin as
a function of ε, the heat capacity rate ratio, and Th,i/Tc,i. (c) Show
that Ṡgen/Cmin is minimized if Cmin = Cmax (balanced counterflow)
for fixed values of ε and Th,i/Tc,i.

3.43 Entropy generation in a power cycle lowers efficiency relative to the
Carnot efficiency. Heat exchangers contribute to this loss. As seen
in Problem 3.42, balanced counterflow heat exchangers can help to
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limit entropy generation. Let’s look at the entropy generation of a
balanced exchanger.

a. Let ∆T = Th − Tc ≪ Tc, in (in kelvin). Show that the entropy
generation rate in a small area dA = Pdx of the exchanger
(with P the perimeter) is

dṠ′′gen = dQ
(︃

1
Tc
− 1
Th

)︃
≃ UP∆T

2

T 2
c

dx

b. Show that the total entropy generation rate is

Ṡgen ≃ Q
(︄

∆T
Th,in Tc,in

)︄

c. If a fixed heat load, Q, needs to be transferred, how can en-
tropy generation be reduced? Discuss how cost and fouling
considerations affect your answer.

3.44 Water at 100◦C flows into a bundle of 30 copper tubes. The tubes
are 28.6 mm O.D. and 3 m long with a wall thickness of 0.9 mm. Air
at 20◦C flows into the bundle, perpendicular to the tubes. The mass
flow rate of water is 17 kg/s and that of air is 25 kg/s. (a) Determine
the outlet temperature of the water if hwater = 7200 W/m2K and
hair = 110 W/m2K. (b) To improve the heat removal, aluminum fins
are placed on the outside of the tubes (see Fig. 3.6b). The surface
area of the fins and tubes together is now 81 m2. Explain in words
why the fins improve heat removal. If the conduction resistance
of the fins is small and hair is unchanged, what is the new outlet
temperature of the water? Hint: See Problem 3.38.
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4. Conduction analysis,
dimensional analysis, and
fin design

The effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which we
are about to explain is to demonstrate these laws; it reduces all physical
researches on the propagation of heat to problems of the calculus whose
elements are given by experiment.

The Analytical Theory of Heat, J. Fourier, 1822

4.1 The well-posed problem

This chapter has three aims. First, having derived the heat conduction
equation in Chapter 2 and applied it to a few one-dimensional problems,
we explore what is involved in treating multidimensional and transient
conduction. Second, we introduce dimensional analysis, which can greatly
simplify the process of solving conduction problems. Finally, as an exam-
ple of one-dimensional conduction modeling, we consider the important
matter of designing cooling fins.

To begin, a heat conduction problem must be posed in such a way that
it can be solved. A well-posed heat conduction problem is one in which
all the information required to obtain a unique solution is stated. It will
always read as follows. Find T(x,y, z, t) such that:

1. T satisfies the heat conduction equation

∇ · (k∇T)+ q̇ = ρc ∂T
∂t

for 0 < t ⩽ tmax (where tmax can ⎯→∞), and for (x,y, z) belonging
to some region, R, which might extend to infinity.1

1(x,y, z) might be any coordinates describing a position r⃗ : T(x,y, z, t) = T(r⃗ , t). 141
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2. T = Ti(x,y, z) at t = 0. This is called an initial condition, or i.c.

(a) Condition 1 above is not imposed at t = 0.

(b) Only one i.c. is required. However,

(c) The i.c. is not needed for:

i. the steady-state case: ∇ · (k∇T)+ q̇ = 0.

ii. the “periodic” case, where q̇ or the boundary conditions
vary periodically with time, and where we ignore the start-
ing transient behavior.

3. T must also satisfy two boundary conditions, or b.c.’s, for each
coordinate. The b.c.’s are very often of three common types.

(a) Dirichlet conditions, or b.c.’s of the first kind :

T is specified on the boundary of R for t > 0. We saw such
b.c.’s in Examples 2.1, 2.2, and 2.4.

(b) Neumann conditions, or b.c.’s of the second kind :

The derivative of T normal to the boundary is specified on the
boundary of R for t > 0. Such a condition arises when the heat
flux, −k(∂T/∂x), is specified on a boundary or when, with the
help of insulation, we set ∂T/∂x equal to zero.2

(c) b.c.’s of the third kind :

A derivative of T in a direction normal to a boundary is propor-
tional to the temperature on that boundary. Such a condition
most commonly arises when convection occurs at a boundary,
and it is typically expressed as

−k ∂T
∂x

⃓⃓⃓⃓
bndry

= h(T − T∞)bndry

when the body lies to the left of the boundary on the x-coordin-
ate. We have already used such a b.c. in Step 4 of Example 2.5,
and we have discussed it in Section 1.3 as well.

This list of b.c.’s is not complete, by any means, but it includes a great
number of important cases.

2Although we write ∂T/∂x here, we understand that this might be ∂T/∂z, ∂T/∂r , or
any other derivative in a direction locally normal to the surface on which the b.c. is
specified.
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Figure 4.1 The transient cooling of a body as it might occur,
subject to boundary conditions of the first, second, and third
kinds.

Figure 4.1 shows the transient cooling of body from a constant initial
temperature, subject to each of the three b.c.’s described above. Notice
that the initial temperature distribution is not subject to the boundary
condition, as pointed out previously under 2(a).

The eight-point procedure that was outlined in Section 2.2 for solv-
ing the heat conduction equation assures that a problem will meet the
preceding requirements and will be well posed.

4.2 General solution of the heat conduction equation

Once the heat conduction problem has been posed properly, the first
step in solving it is to find the general solution of the heat conduction
equation. We have remarked that this is usually the easiest part of the
problem. Let us consider some examples of general solutions.
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One-dimensional steady heat conduction

Problem 4.1 emphasizes the simplicity of finding the general solutions of
linear ordinary differential equations, by asking for a table of all general
solutions of steady, one-dimensional heat conduction problems. We shall
work out some of those results to show what is involved. We begin the
heat conduction equation with constant k and q̇:

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

Cartesian coordinates: Steady conduction in the y-direction.
Equation (2.11) reduces as follows:

∂2T
∂x2⏞ ⏟⏟ ⏞
=0

+∂
2T
∂y2

+ ∂
2T
∂z2⏞ ⏟⏟ ⏞
=0

+ q̇
k
= 1
α
∂T
∂t⏞ ⏟⏟ ⏞

= 0, since steady

Therefore,
d2T
dy2

= − q̇
k

which we integrate twice to get

T = − q̇
2k
y2 + C1y + C2

or, if q̇ = 0,
T = C1y + C2

Cylindrical coordinates with a heat source: Tangential conduction.
This time, we look at the heat flow that results in a ring when two points are
held at different temperatures. We now express eqn. (2.11) in cylindrical
coordinates with the help of eqn. (2.13):

1
r
∂
∂r

(︃
r
∂T
∂r

)︃
⏞ ⏟⏟ ⏞

=0

+ 1
r2

∂2T
∂φ2⏞ ⏟⏟ ⏞

r=constant

+ ∂
2T
∂z2⏞ ⏟⏟ ⏞
=0

+ q̇
k
= 1
α
∂T
∂t⏞ ⏟⏟ ⏞

= 0, since steady

Two integrations give

T = −r
2q̇

2k
φ2 + C1φ+ C2 (4.1)

This would describe, for example, the temperature distribution in the
thin ring shown in Fig. 4.2. Here the b.c.’s might consist of temperatures
specified at two angular locations, as shown.
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Figure 4.2 One-dimensional heat conduction in a ring.

Uniform time-varying temperature: T = T(t only).
If T is spatially uniform, it can still vary with time. In such cases

∇2T⏞ ⏟⏟ ⏞
=0

+ q̇
k
= 1
α
∂T
∂t

and ∂T/∂t becomes an ordinary derivative. Then, since α = k/ρc,

dT
dt

= q̇
ρc

(4.2)

This result is consistent with the lumped-capacity solution described in
Section 1.3. If the Biot number is low and internal resistance is unimpor-
tant, the convective removal of heat from the boundary of a body can be
prorated over the volume of the body and interpreted as

q̇effective = −
h(Tbody − T∞)A

volume
W/m3 (4.3)

and the heat conduction equation for this case, eqn. (4.2), becomes

dT
dt

= − hA
ρcV

(T − T∞) (4.4)

The general solution in this situation was given in eqn. (1.21). [A particular
solution was also written in eqn. (1.22).]
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Separation of variables: A general solution of multidimensional
problems

Suppose that the physical situation permits us to throw out all but one of
the spatial derivatives in a heat conduction equation. For example, we
may wish to predict the transient cooling of a slab as a function of the
location within it. If no heat is generated, the heat conduction equation is

∂2T
∂x2

= 1
α
∂T
∂t

(4.5)

A common trick is to ask: “Can we find a solution in the form of a product
of functions of t and x: T = T (t) · X(x)?” To find the answer, we
substitute this form into eqn. (4.5) and get

X′′T = 1
α
T ′X (4.6)

where each prime denotes one differentiation of a function with respect
to its argument. Thus T ′ = dT/dt and X′′ = d2X/dx2. Rearranging
eqn. (4.6), we get

X′′
X = 1

α
T ′

T (4.7a)

This result is interesting in that the left-hand side depends only upon
x and the right-hand side depends only upon t. Thus, we set both sides
equal to the same constant, which we call −λ2, instead of, say, λ, for
reasons that will be clear in a moment:

X′′
X = 1

α
T ′

T = −λ2 a constant (4.7b)

It follows that the differential eqn. (4.7a) can be resolved into two ordinary
differential equations:

X′′ = −λ2X and T ′ = −αλ2T (4.8)

The general solution of both of these equations are well known and
are among the first ones dealt with in any study of differential equations.
They are:

X(x) = A sinλx + B cosλx for λ ≠ 0
X(x) = Ax + B for λ = 0

(4.9)
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and
T (t) = Ce−αλ2t for λ ≠ 0
T (t) = C for λ = 0

(4.10)

where we use capital letters to denote constants of integration. [In ei-
ther case, these solutions can be verified by substituting them back into
eqn. (4.8).] Thus the general solution of eqn. (4.5) can indeed be written
in the form of a product, and that product is

T = XT = e−αλ2t(D sinλx + E cosλx) for λ ≠ 0
T = XT = Dx + E for λ = 0

(4.11)

The usefulness of this result depends on whether or not it can be fit
to the b.c.’s and the i.c. In this case, we made the function X(t) take the
form of sines and cosines (instead of exponential functions) by placing a
minus sign in front of λ2. The sines and cosines make it possible to fit
the b.c.’s using Fourier series methods. These general methods are not
developed in this book; however, a complete Fourier series solution is
presented for one problem in Section 5.3.

The preceding simple method for obtaining general solutions of linear
partial d.e.’s is called separation of variables. The method can be applied
to all kinds of linear d.e.’s. Consider, for example, two-dimensional steady
heat conduction without heat sources:

∂2T
∂x2

+ ∂
2T
∂y2

= 0 (4.12)

Set T = X(x) · Y(y) and get

X′′
X = −Y

′′

Y = −λ2

where λ can be an imaginary number. Then

X = A sinλx + B cosλx

Y = Ceλy +De−λy

⎫⎬⎭ for λ ≠ 0

X = Ax + B
Y = Cy +D

⎫⎬⎭ for λ = 0

The general solution is

T = (E sinλx + F cosλx)(e−λy +Geλy) for λ ≠ 0
T = (Ex + F)(y +G) for λ = 0

(4.13)
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Figure 4.3 A two-dimensional slab maintained at a constant
temperature on the sides and subjected to a sinusoidal variation
of temperature on one face.

Example 4.1

A long slab is cooled to 0◦C on both sides and a blowtorch is turned
on the top edge, giving an approximately sinusoidal temperature
distribution along the top, as shown in Fig. 4.3. Find the temperature
distribution within the slab.

Solution. The general solution is given by eqn. (4.13). We must there-
fore identify the appropriate b.c.’s and then fit the general solution to
it. Those b.c.’s are:

on the top surface : T(x,0) = A sinπ
x
L

on the sides : T(0 or L,y) = 0

as y ⎯→∞ : T(x,y →∞) = 0

Substitute eqn. (4.13) in the third b.c.:

(E sinλx + F cosλx)(0+G · ∞) = 0

The only way that this can be true for all x is if G = 0. Substitute
eqn. (4.13), with G = 0, into the second b.c.:

(0+ F)e−λy = 0
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so F also equals 0. Substitute eqn. (4.13) with G = F = 0, into the
first b.c.:

E(sinλx) = A sinπ
x
L

It follows that A = E and λ = π/L. Then eqn. (4.13) becomes the
particular solution that satisfies the b.c.’s:

T = A
(︃

sinπ
x
L

)︃
e−πy/L

Thus, the sinusoidal variation of temperature at the top of the slab is
attenuated exponentially at lower positions in the slab. At a position of
y = 2L below the top, T will be 0.0019(A sinπx/L). The temperature
distribution in the x-direction will still be sinusoidal, but it will have
less than 1/500 of the amplitude at y = 0.

Consider some important features of this and other solutions:

• The b.c. at y = 0 is a special one that works very well with this
particular general solution. If we had tried to fit the equation to
a general temperature distribution, T(x,y = 0) = fn(x), it would
not have been obvious how to proceed. Actually, this is the kind of
problem that Fourier solved with the invention of his series method.
We discuss this matter in more detail in Chapter 5.

• Not all forms of general solutions lend themselves to a particular set
of boundary and/or initial conditions. In this example, we made the
process look simple, but more often than not, it is in fitting a general
solution to a set of boundary conditions that we face difficulties.

• Normally, on formulating a problem, we must approximate real
behavior in stating the b.c.’s. It is advisable to consider what kind of
assumption will put the b.c.’s in a form compatible with the general
solution. The temperature distribution imposed on the slab by the
blowtorch in Example 4.1 might just as well have been approximated
as a parabola. But as small as the difference between a parabola and a
sine function might be, the latter b.c. was far easier to accommodate.

• The twin issues of existence and uniqueness of solutions require a
comment here: Mathematicians have established that solutions to
all well-posed heat conduction problems are unique. Furthermore,
we know from our experience that if we describe a physical process
correctly, a unique outcome exists. Therefore, we are normally safe
to ignore these issues in the sort of problems we discuss here.
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• Given that a unique solution exists, we accept any solution as correct
if we can carve it to fit the boundary conditions. In this sense, the
solution of differential equations is often more of an inventive than
a formal operation. The person who does it best is often the person
who has done it before and so has a large assortment of tricks up
his or her sleeve.

4.3 Dimensional analysis

Introduction

Most universities place the first course in heat transfer after an introduc-
tion to fluid mechanics, and most fluid mechanics courses include some
dimensional analysis. This topic is normally treated using the method of
indices, which is seemingly straightforward to teach but is cumbersome
and sometimes misleading to use. That approach is presented well in [4.1].

The method we develop here is far simpler to use than the method
of indices, and it does much to protect us from the common errors we
might fall into. We refer to it as the method of functional replacement
and strongly recommend this method in place of the method of indices.

The importance of dimensional analysis to heat transfer can be made
clearer by recalling Example 2.5, which (like most problems in Part I) in-
volved several variables. These variables included the dependent variable
of temperature, (T∞−Ti)3; the independent variable, which was the radius,
r ; and five system parameters, ri, ro, h, k, and (T∞ − Ti). By reorganizing
the solution into dimensionless groups [eqn. (2.24)], we reduced the total
number of variables to only four:

T − Ti
T∞ − Ti⏞ ⏟⏟ ⏞

dependent variable

= fn

[︄
r
/︁
ri,⏞ ⏟⏟ ⏞

indep. var.

ro
/︁
ri, Bi⏞ ⏟⏟ ⏞

two system parameters

]︄
(2.24a)

This dimensionless solution offered a number of advantages over
the dimensional solution. For one thing, we could plot all conceivable
solutions for a particular shape of cylinder, (ro/ri), in a single figure,
Fig. 2.11. For another, we could study the simultaneous roles of h, k
and ro in defining the character of the solution. By combining them
as a Biot number, we were able to say—even before we had solved the
problem—whether or not external convection really had to be considered.

3Notice that we do not call Ti a variable. It is simply the reference temperature
against which this problem calculates temperature changes. The absolute temperature
level is not significant in this problem.
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The nondimensionalization enabled us to consider, simultaneously,
the behavior of all similar systems of heat conduction through cylinders.
Thus a large, highly conducting cylinder might be similar in its behavior
to a small cylinder with a lower thermal conductivity.

Finally, we shall discover that, by nondimensionalizing a problem
before we solve it, we can often greatly simplify the process of solving it.

Our next aim is to map out a method for nondimensionalization
problems before we have solved them, or, indeed, before we have even
written the equations that must be solved. The key to the method is the
Buckingham pi-theorem.

The Buckingham pi-theorem

The attention of scientific workers was drawn very strongly toward the
question of similarity at about the beginning of World War I. Buckingham
first organized previous thinking and developed his famous theorem
in 1914 in the Physical Review [4.2], and he expanded upon the idea in
the Transactions of the ASME one year later [4.3]. Lord Rayleigh almost
simultaneously discussed the problem with great clarity in 1915 [4.4]. To
understand Buckingham’s theorem, we must first overcome one concep-
tual hurdle, which, if it is clear to the student, will make everything that
follows extremely simple. Let us explain that hurdle first.

Suppose that y depends on r ,x, z and so on:

y = fn(r , x, z, . . . )

We can take any one variable—say, x—and arbitrarily multiply it (or it
raised to a power) by any other variables in the equation, without altering
the truth of the functional equation. The equation above can thus just as
well be written as: y

x
= fn

(︂
x2r ,x,xz

)︂
or an unlimited number of other rearrangements. Many people find such
a rearrangement disturbing when they first see it. That is because these
are not algebraic equations — they are functional equations. We have
said only that if y depends upon r , x, and z that it will likewise depend
upon x2r , x, and xz. Suppose, for example, that we gave the functional
equation the following algebraic form:

y = fn(r , x, z) = r(sinx)e−z

This need only be rearranged to put it in terms of the desired modified
variables and x itself (y/x,x2r ,x, and xz):

y
x
= x

2r
x3

(sinx) exp
[︃
−xz
x

]︃

http://www.uh.edu/engines/epi68.htm
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We can do any such multiplying or dividing of powers of any variable we
wish without invalidating any functional equation that we choose to write.
This simple fact is at the heart of the important example that follows.

Example 4.2

Consider the heat exchanger problem described in Fig. 3.15. The
“unknown”, or dependent, variable in the problem is one or the other
of the exit temperatures. Without any knowledge of heat exchanger
analysis, we can write the functional equation on the basis of our
physical understanding of the problem:

Tcout − Tcin⏞ ⏟⏟ ⏞
K

= fn

[︄
Cmax⏞ ⏟⏟ ⏞
W/K

, Cmin⏞ ⏟⏟ ⏞
W/K

,
(︁
Thin − Tcin

)︁⏞ ⏟⏟ ⏞
K

, U⏞ ⏟⏟ ⏞
W/m2K

, A⏞⏟⏟⏞
m2

]︄
(4.14)

where the dimensions of each term are noted under the equation.

We want to know how many dimensionless groups the variables
in eqn. (4.14) should reduce to. To determine this number, we use the
idea explained above—that is, that we can arbitrarily pick one variable
from the equation and divide or multiply it into other variables. Then—
one at a time—we select a variable that has one of the dimensions.
We divide or multiply it by the other variables in the equation that
have that dimension in such a way as to eliminate the dimension
from them.

We do this first with the variable (Thin −Tcin), which has the dimen-
sion of K:

Tcout − Tcin

Thin − Tcin⏞ ⏟⏟ ⏞
dimensionless

= fn

[︄
Cmax(Thin − Tcin)⏞ ⏟⏟ ⏞

W

, Cmin(Thin − Tcin)⏞ ⏟⏟ ⏞
W

,

(Thin − Tcin)⏞ ⏟⏟ ⏞
K

, U(Thin − Tcin)⏞ ⏟⏟ ⏞
W/m2

, A⏞⏟⏟⏞
m2

]︄

The interesting thing about the equation in this form is that the only
remaining term in it with the units of K is (Thin − Tcin). No such term
can remain in the equation because it is impossible to achieve dimen-
sional homogeneity without another term in K to balance it. Therefore,
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we must remove it:

Tcout − Tcin

Thin − Tcin⏞ ⏟⏟ ⏞
dimensionless

= fn

[︄
Cmax(Thin − Tcin)⏞ ⏟⏟ ⏞

W

, Cmin(Thin − Tcin)⏞ ⏟⏟ ⏞
W

,

U(Thin − Tcin)⏞ ⏟⏟ ⏞
W/m2

, A⏞⏟⏟⏞
m2

]︄

Now the equation has only two dimensions in it—W and m2. Next, we
multiply U(Thin −Tcin) by A to get rid of m2 in the second-to-last term.
Accordingly, the term A (m2) can no longer stay in the equation, and
we have

Tcout − Tcin

Thin − Tcin⏞ ⏟⏟ ⏞
dimensionless

= fn

[︄
Cmax(Thin − Tcin)⏞ ⏟⏟ ⏞

W

, Cmin(Thin − Tcin)⏞ ⏟⏟ ⏞
W

, UA(Thin − Tcin)⏞ ⏟⏟ ⏞
W

]︄

Finally, we divide the first and third terms on the right by the sec-
ond. This leaves only Cmin(Thin − Tcin), with the dimensions of W.
That term must then be removed, and we are left with the completely
dimensionless result:

Tcout − Tcin

Thin − Tcin

= fn
(︃
Cmax

Cmin
,
UA
Cmin

)︃
(4.15)

Equation (4.15) has exactly the same functional form as eqn. (3.21),
which we obtained by direct analysis.

Notice that we removed one variable from eqn. (4.14) for each di-
mension in which the variables are expressed. If there are n variables—
including the dependent variable—expressed in m dimensions, we then
expect to be able to express the equation in (n−m) dimensionless groups,
or pi-groups, as Buckingham called them.

This fact is expressed by the Buckingham pi-theorem, which we state
formally in the following way:

A physical relationship among n variables, which can be expressed
in a minimum of m dimensions, can be rearranged into a relation-
ship among (n −m) independent dimensionless groups of the
original variables.
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Two important qualifications have been italicized. They will be explained
in detail in subsequent examples.

Buckingham identified the dimensionless pi-groups asΠ1,Π2, ...,Πn−m.
Normally we call Π1 the dependent variable and consider Π2→(n−m) as
the independent variables. Thus, the dimensional functional equation
reduces to a dimensionless functional equation of the form

Π1 = fn(Π2,Π3, . . . ,Πn−m) (4.16)

Applications of the pi-theorem

Example 4.3

Is eqn. (2.24) consistent with the pi-theorem?

Solution. To find out, we first write the dimensional functional
equation for Example 2.5:

T − Ti⏞ ⏟⏟ ⏞
K

= fn
[︃
r⏞⏟⏟⏞
m

, ri⏞⏟⏟⏞
m

, ro⏞⏟⏟⏞
m

, h⏞ ⏟⏟ ⏞
W/m2K

, k⏞ ⏟⏟ ⏞
W/m·K

, (T∞ − Ti)⏞ ⏟⏟ ⏞
K

]︃

There are seven variables (n = 7) in three dimensions, K, m, and W
(m = 3). Therefore, we look for 7− 3 = 4 pi-groups. There are four
pi-groups in eqn. (2.24):

Π1 =
T − Ti
T∞ − Ti

, Π2 =
r
ri
, Π3 =

ro
ri
, Π4 =

hro
k

≡ Bi.

Consider two features of this result. First, the minimum number of
dimensions was three. If we had written watts as J/s, we would have
had four dimensions instead. But Joules never appear in that particular
problem independently of seconds. They always appear as a ratio and
should not be separated. (If we had worked in English units, the confusion
would have been greater, since Btu/sec has no name unless we first convert
it to horsepower.) The failure to identify dimensions that are consistently
grouped together is one of the major errors that the beginner makes in
using the pi-theorem.

The second feature is the independence of the groups. This means that
we may pick any four dimensionless arrangements of variables, so long
as no group or groups can be made into any other group by mathematical
manipulation. For example, suppose that someone suggested that there
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was a fifth pi-group in Example 4.3:

Π5 =
√︄
hr
k

It is easy to see that Π5 can be written as

Π5 =
√︄
hro
k

√︄
r
ri

√︄
ri
ro
=
√︄

Bi
Π2

Π3

Therefore Π5 is not independent of the existing groups, nor will we ever
find a fifth grouping that is.

Another matter that is frequently emphasized is that of identifying
the pi-groups once the variables are identified for a given problem. In
particular, the method of indices is a cumbersome arithmetic strategy for
finding these groups. We shall instead find the groups by using either of
two much simpler methods:

1. The groups can always be obtained formally by repeating the simple
elimination-of-dimensions procedure that was used to derive the
pi-theorem in Example 4.2.

2. One may often simply arrange the variables into the required number
of independent dimensionless groups by inspection.

In any method, one must make judgments as one combines variables.
These decisions can lead to different arrangements of the pi-groups. There-
fore, if the problem can be solved by inspection, there is no advantage to
be gained by the use of a more formal procedure.

The methods of dimensional analysis can be used to help find the
solution of many physical problems. We offer the following example, not
entirely with tongue in cheek:

Example 4.4

Einstein might well have noted that the energy equivalent, e, of a rest
mass, mo, depended on the velocity of light, co, before he developed
the special relativity theory. He would then have had the following
dimensional functional equation:(︄

e N·m or e
kg· m2

s2

)︄
= fn(co m/s, mo kg)
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The minimum number of dimensions is only two: kg and m/s, so
we look for 3− 2 = 1 pi-group. To find it formally, we eliminate the
dimension of mass from e by dividing it by mo (kg). Thus,

e
mo

m2

s2
= fn

[︂
co m/s, mo kg⏞ ⏟⏟ ⏞

this must be removed
because it is the only
term with mass in it

]︂

Then we eliminate the dimension of velocity (m/s) by dividing e/mo
by c2

o :
e

moc2
o
= fn(co m/s)

This time co must be removed from the function on the right, since it
is the only term with the dimensions m/s. This gives the result (which
could have been written by inspection once it was known that there
could only be one pi-group):

Π1 =
e

moc2
o
= fn(no other groups) = constant

or
e = constant ·

(︂
moc2

o

)︂
Of course, it required Einstein’s special relativity theory to tell us that
the constant is one.

Example 4.5

What is the velocity of efflux of liquid from the tank shown in Fig. 4.4?

Solution. In this case we can guess that the velocity, V , might depend
on gravity, g, and the head, H. We might be tempted to include the
density as well until we realize that g is already a force per unit mass.
Then

V⏞⏟⏟⏞
m/s

= fn
[︃
H⏞⏟⏟⏞
m

, g⏞⏟⏟⏞
m/s2

]︃

so there are three variables in two dimensions, and we look for 3−2 = 1
pi-group. It would have to be

Π1 =
V√︁
gH

= fn(no other pi-groups) = constant
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Figure 4.4 Efflux of liquid
from a tank.

or

V = constant ·
√︂
gH

The analytical study of fluid mechanics tells us that this form is
correct and that the constant is

√
2. The group V2/gh, by the way, is

called a Froude number, Fr (pronounced “Frood”). It compares inertial
forces to gravitational forces. For all such jets Fr = 2, showing the
strong role of gravity, whereas for a pitched baseball (which falls very
little during its flight), Fr is about 1000. If Fr were based on the jet
diameter, rather than H, it would correlate the shape of the jet—how
quickly it bends over and flows downward.

Example 4.6

Obtain the dimensionless functional equation for the temperature
distribution during steady conduction in a slab with a heat source, q̇.

Solution. In such a case, there might be one or two specified tem-
peratures in the problem: T1 or T2. Thus the dimensional functional
equation is

T − T1⏞ ⏟⏟ ⏞
K

= fn

[︄
(T2 − T1)⏞ ⏟⏟ ⏞

K

, x, L⏞ ⏟⏟ ⏞
m

, q̇⏞⏟⏟⏞
W/m3

, k⏞ ⏟⏟ ⏞
W/m·K

, h⏞ ⏟⏟ ⏞
W/m2K

]︄
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where we presume that a convective b.c. is involved and we identify a
characteristic length, L, in the x-direction. There are seven variables
in three dimensions, or 7 − 3 = 4 pi-groups. Three of these groups
are ones we have dealt with in the past in one form or another:

Π1 =
T − T1

T2 − T1

dimensionless temperature, to which we
shall give the name Θ

Π2 =
x
L

dimensionless length, which we call ξ

Π3 =
hL
k

which we recognize as the Biot number, Bi

The fourth group is new to us:

Π4 =
q̇L2

k(T2 − T1)
which compares the heat generation rate to
the rate of heat loss; we call it Γ

Thus, the solution is
Θ = fn(ξ,Bi, Γ) (4.17)

In Example 2.1, we solved such a problem, but it differed in two
respects. There was no convective boundary condition, and hence no h,
and only one temperature was specified. In that case, the dimensional
functional equation was

(T − T1) = fn
(︁
x,L, q̇, k

)︁
so there were only five variables in the same three dimensions. The
resulting dimensionless functional equation therefore involved only two
pi-groups. One was ξ = x/L and the other is a new one equal to Θ/Γ . We
call it Φ:

Φ ≡ T − T1

q̇L2/k
= fn

(︃
x
L

)︃
(4.18)

And this is exactly the form of the analytical result, eqn. (2.15).
Finally, we must deal with dimensions that convert into one another.

For example, kg and N are defined in terms of one another through
Newton’s Second Law of Motion. Therefore, they cannot be identified as
separate dimensions. The same would appear to be true of J and N·m,
since both are dimensions of energy. However, we must discern whether
or not a mechanism exists for interchanging them. If thermal energy
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remains distinct from mechanical energy (or work) in a given problem,
then J should not be interpreted as N·m.

This issue will prove important when we do the dimensional analysis of
several heat transfer problems. See, for example, the analyses of laminar
convection at the beginning of Section 6.4, of natural convection in Section
8.3, of film condensation in Section 8.5, and of pool boiling burnout in
Section 9.3. In all of these cases, heat transfer normally occurs without
any conversion of heat to work or work to heat and it would be misleading
to break J into N·m.

Additional examples of dimensional analysis appear throughout this
book. Dimensional analysis is, indeed, our court of first resort in solving
most of the new problems that we undertake.

4.4 Illustrative use of dimensional analysis
in a complex steady conduction problem

Heat conduction problems with convective b.c.s can rapidly grow diffi-
cult, even if they start out simple. So we look for ways to avoid making
mistakes. For one thing, it is wise to take great care that dimensions are
consistent at each stage of the solution. The best way to do this, and to
eliminate a great deal of algebra at the same time, is to nondimensionalize
the heat conduction problem before we apply the b.c.’s. This nondimen-
sionalization should be consistent with the pi-theorem. The following
example, although complex, illustrates several aspects of this idea.

Example 4.7

The slab shown in Fig. 4.5 has different temperatures and different
heat transfer coefficients on either side, and heat is generated within
it. Calculate the temperature distribution in the slab.

Solution. The differential equation is

d2T
dx2

= − q̇
k

and the general solution is

T = − q̇x
2

2k
+ C1x + C2 (4.19)
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Figure 4.5 Heat conduction through a heat-generating slab with
asymmetric boundary conditions.

with b.c.’s

h1(T1 − T)x=0 = −k
dT
dx

⃓⃓⃓⃓
x=0

, h2(T − T2)x=L = −k
dT
dx

⃓⃓⃓⃓
x=L
(4.20)

There are eight variables involved in the problem: (T − T2), (T1 − T2),
x, L, k, h1, h2, and q̇; and there are three dimensions: K, W, and m.
This results in 8− 3 = 5 pi-groups. For these we choose

Π1 ≡ Θ =
T − T2

T1 − T2
, Π2 ≡ ξ =

x
L
, Π3 ≡ Bi1 =

h1L
k
,

Π4 ≡ Bi2 =
h2L
k
, and Π5 ≡ Γ =

q̇L2

2k(T1 − T2)
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where Γ can be interpreted as a comparison of the heat generated in
the slab to that which could flow through it.

Under this nondimensionalization, eqn. (4.19) becomes4

Θ = −Γ ξ2 + C3ξ + C4 (4.21)

and b.c.’s become

Bi1(1−Θξ=0) = −Θ′ξ=0, Bi2Θξ=1 = −Θ′ξ=1 (4.22)

where the primes denote differentiation with respect to ξ. Substituting
eqn. (4.21) in eqn. (4.22), we obtain

Bi1(1− C4) = −C3, Bi2(−Γ + C3 + C4) = 2Γ − C3 (4.23)

Substituting the first of eqns. (4.23) in the second we get

C4 = 1+ Γ [2(Bi1/Bi2)+ Bi1]− Bi1
Bi1(1+ Bi1

/︁
Bi2 + Bi1)

and

C3 = Bi1(C4 − 1)

Thus, eqn. (4.21) becomes

Θ = 1+ Γ
[︄

2(Bi1
/︁
Bi2)+ Bi1

Bi1(1+ Bi1
/︁
Bi2 + Bi1)

+ 2(Bi1
/︁
Bi2)+ Bi1

1+ Bi1
/︁
Bi2 + Bi1

ξ − ξ2

]︄

− Bi1
1+ Bi1

/︁
Bi2 + Bi1

ξ − 1
1+ Bi1

/︁
Bi2 + Bi1

(4.24)

This complicated result would have required enormous patience and
accuracy to obtain without first simplifying the problem statement by
nondimensionalization. If the heat transfer coefficients were the same on
either side of the wall, then Bi1 = Bi2 ≡ Bi, and eqn. (4.24) would reduce
to

Θ = 1+ Γ
(︂
1/Bi + ξ − ξ2

)︂
− 1+ Bi ξ

2+ Bi
(4.25)

which is a very great simplification.
Equation (4.25) is plotted on the left-hand side of Fig. 4.5 for Bi equal

to 0, 1, and ∞ and for Γ equal to 0, 0.1, and 1. The following features
should be noted:

4The rearrangement of the dimensional equations into dimensionless form is straight-
forward algebra. If the results shown here are not immediately obvious, sketch the
calculation on a piece of paper.
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• When Γ ≪ 0.1, the heat generation can be ignored.

• When Γ ≫ 1,Θ ⎯→ Γ/Bi + Γ(ξ − ξ2). This is a simple parabolic
temperature distribution displaced upward an amount that depends
on the relative external resistance, as reflected in the Biot number.

• If both Γ and 1/Bi become large, Θ → Γ/Bi. This means that when
internal resistance is low and the heat generation is great, the slab
temperature is constant and quite high.

If T2 were equal to T1 in this problem, Γ would go to infinity. In such
a situation, we should redo the dimensional analysis of the problem. The
dimensional functional equation now shows (T − T1) to be a function of
x, L, k, h, and q̇. There are six variables in three dimensions, so there are
only three pi-groups

T − T1

q̇L
/︁
h
= fn(ξ,Bi)

where the dependent variable is the product of Bi timesΦ [recall eqn. (4.18)].
We can put eqn. (4.25) in this form by multiplying both sides of the equa-
tion by h(T1 − T2)/q̇L and then letting T1 ⎯→ T2. The result is

h(T − T1)
q̇L

= 1
2

Bi
(︂
ξ − ξ2

)︂
+ 1

2
(4.26)

which is plotted on the right-hand side of Fig. 4.5. The following features
of the graph are of interest:

• Heat generation is the only “force” giving rise to temperature nonuni-
formity. Since it is symmetric, the graph is also symmetric.

• When Bi≪ 1, the slab temperature approaches a uniform value equal
to T1+ q̇L/2h. (In this case, we would have solved the problem with
far greater ease by using a simple lumped-capacity model, since the
temperature gradients in the slab are negligible.)

• When Bi > 10, the temperature distribution is a very large parabola
with ½ added to it. In this case, the problem could have been solved
using boundary conditions of the first kind because the surface
temperature stays very close to T∞ (recall Fig. 1.11). In fact, since
the lefthand side of eqn. (4.26) is just Φ ·Bi, we could divide through
by Bi, let Bi ⎯→∞, and recover eqn. (2.15).
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4.5 Fin design

The purpose of fins

We can substantially improve convective heat transfer to or from a surface
by attaching extensions that increase the surface area. These extensions
can take many forms. Figure 4.6, for example, shows just some of the
ways in which the surface of commercial heat exchanger tubing can be
extended with protrusions of a kind we call fins.

Figure 4.7 shows another intriguing appearance of fins for heat removal.
This picture is taken from an issue of Science magazine in which Farlow
et al. [4.5] present evidence suggesting that the strange rows of fins on
the back of the Stegosaurus were used to shed excess body heat after
strenuous activity.

These examples involve some rather complicated fins. But the analysis
of a straight fin protruding from a wall displays the essential features of
all fin behavior. This analysis has direct application to a host of problems.

Analysis of a one-dimensional fin

The equations. Figure 4.8 shows a one-dimensional fin protruding from
a wall. The wall—and the base, or root, of the fin—are at a temperature
T0, which is either greater or less than the ambient temperature, T∞.
The surface of the fin exchanges heat with the ambient fluid through a
heat transfer coefficient, h. The heat transfer coefficient will be assumed
uniform, although (as we see in Part III) that approximation will not be
strictly accurate even in forced convection and can introduce serious error
in boiling, condensing, or some natural convection situations.

The tip of the fin may or may not exchange heat with the surroundings
through a heat transfer coefficient, hL, which would generally differ from
h. The length of the fin is L, its uniform cross-sectional area is A, and its
circumferential perimeter is P .

The characteristic dimension of the fin in the transverse direction
(normal to the x-axis) may be taken to be A/P . Thus, for a circular cylin-
drical fin of radius R, A/P = πR2/(2πR) = R/2. We define a Biot number
for conduction in the transverse direction, based on this dimension, and
require that it be small (so that radial or transverse conduction resistance
is negligible):

Bifin =
h(A/P)
k

≪ 1 (4.27)

This condition means that the transverse variation of T at any axial



a. Eight examples of externally finned tubing: 1) and 2) typ-
ical commercial circular fins of constant thickness;
3) and 4) serrated circular fins and dimpled spirally-wound
circular fins, both intended to increase h; 5) spirally-wound
copper coils outside and inside; 6) and 8) bristle fins, spirally
wound and machined from base metal; 7) a spirally indented
tube to improve convection and increase surface area.

b. An array of commercial internally finned tubing (photo
courtesy of Noranda Metal Industries, Inc.)

Figure 4.6 Some of the many varieties of finned tubes.

164
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Figure 4.7 The Stegosaurus with what
might have been cooling fins (etching by
Daniel Rosner).

position, x, is much less than (Tsurface − T∞). Thus, T ≃ T(x only) and
the heat flow can be treated as one-dimensional. If this condition is not
satisfied, the protrusion is not a fin as the term is used in heat transfer.

An energy balance on the thin slice of the fin shown in Fig. 4.8 gives

−kA dT
dx

⃓⃓⃓⃓
x+δx

+ kA dT
dx

⃓⃓⃓⃓
x
+ h(Pδx)(T − T∞)x = 0 (4.28)

but, as δx ⎯→ 0,

dT/dx|x+δx − dT/dx|x
δx

⎯→ d2T
dx2

= d
2(T − T∞)
dx2

(4.29)

so
d2(T − T∞)

dx2
= hP
kA
(T − T∞) (4.30)
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Figure 4.8 The analysis of a one-dimensional fin.

The b.c.’s for this equation are

(T − T∞)x=0 = T0 − T∞

−kA d(T − T∞)
dx

⃓⃓⃓⃓
x=L

= hLA(T − T∞)x=L
(4.31a)

Alternatively, if the tip is insulated, or if we can guess that hLA is small
enough to be unimportant, the b.c.’s are

(T − T∞)x=0 = T0 − T∞ and
d(T − T∞)

dx

⃓⃓⃓⃓
x=L

= 0 (4.31b)

Before we solve this problem, it will pay to do a dimensional analysis. The
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dimensional functional equation is

T − T∞ = fn
[︂(︁
T0 − T∞

)︁
, x, L, kA,hP,hLA

]︂
(4.32)

Notice that we have written kA, hP , and hLA as single variables. The
reason for doing so is subtle but important. Setting h(A/P)/k≪ 1, erases
any geometric detail of the cross section from the problem. The only
place where P and A enter the problem is as product with k, h, or hL.
If they showed up elsewhere, they would have to do so in a physically
incorrect way. Thus, we have just seven variables in W, K, and m. This
gives four pi-groups if the tip is uninsulated:

T − T∞
T0 − T∞

= fn

[︄
x
L
,

√︄
hP
kA
L2,

hLAL
kA⏞ ⏟⏟ ⏞

=hLL
/︁
k

]︄

or if we rename the groups,

Θ = fn(ξ,mL,Biaxial) (4.33a)

where we set m ≡
√︁
hP/kA because that terminology is common in the

literature on fins, ξ = x/L, and Biaxial = hLL
/︁
k.

If heat transfer from the tip of the fin is negligible, as if the tip were
insulated or adiabatic, hL will not appear in eqn. (4.32). One less variable
is present but the same number of dimensions: hence, there will be only
three pi-groups. The group that is removed is Biaxial, which involves hL.
Thus, for a fin with an adiabatic tip,

Θ = fn(ξ,mL) (4.33b)

We put eqn. (4.30) in these terms by multiplying it by L2/(T0 − T∞).
The result is

d2Θ
dξ2

= (mL)2Θ (4.34)

This equation is satisfied byΘ = Ce±(mL)ξ . The sum of these two solutions
forms the general solution of eqn. (4.34):

Θ = C1emLξ + C2e−mLξ (4.35)
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Temperature distribution in a one-dimensional fin with the tip insulated.
When heat transfer at the tip is zero or negligible, the b.c.’s [eqn. (4.31b)]
can be written as

Θξ=0 = 1 and
dΘ
dξ

⃓⃓⃓⃓
⃓
ξ=1

= 0 (4.36)

Substituting eqn. (4.35) into both eqns. (4.36), we get

C1 + C2 = 1 and C1emL − C2e−mL = 0 (4.37)

Mathematical digression: Hyperbolic functions

To put the solution of eqn. (4.37) for C1 and C2 in the simplest form, we
need to recall a few properties of hyperbolic functions. The four basic
functions that we need are defined as

sinhx ≡ e
x − e−x

2

coshx ≡ e
x + e−x

2

tanhx ≡ sinhx
coshx

= e
x − e−x
ex + e−x

cothx ≡ coshx
sinhx

= e
x + e−x
ex − e−x

(4.38)

where x is the independent variable. Additional functions are defined
by analogy to the trigonometric counterparts. The differential relations
can be written out formally, and they also resemble their trigonometric
counterparts.

d
dx

sinhx = 1
2

[︂
ex − (−e−x)

]︂
= coshx

d
dx

coshx = 1
2

[︂
ex + (−e−x)

]︂
= sinhx

(4.39)

These are analogous to the familiar results d sinx/dx = cosx and
d cosx/dx = − sinx, but without the latter’s minus sign.
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The solution of eqns. (4.37) is then

C1 =
e−mL

2 coshmL
and C2 = 1− e−mL

2 coshmL
(4.40)

Therefore, eqn. (4.35) becomes

Θ = e
−mL(1−ξ) + (2 coshmL)e−mLξ − e−mL(1+ξ)

2 coshmL

which simplifies to

Θ = coshmL(1− ξ)
coshmL

(4.41)

for a one-dimensional fin with its tip insulated.
One of the most important design variables for a fin is the rate at

which it removes (or delivers) heat the wall. To calculate this, we write
Fourier’s law for the heat flow into the base of the fin5:

Q0 = −kA
d(T − T∞)

dx

⃓⃓⃓⃓
x=0

(4.42)

We multiply eqn. (4.42) by L/kA(T0 − T∞) and obtain, after substituting
eqn. (4.41) on the right-hand side,

Q0L
kA(T0 − T∞)

=mL sinhmL
coshmL

=mL tanhmL (4.43)

which can be written

Q0√︂
kAhP (T0 − T∞)

= tanhmL (4.44)

Figure 4.9 includes two graphs showing the behavior of one-dimen-
sional fin with no tip heat transfer. The top graph shows that the heat
transfer increases with mL, hitting a maximum around mL ≃ 3. This
means that the fin should not have a length in excess of 2/m or 3/m if
it is being used to cool (or heat) a wall. Additional length would simply
increase the cost without improving performance.

5We could also integrate hP(T − T∞) over the outside area of the fin to get Q0. The
answer would be the same, but the calculation would be a little more complicated.
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Figure 4.9 The temperature distribution, tip temperature, and
heat flux in a straight one-dimensional fin with an adiabatic tip.

Also shown in the top graph is the temperature of the tip of the fin.
Setting ξ = 1 in eqn. (4.41), we discover that

Θtip =
1

coshmL
(4.45)

This dimensionless tip temperature drops to about 0.014 when mL
reaches 5. This means that the end is 0.014(T0 − T∞) K above T∞ at
the end. Thus, if the fin is actually functioning as a holder for a ther-
mometer or a thermocouple that is intended to read T∞, the reading will
be in error if mL is not significantly greater than five.

The lower graph in Fig. 4.9 shows how the temperature is distributed
in insulated-tip fins for various values of mL.
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Experiment 4.1

Clamp a 20 cm or so length of copper rod by one end in a horizontal
position. Put a candle flame very near the other end and let the
arrangement come to a steady state. Run your finger along the rod.
How does what you feel correspond to Fig. 4.9? (The diameter of the
copper rod should not exceed about 3 mm, although a larger rod of
lower conductivity metal will also work.) ♦

Exact temperature distribution in a fin with an uninsulated tip. The
approximation of an adiabatic tip may be avoided using the b.c’s given in
eqn. (4.31a), which take the following dimensionless form:

Θξ=0 = 1 and − dΘ
dξ

⃓⃓⃓⃓
⃓
ξ=1

= BiaxΘξ=1 (4.46)

Substitution of the general solution, eqn. (4.35), in these b.c.’s yields

C1 + C2 = 1

−mL
(︂
C1emL − C2e−mL

)︂
= Biax

(︂
C1emL + C2e−mL

)︂ (4.47)

Some manipulation is required to solve eqn. (4.47) for C1 and C2 and to
substitute the results in eqn. (4.35). We leave this as an exercise (Problem
4.11). The result is

Θ = coshmL(1− ξ)+ (Biax/mL) sinhmL(1− ξ)
coshmL+ (Biax/mL) sinhmL

(4.48)

which has the form of eqn. (4.33a), as we anticipated. The corresponding
heat flux equation is

Q0√︂
kAhP (T0 − T∞)

= (Biax/mL)+ tanhmL
1+ (Biax/mL) tanhmL

(4.49)

We have seen that mL is not too much greater than one in a well-
designed fin with an insulated tip. Furthermore, when hL is small (as
it might be in natural convection), Biax is normally much less than one.
Therefore, in such cases, we expect to be justified in neglecting terms
multiplied by Biax. Then eqn. (4.48) reduces to our previous equation,
(4.41), for a fin with an adiabatic tip:

Θ = coshmL(1− ξ)
coshmL

(4.41)
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It is worth pointing out that we are in serious difficulty if hL is so large
that we cannot assume the tip to be insulated. The reason is that hL is
nearly impossible to predict in most practical cases.

Example 4.8

A 2.0 cm diameter aluminum rod with k = 205 W/m·K, 8.0 cm in length,
protrudes from a 150◦C wall. Air at 26◦C flows by it, and h = 120
W/m2K. Determine whether or not tip conduction is important in this
problem. To do this, make the very crude assumption that h ≃ hL.
Then compare the tip temperatures as calculated with and without
considering heat transfer from the tip.

Solution.

mL =
√︄
hPL2

kA
=
√︄

120(0.08)2

205(0.01/2)
= 0.8656

Biax =
hL
k
= 120(0.08)

205
= 0.0468

Therefore, eqn. (4.48) becomes

Θ (ξ = 1) = Θtip =
cosh 0+ (0.0468/0.8656) sinh 0

cosh(0.8656)+ (0.0468/0.8656) sinh(0.8656)

= 1
1.3986+ 0.0529

= 0.6886

so the exact tip temperature is

Ttip = T∞ + 0.6886(T0 − T∞)
= 26+ 0.6886(150− 26) = 111.4◦C

Equation (4.41) or Fig. 4.9, on the other hand, gives

Θtip =
1

1.3986
= 0.7150

so the approximate tip temperature is

Ttip = 26+ 0.715(150− 26) = 114.7◦C

Thus the insulated-tip approximation is more than adequate in this
case: the four percent difference in Θtip is within likely accuracy of
the given information.
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Very long fin. If a fin is so long that mL≫ 1, then eqn. (4.41) simplifies

Θ = e
mL(1−ξ) + e−mL(1−ξ)

emL + e−mL ≃ e−mL
[︂
emL(1−ξ) + e−mL(1−ξ)

]︂
≃ e−mLξ

or
limit

mL→large
Θ = e−mLξ = e−mx (4.50)

Substituting this result in eqn. (4.42), we obtain [cf. eqn. (4.44)]

Q0 =
√︂
kAhP (T0 − T∞) (4.51)

A heating or cooling fin would have to be terribly overdesigned for these
results to apply—that is, mL would have been made much larger than
necessary. Long extensions from surfaces often have importance beyond
increasing heat removal. A thermometer well protruding into a pipe, for
example, should very nearly reach the surrounding fluid temperature to be
useful. In practice, a fin may be regarded as “infinitely long” in computing
its temperature if mL ❳ 5; in computing Q0, mL ❳ 3 is sufficient for the
infinite fin approximation.

Physical significance of mL. The group mL has thus far proved to be
extremely useful in the analysis and design of fins. We should therefore
say a brief word about its physical significance. Notice that

(mL)2 = L
/︁
kA

1
/︁
h(PL)

= internal resistance in x-direction
gross external resistance

Thus (mL)2 is a hybrid Biot number. When it is big, Θ|ξ=1 → 0 and we
can neglect tip convection. When it is small, the temperature drop along
the axis of the fin becomes small (see the lower graph in Fig. 4.9).

The group (mL)2 also has a peculiar similarity to the NTU (Chapter 3)
and the dimensionless time, t/T , that appears in the lumped-capacity
solution (Chapter 1). Thus,

h(PL)
kA/L

is like
UA
Cmin

is like
hA

ρcV/t

In each case a convective heat rate is compared with a heat rate that
characterizes the system; and in each case the system temperature asymp-
totically approaches its limit as the numerator becomes large. This was
true in eqn. (1.22), eqn. (3.21), eqn. (3.22), and eqn. (4.50).
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Fin performance and design

Two measures of fin performance are particularly useful in fin design or
selection. The first is called the fin efficiency, ηf ,

ηf ≡
actual heat transferred by a fin

heat transfer if the entire fin were at T = T0
(4.52)

To see how this works, we evaluate ηf for a one-dimensional fin with an
insulated tip:

ηf =

√︂
kAhP(T0 − T∞) tanhmL

h(PL)(T0 − T∞)
= tanhmL

mL
(4.53)

This says that, under the definition of efficiency, a very long fin will give
tanh(mL)/mL ⎯→ 1/large number, so the fin will have low efficiency. On
the other hand, the efficiency goes up to 100% as the length is reduced to
zero, because tanh(mL)/mL ⎯→ 1 as mL ⎯→ 0. While a fin of zero length
would accomplish little, a fin of small m might be designed in order to
keep the tip temperature near the root temperature; this, for example, is
desirable if the fin is the tip of a soldering iron.

We note that while ηf provides some useful information to how a fin
behaves, we have no basis for designing toward any particular value of ηf .

A second measure of fin performance is called the fin effectiveness, εf :

εf ≡
heat flux from the wall with the fin

heat flux from the wall without the fin
(4.54)

The value can easily be computed from the efficiency:

εf = ηf
surface area of the fin

cross-sectional area of the fin
(4.55)

Normally, we want the effectiveness to be as high as possible. The ef-
fectiveness can always be raised by extending the length of the fin, but
that—as we have seen—rapidly becomes a losing proposition.

The metrics ηf and εf probably attract the interest of designers not
because their absolute values guide the designs, but because they are
useful in characterizing fins with more complex shapes. In such cases
the analytical solutions are often so complex that plots of ηf and εf serve
as labor-saving graphical solutions. We deal with some of these curves
later in this section.

The design of a fin is an open-ended matter of optimization, subject
to many factors. Some of the factors that must be considered include:

http://www.uh.edu/engines/epi1016.htm
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• The weight of material added by the fin. This might be a cost factor
or it might be an important consideration in its own right.

• The possible dependence of h on (T − T∞), flow velocity past the
fin, or other influences.

• The influence of the fin (or fins) on the heat transfer coefficient, h,
as the fluid moves around it (or them).

• The geometric configuration of the channel that the fin lies in.

• The cost and complexity of manufacturing fins.

• The pressure drop the fins create in the surrounding fluid flow.

Fin thermal resistance

When fins occur in combination with other thermal elements, calculations
can be significantly simplified by treating them as a thermal resistance
between the root and the surrounding fluid. Specifically, for a straight fin
with an insulated tip, we can rearrange eqn. (4.44) as

Q = (T0 − T∞)(︄√︂
kAhP tanhmL

)︄−1 ≡
(T0 − T∞)
Rtfin

(4.56)

where

Rtfin =
1√︂

kAhP tanhmL
for a straight fin (4.57)

In general, for a fin of any shape, fin thermal resistance can be written in
terms of fin efficiency and fin effectiveness. From eqns. (4.52) and (4.54),
we obtain

Rtfin =
1

ηfAsurfaceh
= 1

εfArooth
(4.58)

Example 4.9

Consider again the resistor described in Examples 2.7 and 2.8, starting
on page 72. Suppose that the two electrical leads are long straight wires
0.62 mm in diameter with k = 16 W/m·K and heff = 23 W/m2K. Re-
calculate the resistor’s temperature taking account of heat conducted
into the leads.
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Solution. The wires act as very long fins connected to the resistor,
so that tanhmL ≊ 1 (see Problem 4.44). Each has a fin resistance of

Rtfin =
1√︂
kAhP

= 1√︁
(16)(23)(π)2(0.00062)3/4

= 2,150 K/W

These two thermal resistances are in parallel to the thermal resistances
for natural convection and thermal radiation from the resistor surface
found in Example 2.7. The equivalent thermal resistance is now

Rtequiv =
(︄

1
Rtfin

+ 1
Rtfin

+ 1
Rtrad

+ 1
Rtconv

)︄−1

=
[︃

2
2,150

+ (1.33× 10−4)(7.17)+ (1.33× 10−4)(13)
]︃−1

= 276.8 K/W

The leads reduce the equivalent resistance by about 30% from the
value found before. The resistor temperature becomes

Tresistor = Tair +Q · Rtequiv = 35+ (0.1)(276.8) = 62.68 ◦C

or about 10◦C lower than the value found without considering the
electrical leads.

Fin Arrays

Fins are often arrayed in banks that are machined, cast, or extruded from
single pieces of metal, with a thick base that holds the fin array. The base
is fixed to the device to be cooled—a power transistor, a microprocessor,
a computer video card—anything that generates a lot of heat that must
be removed. Figure 4.10 shows several typical arrays.

Manufacturers will sometimes simply specify a single thermal resis-
tance for a fin array (or heat sink) as a function of the air velocity in the
vicinity of the array. Or one might estimate the resistance of the array
using the techniques introduced here, taking into account the airflow
conditions between the fins and the heat loss from the exposed base
between the fins. The detailed treatment of fin arrays becomes highly
specialized. We recommend [4.6].



Figure 4.10 Several fin arrays of the kind used to cool computer
elements. The top-center and middle arrays are fan-cooled. The
other four are cooled by natural convection. Courtesy of Gene
Quach, PC&C Computers, Houston, TX.
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Figure 4.11 A general fin of variable cross section.

Fins of variable cross section

Let us consider what is involved is the design of a fin for which A and
P are functions of x. Such a fin is shown in Fig. 4.11. We restrict our
attention to fins for which

h(A/P)
k

≪ 1 and
d(A/P)
dx

≪ 1

so the heat flow will be approximately one-dimensional in x.
We begin by applying the First Law to a thin slice of thickness δx

Qnet = Qcond −Qconv =
dU
dt

so that6

[︃
kA(x + δx) dT

dx

⃓⃓⃓⃓
x+δx

− kA(x) dT
dx

⃓⃓⃓⃓
x

]︃
⏞ ⏟⏟ ⏞

≃ d
dx

(︃
kA(x)

dT
dx

)︃
δx

−hP δx (T − T∞)

= ρcA(x)δxdT
dt⏞ ⏟⏟ ⏞

=0, since steady

6Note that we approximate the external area of the fin as horizontal when we write
it as P δx. The actual area is larger by an amount that is negligible in most cases. An
exception would be the tip of the fin in Fig. 4.11 where the cross-section changes rapidly.
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Figure 4.12 A two-dimensional wedge-shaped fin.

Therefore,

d
dx

[︃
A(x)

d(T − T∞)
dx

]︃
− hP
k
(T − T∞) = 0 (4.59)

If A(x) = constant, this reduces to Θ′′−(mL)2Θ = 0, which is the straight
fin equation.

To see how eqn. (4.59) works, consider the triangular fin shown in
Fig. 4.12. In this case eqn. (4.59) becomes

d
dx

[︃
2δ
(︃
x
L

)︃
b
d(T − T∞)

dx

]︃
− 2hb

k
(T − T∞) = 0

or

ξ
d2Θ
dξ2

+ dΘ
dξ

− hL
2

kδ⏞ ⏟⏟ ⏞
a kind

of (mL)2

Θ = 0 (4.60)

This second-order linear differential equation is difficult to solve because
it has a variable coefficient. Its solution is expressible in Bessel functions:

Θ =
I0
(︂
2
√︁
hLx

/︁
kδ
)︂

I0
(︂
2
√︁
hL2

/︁
kδ
)︂ (4.61)
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where the modified Bessel function of the first kind and order zero, I0,
can be found in tables or in online calculators.

Rather than explore the mathematics of solving eqn. (4.59), we simply
show the result for several geometries in terms of the fin efficiency, ηf , in
Fig. 4.13. These curves were given by Schneider [4.7]. Kraus, Aziz, and
Welty [4.6] provide a very complete discussion of fins and show a great
many additional efficiency curves.

Example 4.10

A thin brass pipe, 3 cm in outside diameter, carries hot water at 85◦C.
It is proposed to place 0.8 mm thick straight circular fins on the pipe
to cool it. The fins are 8 cm in diameter and are spaced 2 cm apart.
Estimates suggest that h will equal 20 W/m2K on the pipe and 15
W/m2K on the fins, when they have been added. If T∞ = 22◦C, compute
the heat loss per meter of pipe before and after the fins are added.

Solution. Before the fins are added,

Q = π(0.03 m)(20 W/m2K)[(85− 22) K] = 119 W/m

where we set Twall = Twater since the pipe wall is thin. Then we can
enter Fig. 4.13a with

r2

r1
= 2.67 and mL

√︄
L
P
=
√︄
hL3

kA
=
√︄

15(0.04− 0.015)3

125(0.025)(0.0008)
= 0.306

and we obtain ηf = 89%. Thus, the actual heat transfer is given by

Qwithout fin⏞ ⏟⏟ ⏞
119 W/m

(︃
0.02− 0.0008

0.02

)︃
⏞ ⏟⏟ ⏞

fraction of unfinned area

+ 0.89
[︁
2π(0.042 − 0.0152)

]︁
⏞ ⏟⏟ ⏞
area per fin (both sides), m2

(︃
50

fins
m

)︃(︃
15

W
m2K

)︃[︁
(85− 22) K

]︁

so

Qnet = 478 W/m = 4.02 Qwithout fins



Figure 4.13 The efficiency of several fins with variable cross section.
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Wall thermal resistance and fin root temperature

We have assumed, so far, that we know the root temperature of a fin. That
assumption is accurate in many cases. However, for heat to flow into a fin,
the material below the root must have a temperature gradient. Think, for
example, about hot water flowing in a tube with external fins to remove
heat: Heat must flow through the tube wall to each fin’s base. Some heat
will flow axially along the tube wall to the fin’s base, instead of flowing
radially, straight to the base. Heat conduction near the base of almost
any fin can clearly depend on many factors. In this case, the tube wall
thickness, the spacing of fins, the magnitude of the inner and outer heat
transfer coefficients, and the thermal conductivity of the metal or metals
all affect the actual heat flow pattern.

If the heat flow into the fin is substantial, the temperature at the root
will be depressed relative to unfinned portions of the tube. The fin-root
depression is generally greater when the fin Biot number is larger, the
fin efficiency is lower, the fins are farther apart, and the fin conductivity
is much higher than the tube wall conductivity. Fortunately, in many
cases of practical interest, the fin’s Biot number is very small [eqn. (4.27)],
the wall has high conductivity, and the internal heat transfer coefficient
is large relative to the external one. The last point—that most of the
thermal resistance is external to the metal—makes the thermal resistance
of the metal unimportant. For such situations, we can reasonably neglect
the axial temperature variation in the tube wall [4.8–4.10], and a simple
one-dimensional resistance model will give good accuracy.

The literature provides some numerical estimates of fin root depres-
sion. Huang and Shah [4.8] reported that, for typical heat exchanger
designs, Bifin < 10−3 and ηf > 80% and that root temperature depression
alters total heat transfer by less than 4%. For finned-tube heat exchangers
typical of air-conditioning systems, Bifin < 5 × 10−4. For such designs,
Comini and Savino [4.9] found that one-dimensional models differed
from fully three-dimensional numerical simulations by no more than
2%. The one-dimensional model is conservative, in the sense of slightly
overestimating the overall thermal resistance [4.8].

Example 4.11

Suppose that the brass pipe in Example 4.10 has a thickness of 1 mm
and that the forced convection heat transfer coefficient inside is 600
W/m2K, with water at 85◦C. Estimate the heat loss per meter of pipe.
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Solution. Neglecting axial gradients in the tube wall, the overall
thermal resistance between the water and the air includes the inside
convection resistance, a one-dimensional tube wall resistance, and the
resistance of the outside surface. The latter accounts for both the
finned and unfinned sections, assuming that the unfinned surface and
the fin root are at the same temperature. From Example 4.10

Routside =
85− 22

478
= 0.1318 K·m/W

For the thin tube wall, we use a simple slab resistance, so that the
overall thermal resistance is

Roverall =
1

hiπDi
+ tw
kπDi

+ Router

= 1
(600)π(0.028)

+ 0.001
(26)π(0.028)

+ 0.1318

= 0.01895+ 0.00044+ 0.1318 = 0.1512 K·m/W

Observe that the tube wall resistance is completely negligible in this
calculation. The total heat loss is

Qnet =
85− 22
0.1512

= 416.7 W/m

which is lower than in Example 4.10 as a result of the inside convec-
tion resistance. The fins here are relatively far apart (2 cm), and the
resistance could be reduced significantly with a tighter spacing.

Problems

4.1 Make a table listing the general solutions of all steady, unidimen-
sional constant-properties heat conduction problems in Cartesian,
cylindrical and spherical coordinates, with and without uniform
heat generation. This table should prove to be a very useful tool
in future problem solving. It should include a total of 18 solu-
tions. State any restrictions on your solutions. Do not include
calculations.

4.2 The left side of a slab of thickness L is kept at 0◦C. The right side is
cooled by air blowing over it at T∞◦C; hRHS is known. An exothermic
reaction takes place in the slab such that heat is generated at q̇ =
A(T −T∞)W/m3, where A is a constant. Find a fully dimensionless
expression for the temperature distribution in the slab.
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4.3 A long, wide plate of known size, material, and thickness L is
connected across the terminals of a power supply and serves as
a resistance heater. The plate is insulated on the bottom and
transfers heat out the top by convection to a fluid at T∞. The
voltage, current, and T∞ are known. The temperature, Ttc, of the
bottom is measured with a thermocouple. Obtain expressions for:
(a) temperature distribution in the plate; (b) h at the top; and (c)
temperature at the top. Note that your answers must depend on
known information only. [Ttop = Ttc − EIL2/(2k · volume)]

4.4 The heat transfer coefficient, h, resulting from a forced flow over a
flat plate depends on the fluid velocity, viscosity, density, specific
heat, and thermal conductivity, as well as on the length of the
plate. Develop the dimensionless functional equation for the heat
transfer coefficient. [The exact equations, in dimensionless form,
are in Sections 6.5 and 6.7.]

4.5 Water vapor condenses on a cold pipe and drips off the bottom
in regularly spaced nodes as sketched in Fig. 3.9. The wavelength
of these nodes, λ, depends on the liquid-vapor density difference,
ρf − ρg, the surface tension, σ , and the gravity, g. Find how λ
varies with its dependent variables. Compare your solution to the
exact result, eqn. (9.6a).

4.6 A liquid film flows down a vertical wall. The local film velocity at
any distance from the wall depends on that distance, gravity, the
liquid kinematic viscosity, and the film thickness. Obtain the dimen-
sionless functional equation for the local velocity (cf. Section 8.5).

Figure 4.14 Configuration for Problem 4.7.
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4.7 A steam preheater consists of a thick, electrically conducting, cylin-
drical shell insulated on the outside, with wet steam flowing down
the middle (Fig. 4.14). The steam’s temperature is fixed by the
known pressure in the pipe. The preheating is driven by electri-
cal resistance heating of q̇ W/m3 in the cylinder wall. Find the
temperature in the cylinder wall as a function of position. Plot Θ
against ρ, where Θ is an appropriate dimensionless temperature
and ρ = r/ro. Note that Bi will be a parameter in the solution. Use
an inside radius of ρi = 2/3 and several values of Bi. On the basis
of this plot, recommend criteria (in terms of Bi) for: (a) replacing the
convective boundary condition on the inside with a simple constant
temperature condition; and (b) neglecting temperature variations
within the cylinder wall.

4.8 Steam condenses inside a thick-walled pipe, keeping the inside at a
specified temperature, Ti. The pipe is electrically heated at a rate
q̇ W/m3. The outside wall is cooled by natural convection with a
heat transfer coefficient, h to a fluid at T∞.

a. Derive the dimensionless expression temperature distribution
in the pipe wall, Θ = (T − T∞)/(Ti − T∞), as a function of:
the radius ratios, ρ = r/ro and ρi = ri/ro; a heat generation
number, Γ = q̇r2

o /k(Ti − T∞); and the Biot number.

b. Plot this result for the case ρi = 2/3, Bi = 1, and for several
values of Γ .

c. Discuss any interesting aspects of your result.

4.9 Solve Problem 2.5 if you have not already done so, putting it in
dimensionless form before you begin. Then let the Biot numbers
approach infinity in the solution. You should get the same solution
we got in Example 2.4, using b.c.’s of the first kind. Do you?

4.10 Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31b) and eqn. (4.41).

4.11 Complete the algebra that is missing in applying the boundary
conditions of eqns. (4.47) to eqn. (4.35) so as to obtain eqn. (4.48).
Hint: Keep the equations in terms of e±mL and e±mLξ , rather than
cosh and sinh, until the final steps.
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4.12 Obtain eqn. (4.50) from the general solution for a fin [eqn. (4.35)],
using the b.c.’s T(x = 0) = T0 and T(x = L) = T∞ and observing
how your result simplifies if L becomes very, very long.

4.13 A thermometer well consists of a 304 stainless steel tube reaching
into a pipe, with its end closed. The tube has a 2 cm O.D. and a
1.88 cm I.D. The thermometer bulb is in good contact with the end
of the well. Steam at 260◦C flows through the pipe, and that the
heat transfer coefficient between the steam and the tube wall is
300 W/m2K. What is the minimum length, L, for the well to ensure
an error less than 0.5% of the difference between the pipe wall
temperature and the temperature of the steam? [3.44 cm.]

4.14 Thin fins with a 2 mm by 20 mm rectangular cross section and a
thermal conductivity of 50 W/m·K protrude from a wall at T0 =
170◦C; outside, h ≃ 600 W/m2K and T∞ = 20◦C. What is the heat
flow rate into each fin and what is the effectiveness?

4.15 A thin rod is anchored at a wall at T = T0 on one end. It is
insulated at the other end. Plot the dimensionless temperature
distribution in the rod as a function of dimensionless length: (a) if
the rod is exposed to an environment at T∞ through a heat transfer
coefficient; (b) if the rod’s surface is entirely insulated but heat
is [somehow] removed from the fin material at the uniform rate
q̇ = −hP(T0 − T∞)/A W/m3. Comment on the implications of this
theoretical comparison.

4.16 A tube of outside diameter do and inside diameter di carries fluid at
T = T1 from one wall at temperature T1 to another wall, a distance
L away, at Tr . Outside the tube ho is small enough to neglect, but
inside the tube hi is not small. Treat the tube as a fin and plot
the dimensionless temperature distribution in it as a function of
dimensionless length.

4.17 The shape of the fin in Fig. 4.12 is changed so thatA(x) = 2δ(x/L)2b
instead of 2δ(x/L)b. Calculate the temperature distribution and
the heat flux at the base. Plot the temperature distribution and fin
thickness against x/L. Derive an expression for the fin efficiency,
ηf . Hint: From your study of ordinary differential equations, recall
a variable coefficient equation called Euler’s equation.
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4.18 Work Problem 2.21, if you have not already done so, nondimen-
sionalizing the problem before you attempt to solve it. It should
now be much simpler.

4.19 One end of a copper rod 30 cm long is held at 200◦C, and the other
end is held at 93◦C. The air and the room surrounding the rod are
at T∞ = 38◦C. At the rod’s circumference, the effective heat transfer
coefficient is 17 W/m2K, including both convection and radiation.
If the rod’s diameter is 1.25 cm, what is the net heat transfer from
the rod’s circumference? [19.13 W.]

4.20 How much error will the insulated-tip approximation cause in
calculating the heat flow into the fin in Example 4.8? [3.67%]

4.21 A straight cylindrical fin 0.6 cm in diameter and 6 cm long protrudes
from a magnesium block at 300◦C. Air at 35◦C is forced past the
fin so that h is 130 W/m2K. Calculate the heat removed by the fin,
the fin efficiency, and the fin effectiveness.

4.22 A 2 cm diameter, horizontal, 1.0% steel rod connects a block of ice
with a block of dry ice (CO2) in a 30◦C room. The frozen blocks
are otherwise insulated. The rod is embedded in each block with
a 20 cm span between them. The heat transfer coefficient to the
environment is 10 W/m2K. Determine whether the ice will begin to
melt when the rod is at steady state.

4.23 A fin of triangular axial section (Fig. 4.12) 0.1 m in length and 0.02
m wide at its base is used to extend the surface area of a 0.5%
carbon steel wall. If the wall is at 40◦C and heated gas flows past
at 200◦C (h = 230 W/m2K), compute the heat removed by the fin
per meter of breadth, b, of the fin.

4.24 Consider the concrete slab in Example 2.1. Suppose that the heat
generation were to cease abruptly at time t = 0 and the slab were
to start cooling back toward Tw . Predict T − Tw as a function of
time, noting that the initial parabolic temperature profile can be
nicely approximated as a sine function. (Without the sine approxi-
mation, this problem would require the Fourier series methods of
Chapter 5.)

4.25 A 6061-T6 aluminum steam condenser tube has a 20 mm O.D. with
an array of fins on its outer surface. The fins are 0.8 mm thick



188 Chapter 4: Conduction analysis, dimensional analysis, and fin design

with a diameter of 35 mm and a center-to-center spacing of 5 mm.
The steam inside is at 10 atm and the air and room outside are
at 18◦C, with an effective houtside = 6 W/m2K. The heat transfer
coefficient for condensation is very large and the tube wall is not
thick. What is the mass rate of condensation if the pipe is 1.5 m in
length? [ṁcond = 0.802 kg/hr.]

4.26 How long must a 0.4 cm cylindrical copper fin be if the temperature
of its insulated tip is to exceed the surrounding air temperature
by 20% of (T0 − T∞)? Consider Tair = 20◦C and h = 28 W/m2K.
[27.3 cm]

4.27 A 2 cm ice cube sits on a shelf of widely spaced aluminum rods, 3
mm in diameter, in a refrigerator at 10◦C. How rapidly, in mm/min,
do the rods melt their way through the ice cube if h at the surface
of the rods is 10 W/m2K (including both convection and radiation).
Be sure that you understand the physical mechanism before you
make the calculation. hsf = 333 kJ/kg. (You can check your result
experimentally, if you have a such a refrigerator shelf.)

4.28 The highest heat flux that can be achieved in nucleate boiling (called
qmax—see the qualitative discussion in Section 9.1) depends upon
ρg , the saturated vapor density; hfg , the latent heat vaporization;
σ , the surface tension; a characteristic length, l; and the buoyancy
force per unit volume, g(ρf − ρg), where ρf is the saturated liquid
density. Develop the dimensionless functional equation for qmax

in terms of dimensionless length.

4.29 You want to rig a handle for a door in the wall of a furnace. The
door is at 160◦C. You consider bending a 40 cm length of 6.35 mm
diam. 0.5% carbon steel rod into a U-shape and welding the ends
to the door. Surrounding air at 24◦C will cool the handle (h = 12
W/m2K including both convection and radiation). What is the
coolest temperature of the handle? How close to the door can
you grasp the handle without getting burned if Tburn = 65◦C? How
might you improve the design?

4.30 A 14 cm long by 1 cm square brass rod is supplied with 25 W
at its base. The other end is insulated. It is cooled by air at
20◦C, with h = 68 W/m2K. Develop an equation for appropriate
dimensionless temperature, Θ, as a function of ξ, mL, and other
known information. Calculate the base temperature. [169◦C]
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4.31 A cylindrical fin has a constant imposed heat flux of q1 at one
end and q2 at the other end, and it is cooled convectively along its
length. Develop an equation for the dimensionless temperature
distribution in the fin. Specialize this result for q2 = 0 and L ⎯→∞,
and compare it to eqn. (4.50).

4.32 A thin annular cylinder of radius ro serves as an electrical resistance
heater. The temperature along an axial line at θ1 = 0 is kept at T1.
Another line, θ2 radians away, is kept at T2. Derive dimensionless
expressions for the temperature distributions in the two sections.

4.33 Heat transfer is augmented, in a particular heat exchanger, with a
field of 7 mm diameter fins protruding 20 mm into a flow. The fins
are arranged in a hexagonal array, with a minimum center-to-center
spacing of 1.8 cm. The fins are bronze, and hf around the fins

is 168 W/m2K. On the wall itself, hw is only 54 W/m2K. Calculate
heff ≡ Qwall

/︁
Awall(Twall−T∞) for the wall with its fins. [228 W/m2K]

4.34 An engineer seeks to study the effect of temperature on the curing
of concrete by controlling the curing temperature in the following
way. A sample slab of thickness L is subjected to a heat flux, qw ,
on one side, and it is cooled to temperature T1 on the other. Derive
a dimensionless expression for the steady temperature in the slab.
Plot the expression and offer a criterion for neglecting the internal
heat generation in the slab.

4.35 Develop the dimensionless temperature distribution in a spherical
shell with the inside wall kept at one temperature and the outside
wall at a second temperature. Reduce your solution for the two
limiting cases in which routside ≫ rinside and in which routside is very
close to rinside. Discuss these limits.

4.36 Does the temperature distribution during steady heat transfer in
an object with b.c.’s of only the first kind depend on k? Explain.
What if you had second-kind boundary conditions? What about
third-kind conditions?

4.37 A long, 5 mm diameter duralumin rod is wrapped with an electrical
resistor over 30 mm of its length. The resistor imparts a surface
flux of 40 kW/m2. Evaluate the temperature distribution of the rod
on either side of the heated section if h = 150 W/m2K around the
unheated rod and Tambient = 27◦C. [135◦C]
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4.38 The heat transfer coefficient between a cool surface and a saturated
vapor, when the vapor condenses in a film on the surface, depends
on: the liquid density and specific heat; the liquid conductivity and
kinematic viscosity; the latent heat; the temperature difference; the
buoyant force per unit volume, g(ρf − ρg); and the position, x, on
the cooler surface. Develop the dimensionless functional equation
for h. Hint: You can find the conventional form of this equation
by looking ahead in this textbook.

4.39 A duralumin pipe passing through a cold room has a 4 cm I.D. and
a 5 cm O.D. It carries water that sometimes sits stationary. It is
proposed to put electric heating rings around the pipe to protect
it against freezing during cold periods as low as −7◦C. The heat
transfer coefficient outside the pipe is 9 W/m2K (including both
convection and radiation). Determine how far apart the heaters
would have to be if they brought the pipe temperature to 40◦C
locally. How much power do they require? Hint: heat conduction
in the water may be neglected (why?). [37.6 W]

4.40 Evaluate d(tanhx)/dx.

4.41 The specific entropy of an ideal gas depends on its specific heat at
constant pressure, its temperature and pressure, the ideal gas con-
stant and reference values of the temperature and pressure. Obtain
the dimensionless functional equation for the specific entropy and
compare it with the known equation for ideal gas entropy.

4.42 A proposed design for a large freezer’s door has a 2.5 cm thick layer
of insulation (kin = 0.04 W/m·K) covered on the inside, outside, and
edges with a continuous aluminum skin 3.2 mm thick (kAl = 165
W/m·K). The door closes against a nonconducting seal 1 cm wide.
Heat gain through the door can result from conduction straight
through the insulation and skins (normal to the plane of the door)
and from conduction in the aluminum skin only, going from the
skin outside, around the edge skin, and to the inside skin. The
heat transfer coefficients to the inside, hi, and outside, ho, are
each 12 W/m2K, accounting for both convection and radiation. The
temperature outside the freezer is 25◦C, and the temperature inside
is −15◦C.

a. If the door is 1 m wide, estimate the one-dimensional heat
gain through the door, neglecting any conduction around the
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edges of the skin. Your answer will be in watts per meter of
door height.

b. Now estimate the heat gain through the aluminum skin that
wraps the outside and inside of the door. Heat will be con-
ducted from the outside, around the edge of the door, to the
inside. For this calculation, assume that the insulation is per-
fectly adiabatic and ignore the bottom and the top of the door.
Your answer will again be in watts per meter of door height.

c. Suggest a few design changes that might reduce the heat
conduction around the edges of the door.

4.43 A thermocouple epoxied onto a high conductivity surface is in-
tended to measure the surface temperature. The thermocouple
consists of two bare wires of diameter Dw = 0.51 mm. One wire is
made of Chromel (Ni-10% Cr with kcr = 17 W/m·K) and the other
of constantan (Ni-45% Cu with kcn = 23 W/m·K). The ends of the
wires are welded together to create an approximately rectangular
measuring junction, with a width w ≈ Dw and a length l ≈ 2Dw .
The wires extend perpendicularly away from the surface and do not
touch one another. A layer of an epoxy (kep = 0.5 W/m·K) separates
the thermocouple junction from the surface by 0.2 mm. The heat
transfer coefficient between the wires and the surroundings at 20◦C
is h = 28 W/m2K, including both convection and radiation. If the
thermocouple reads Ttc = 40◦C, estimate the actual temperature
Ts of the surface and suggest a better arrangement of the wires.

4.44 The resistor leads in Example 4.9 were assumed to be “infinitely
long” fins. What is the minimum length they each must have if they
are to be modeled this way? What are the effectiveness, εf, and
efficiency, ηf , of the wires? Discuss the meaning of your calculated
effectiveness and efficiency.

4.45 We use the following experiment to measure local heat transfer
coefficients, h, inside pipes that carry flowing liquids. We pump
liquid with a known bulk temperature through a pipe which serves
as an electric resistance heater, and whose outside is perfectly
insulated. A thermocouple measures its outside temperature. We
know the volumetric heat release in the pipe wall, q̇, from resistance
and current measurements. We also know the pipe diameter, wall
thickness, and thermal conductivity. (Continued on next page.)
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Derive an equation for h. (Remember that, since h is unknown, a
boundary condition of the third kind by itself is not sufficient to
find T(r).) Then, nondimensionalize your result.
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5. Transient and multidimensional
heat conduction

When I was a lad, winter was really cold. It would get so cold that if you
went outside with a cup of hot coffee it would freeze. I mean it would freeze
fast. That cup of hot coffee would freeze so fast that it would still be hot
after it froze. Now that’s cold! Old Northwoods Tall Tale

5.1 Introduction

James Watt, of course, did not invent the steam engine. What he did do
was to eliminate a destructive transient heating and cooling process that
wasted a great amount of energy. By 1763, the great puffing engines of
Savery and Newcomen had been used for over half a century to pump
the water out of Cornish mines and to do other tasks. What has that
to do with our subject? Well, consider what happened that same year,
when the young instrument maker, Watt, was called upon to renovate
the Newcomen engine model at the University of Glasgow. The Glasgow
engine was then being used as a demonstration in the course on natural
philosophy. Watt did much more than just renovate the machine—he
first recognized, and eventually eliminated, its major shortcoming.

The cylinder of Newcomen’s engine was cold when steam entered
it and nudged the piston outward. A great deal of steam was waste-
fully condensed on the cylinder walls until they were warm enough to
accommodate it. When the cylinder was filled, the steam valve was closed
and jets of water were activated inside the cylinder to cool it again and
condense the steam. This created a powerful vacuum, which sucked the
piston back in on its working stroke. First, Watt tried to eliminate the
wasteful initial condensation of steam by insulating the cylinder. But that
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simply reduced the vacuum and cut the power of the working stroke.
Then he realized that, if he led the steam outside to a separate condenser,
the cylinder could stay hot while the vacuum was created.

The separate condenser was the main issue in Watt’s first patent
(1769), and its introduction immediately doubled the thermal efficiency
of steam engines from a maximum of 1.1% to 2.2%. By the time Watt
died in 1819, his invention had led to efficiencies of 5.7%, and his engine
had altered the face of the world by powering the Industrial Revolution.
And from 1769 until today, the steam power cycles that engineers study
in their thermodynamics courses are accurately represented as steady
flow—rather than transient—processes.

The repeated transient heating and cooling in Newcomen’s engine was
the kind of process that today’s design engineer might still carelessly
ignore, but the lesson that we learn from history is that transient heat
transfer can be of overwhelming importance. Today, for example, de-
signers of walk-in freezers know that such systems need relatively little
energy to keep food cold at steady conditions. The real cost of operating
them results from the consumption of energy needed to bring the food
down to a low temperature and the losses resulting from people entering
and leaving the system. These transient heat transfer processes are a
dominant concern in the design of food storage units.

We therefore turn our attention to the analysis of unsteady heat
transfer. We begin with a more detailed consideration of the lumped-
capacity system that we looked at in Section 1.3. And our starting point
is the dimensional analysis of such a system.

5.2 Lumped-capacity solutions

Dimensional analysis of transient heat conduction

Consider a fairly representative problem of one-dimensional transient
heat conduction: a slab initially at uniform temperature. The temperature
of one wall is suddenly changed to a new temperature while the other
wall is cooled or heated convectively. The equations are:

∂2T
∂x2

= 1
α
∂T
∂t

with

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
i.c.: T(t = 0) = Ti
b.c.: T(t > 0, x = 0) = T1

b.c.: − k ∂T
∂x

⃓⃓⃓⃓
x=L

= h(T − T1)x=L
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The solution of this problem must take the form of the following dimen-
sional functional equation:

T − T1 = fn
[︂
(Ti − T1), x, L, t,α,h, k

]︂
There are eight variables in four dimensions (K, s, m, W), so we look for
8−4 = 4 pi-groups. We anticipate, from Section 4.3, that they will include

Θ ≡ (T − T1)
(Ti − T1)

, ξ ≡ x
L
, and Bi ≡ hL

k
,

and we write

Θ = fn(ξ,Bi,Π4) (5.1)

One possible candidate for Π4, which is independent of the other three,
is

Π4 ≡ Fo = αt/L2 (5.2)

where Fo is the Fourier number. Another candidate that we use later is

Π4 ≡ ζ =
x√
αt

(︃
this is exactly

ξ√
Fo

)︃
(5.3)

If the problem involved b.c.’s of only the first kind, the heat transfer
coefficient, h—and hence the Biot number—would go out of the problem.
Then the dimensionless function eqn. (5.1) is

Θ = fn(ξ, Fo) (5.4)

By the same token, if the b.c.’s had introduced different values of h at
x = 0 and x = L, two Biot numbers would appear in the solution as they
did in eqn. (4.24).

Dimensional analysis is particularly revealing in the case of the lumped-
capacity problem [see eqns. (1.19)–(1.22)]. Neither k nor x enters the
problem because we do not retain any features of the internal conduction
problem. Therefore, we have ρc rather than α. Furthermore, we do not
have to separate ρ and c because they appear only as a product. Finally,
we use the volume-to-external-area ratio, V/A, as a characteristic length
since no one linear dimension has any significance. Thus, for the transient
lumped-capacity problem, the dimensional equation is

T − T∞ = fn
[︂
(Ti − T∞), ρc, V/A,h, t

]︂
(5.5)
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With six variables in the dimensions J, K, m, and s, only two pi-groups
will appear in the dimensionless function equation.

Θ = fn

(︄
hAt
ρcV

)︄
= fn

(︃
t
T

)︃
(5.6)

This is exactly the form of the simple lumped-capacity solution, eqn. (1.22).
Notice, too, that the group t/T can be viewed as

t
T
= hk(V/A)t
ρc(V/A)2k

= h(V/A)
k

· αt
(V/A)2

= Bi Fo (5.7)

Electrical and mechanical analogies to the
lumped-thermal-capacity problem

We take the term capacitance from electrical circuit theory and can sketch
the simple resistance-capacitance circuit, analogous to the preceding
problem, in Fig. 5.1. Here, the electrical capacitor is initially charged to
a voltage, Eo. When the switch is suddenly opened, the capacitor dis-
charges through the resistor and the capacitor’s voltage drops according
to the relation

dE
dt

+ E
RC

= 0 (5.8)

The solution of eqn. (5.8) with the i.c. E(t = 0) = Eo is

E = Eo e−t/RC (5.9)

and the current can be computed from Ohm’s law, once E(t) is known:

I = E
R

(5.10)

Normally, in a heat conduction problem the thermal capacitance, ρcV ,
is distributed over a range of temperature that varies in space. But when
the Biot number is small, T(t) is uniform in the body and we can lump the

Figure 5.1 A simple
resistance-capacitance circuit.
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capacitance into a single circuit element. The thermal resistance is 1/hA,
and the temperature difference (T − T∞) is analogous to E(t). Thus, the
thermal response, analogous to eqn. (5.9), is [see eqn. (1.22)]

T − T∞ = (Ti − T∞) exp

(︄
−hAt
ρcV

)︄

Notice that the electrical time constant, analogous to ρcV/hA, is RC .

Figure 5.2 A spring-mass-damper system
with a forcing function.

Now consider a slightly more complex system that is also analogous to
slightly more complex lumped capacity heat transfer. Figure 5.2 shows a
spring-mass-damper system. The well-known response equation (actually,
a force balance) for this system is

m⏞⏟⏟⏞

What is the mass analogous to?

d2x
dt2

+ c⏞⏟⏟⏞
the damping coefficient is analogous to R or to ρcV

dx
dt

+ k⏞⏟⏟⏞
where k is analogous to 1/C or to hA

x = F(t) (5.11)

A term analogous to mass would arise from electrical inductance, but we
did not include it in the electrical circuit. Mass has the effect of carrying
the system beyond its final equilibrium point. Thus, in an underdamped
mechanical system, we might obtain the sort of response shown in Fig. 5.3
if we specified the velocity at x = 0 and provided no forcing function.
Electrical inductance provides a similar effect. But the Second Law of
Thermodynamics does not permit temperatures to overshoot their equi-
librium values spontaneously. There are no physical elements analogous
to mass or inductance in thermal systems.
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Figure 5.3 Response of an unforced
spring-mass-damper system with an initial
velocity.

Another mechanical element that we’ve introduced here does have a
thermal analogy, however. It is the forcing function, F . We consider a
(massless) spring-damper system with a forcing function F that probably
is time-dependent, and we ask: “What might a thermal forcing function
look like?”

Lumped-capacity solution with a variable ambient temperature

To answer the preceding question, let us suddenly immerse an object at a
temperature T = Ti, with Bi ≪ 1, into a cool bath whose temperature is
rising as T∞(t) = Ti + bt, where Ti and b are constants. Then eqn. (1.20)
becomes

d(T − Ti)
dt

= −T − T∞
T

= −T − Ti − bt
T

where we subtract the constant Ti within the derivative. Then

d(T − Ti)
dt

+ T − Ti
T

= bt
T

(5.12)

so the forcing function is bt/T , the effect of the rising bath temperature.
To solve eqn. (5.12) we must first recall that the general solution of a

linear ordinary differential equation with constant coefficients is equal
to the sum of any particular solution of the complete equation and the
general solution of the homogeneous equation. We know the latter: it
is T − Ti = (constant) exp(−t/T ). A particular solution of the complete
equation can often be formed by guessing solutions and trying them in
the complete equation. Here we discover that

T − Ti = bt − bT
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Figure 5.4 Response of a thermometer to a linearly increasing
ambient temperature.

satisfies eqn. (5.12). Thus, the general solution of eqn. (5.12) is the sum
of these general and particular solutions:

T − Ti = C1e−t/T + b(t − T ) (5.13)

The constant C1 is found by applying the initial condition, as in the
following example.

Example 5.1

The flow rates of hot and cold water are regulated into a mixing
chamber. We measure the temperature of the water as it leaves, using
a thermometer with a time constant, T . On a particular day, the
system started with cold water at T = Ti in the mixing chamber. Then
hot water is added in such a way that the outflow temperature rises
linearly, as shown in Fig. 5.4, with Texit flow = Ti + bt. How will the
thermometer report the temperature variation?

Solution. The initial condition for eqn. (5.13) in this case is T−Ti = 0
at t = 0. Substituting eqn. (5.13) in the i.c., we get

0 = C1 − bT so C1 = bT
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and the response equation is

T − (Ti + bt) = bT
(︂
e−t/T − 1

)︂
(5.14)

This result is plotted in Fig. 5.4. Notice that the thermometer
reading has a transient portion, bTe−t/T , which decays for a few time
constants and then can be neglected, and a steady portion, Ti+b(t−T ),
which persists thereafter. When the steady response is established,
the thermometer follows the bath with a temperature lag of bT . This
constant error is reduced when either T or the rate the temperature
rises, b, is reduced.

The lumped capacity solution for arbitrary variations of T∞(t) is given
in Problem 5.52 (see also Problems 5.3, 5.53, and 5.54, ).

Second-order lumped-capacity systems

Now we look at situations in which two lumped-thermal-capacity systems
are connected in series. Such an arrangement is shown in Fig. 5.5. Heat
is transferred through two slabs with a contact, or interfacial, resistance
h−1
c between them. We shall require that hcL1/k1, hcL2/k2, and hL2/k2

are all much less than one, so we can lump the thermal capacitance of
each slab. Then the differential equations for the temperature response
of each slab are

slab 1 : −(ρcV)1
dT1

dt
= hcA(T1 − T2) (5.15)

slab 2 : −(ρcV)2
dT2

dt
= hA(T2 − T∞)− hcA(T1 − T2) (5.16)

and the initial conditions on the temperatures T1 and T2 are

T1(t = 0) = T2(t = 0) = Ti (5.17)

We next identify two time constants for this problem1:

T1 ≡ (ρcV)1
/︁
hcA and T2 ≡ (ρcV)2

/︁
hA

Then eqn. (5.15) becomes

T2 = T1
dT1

dt
+ T1 (5.18)

1Notice that we could also have used (ρcV)2/hcA for T2 since both hc and h act on
slab 2. The choice is arbitrary—although the resulting solutions (while giving the same
answers) will not look the same.
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Figure 5.5 Two slabs conducting in series through a contact
resistance.

which we substitute in eqn. (5.16) to get

T1T2
d2T1

dt2
− T2

dT1

dt
=
(︃
T1
dT1

dt
+ T1 − T∞

)︃
+ hc
h
T1
dT1

dt
or

d2T1

dt2
+
[︄

1
T1
+ 1
T2
+ hc
hT2⏞ ⏟⏟ ⏞

≡b

]︄
dT1

dt
+ T1 − T∞

T1T2⏞ ⏟⏟ ⏞
≡ c(T1 − T∞)

= 0 (5.19a)

If we call T1 − T∞ ≡ θ, then eqn. (5.19a) can be written as

d2θ
dt2

+ bdθ
dt

+ cθ = 0 (5.19b)

Thus we have reduced the pair of first-order equations, eqn. (5.15) and
eqn. (5.16), to a single second-order equation, eqn. (5.19b).

The general solution of eqn. (5.19b) is obtained by guessing a solution
of the form θ = C1eDt . Substitution of this guess into eqn. (5.19b) gives

D2 + bD + c = 0 (5.20)

from which we find that D = −(b/2) ±
√︁
(b/2)2 − c. This gives us two

values of D, from which we can get two exponential solutions. By adding
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them together, we form a general solution:

θ = C1 exp

⎡⎣−b
2
+
√︄(︃

b
2

)︃2
− c

⎤⎦t + C2 exp

⎡⎣−b
2
−
√︄(︃

b
2

)︃2
− c

⎤⎦t (5.21)

To solve for the two constants we substitute eqn. (5.21) in the first of
i.c.’s (5.17) and get

Ti − T∞ = θi = C1 + C2 (5.22)

The second i.c. can be put into terms of T1 with the help of eqn. (5.15):

−dT1

dt

⃓⃓⃓⃓
t=0

= hcA
(ρcV)1

(T1 − T2)t=0 = 0

We substitute eqn. (5.21) in this and obtain

0 =
⎡⎣−b

2
+
√︄(︃

b
2

)︃2
− c

⎤⎦C1 +
⎡⎣−b

2
−
√︄(︃

b
2

)︃2
− c

⎤⎦ C2⏞ ⏟⏟ ⏞
= θi − C1

so

C1 = −θi
[︄
−b/2−

√︁
(b/2)2 − c

2
√︁
(b/2)2 − c

]︄
and

C2 = +θi
[︄
−b/2+

√︁
(b/2)2 − c

2
√︁
(b/2)2 − c

]︄

So we obtain at last:

T1 − T∞
Ti − T∞

≡ θ
θi
= b/2+

√︁
(b/2)2 − c

2
√︁
(b/2)2 − c

exp

⎡⎣−b
2
+
√︄(︃

b
2

)︃2
− c

⎤⎦t
+ −b/2+

√︁
(b/2)2 − c

2
√︁
(b/2)2 − c

exp

⎡⎣−b
2
−
√︄(︃

b
2

)︃2
− c

⎤⎦t
(5.23)

This is a pretty complicated result—all the more complicated when
we remember that b involves three algebraic terms [recall eqn. (5.19a)].
Yet the equation is not at all sophisticated. A system involving three
capacitances in series would similarly yield a third-order equation of
correspondingly higher complexity, and so forth.



§5.3 Transient conduction in a one-dimensional slab 203

5.3 Transient conduction in a one-dimensional slab

We next extend consideration to heat flow in bodies whose internal re-
sistance is significant—to situations in which the lumped capacitance
assumption is no longer appropriate. When the temperature within, say, a
one-dimensional body varies with position as well as time, we must solve
the heat conduction equation for T(x, t). We shall do this somewhat
complicated task for the simplest case and then look at the results of
such calculations for other situations.

Figure 5.6 The transient cooling of a
slab; ξ = (x/L)+ 1.

A simple slab, shown in Fig. 5.6, is initially at a temperature Ti. The
temperature of the surface of the slab is suddenly changed to T1, and we
wish to calculate the interior temperature profile as a function of time.
The heat conduction equation is

∂2T
∂x2

= 1
α
∂T
∂t

(5.24)

with the following b.c.’s and i.c.:

T(−L, t > 0) = T(L, t > 0) = T1 and T(x, t = 0) = Ti (5.25)

In fully dimensionless form, eqn. (5.24) and eqn. (5.25) are

∂2Θ
∂ξ2

= ∂Θ
∂Fo

(5.26)
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and
Θ(0, Fo) = Θ(2, Fo) = 0 and Θ(ξ,0) = 1 (5.27)

where we have nondimensionalized the problem in accordance with eqn.
(5.4), using Θ ≡ (T − T1)/(Ti − T1) and Fo ≡ αt/L2; but, a more easily
usable final result, we have set ξ equal to (x/L)+ 1 instead of x/L.

The general solution of eqn. (5.26) may be found using the separation of
variables technique described in Section 4.2, leading to the dimensionless
form of eqn. (4.11):

Θ = e−λ̂2Fo [︁G sin(λ̂ξ)+ E cos(λ̂ξ)
]︁

(5.28)

Direct nondimensionalization of eqn. (4.11) would show that λ̂ ≡ λL,
since λ had units of (length)−1. The solution therefore appears to have
introduced a fourth dimensionless group, λ̂. This needs explanation. The
number λ, which was introduced in the separation-of-variables process,
is called an eigenvalue.2 In the present problem, λ̂ = λL will turn out to
be a number—or rather a sequence of numbers—that is independent of
system parameters.

Substituting the general solution, eqn. (5.28), in the first b.c. gives

0 = e−λ̂2Fo (0+ E) so E = 0

and substituting it in the second yields

0 = e−λ̂2Fo[︁G sin 2λ̂
]︁

so either

G = 0 or 2λ̂ = 2λ̂n = nπ, for n = 0,1,2, . . .

We then have two choices for the constant G. The first, G = 0, would
give Θ ≡ 0 in all situations, so that the initial condition could never be
accommodated. (This is what mathematicians call a trivial solution.) The
second choice, λ̂n = nπ/2, actually yields a string of solutions, each of
the form

Θ = Gn e−n
2π2Fo/4 sin

(︃
nπ
2
ξ
)︃

(5.29)

where Gn is the constant appropriate to the nth one of these solutions.
We still face the problem that none of eqns. (5.29) will fit the initial

condition, Θ(ξ,0) = 1. To get around this, we remember that the sum of

2The word eigenvalue is a curious hybrid of the German term eigenwert and its
English translation, characteristic value.
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any number of solutions of a linear differential equation is also a solution.
Then we write

Θ =
∞∑︂
n=1

Gn e−n
2π2Fo/4 sin

(︃
n
π
2
ξ
)︃

(5.30)

where we drop n = 0 since it gives zero contribution to the series. And
we arrive, at last, at the problem of choosing the Gn’s so that eqn. (5.30)
will fit the initial condition:

Θ(ξ,0) =
∞∑︂
n=1

Gn sin
(︃
n
π
2
ξ
)︃
= 1 (5.31)

The problem of picking the values of Gn that will make this equation
true is called “making a Fourier series expansion” of the function f(ξ) = 1.
We shall not pursue strategies for making Fourier series expansions in
any general way. Instead, we merely show how to accomplish the task
for the particular problem at hand. We begin with a mathematical trick.
We multiply eqn. (5.31) by sin(mπ/2), where m may or may not equal n,
and we integrate the result between ξ = 0 and 2.∫︂ 2

0
sin
(︃
mπ

2
ξ
)︃
dξ =

∞∑︂
n=1

Gn
∫︂ 2

0
sin
(︃
mπ

2
ξ
)︃

sin
(︃
nπ
2
ξ
)︃
dξ (5.32)

(The interchange of summation and integration turns out to be legitimate,
although we have not proved here that it is.3) With the help of a table of
integrals, we find that∫︂ 2

0
sin
(︃
mπ

2
ξ
)︃

sin
(︃
nπ
2
ξ
)︃
dξ =

{︄
0 for n ≠m
1 for n =m

Thus, when we complete the integration of eqn. (5.32), we get

− 2
mπ

cos
(︃
mπ

2
ξ
)︃⃓⃓⃓⃓
⃓

2

0

=
∞∑︂
n=1

Gn ×
{︄

0 for n ≠m
1 for n =m

This reduces to

− 2
mπ

[︂
(−1)n − 1

]︂
= Gn

so

Gn =
4
nπ

where n is an odd number

3What is normally required is that the series in eqn. (5.31) be uniformly convergent.
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Table 5.1 Terms of series solutions for slabs, cylinders, and
spheres. J0 and J1 are Bessel functions of the first kind.

An fn Equation for λ̂n

Slab
2 sin λ̂n

λ̂n + sin λ̂n cos λ̂n
cos

(︃
λ̂n
x
L

)︃
cot λ̂n =

λ̂n
BiL

Cylinder
2 J1

(︁
λ̂n
)︁

λ̂n
[︂
J2

0

(︁
λ̂n
)︁
+ J2

1

(︁
λ̂n
)︁]︂ J0

(︃
λ̂n
r
ro

)︃
λ̂n J1

(︁
λ̂n
)︁
= Biro J0

(︁
λ̂n
)︁

Sphere 2
sin λ̂n − λ̂n cos λ̂n
λ̂n − sin λ̂n cos λ̂n

(︄
ro
λ̂n r

)︄
sin

(︄
λ̂n r
ro

)︄
λ̂n cot λ̂n = 1− Biro

Substituting this result into eqn. (5.30), we finally obtain the solution to
the problem:

Θ(ξ, Fo) = 4
π

∞∑︂
n=odd

1
n
e−(nπ/2)

2Fo sin
(︃
nπ
2
ξ
)︃

(5.33)

Equation (5.33) admits a very nice simplification for large time (or at
large Fo). Suppose that we wish to evaluate Θ at the center of the slab—at
x = 0 or ξ = 1. Then

Θ(0, Fo) = 4
π
×⎧⎪⎨⎪⎩exp

[︄
−
(︃
π
2

)︃2

Fo

]︄
⏞ ⏟⏟ ⏞
= 0.085 at Fo = 1
= 0.781 at Fo = 0.1
= 0.976 at Fo = 0.01

− 1
3

exp

[︄
−
(︃

3π
2

)︃2

Fo

]︄
⏞ ⏟⏟ ⏞

≃ 10−10 at Fo = 1
= 0.036 at Fo = 0.1
= 0.267 at Fo = 0.01

+ 1
5

exp

[︄
−
(︃

5π
2

)︃2

Fo

]︄
⏞ ⏟⏟ ⏞

≃ 10−27 at Fo = 1
= 0.0004 at Fo = 0.1
= 0.108 at Fo = 0.01

+· · ·

⎫⎪⎬⎪⎭

Thus, for values of Fo somewhat greater than 0.1, only the first term in
the series makes a non-negligible contribution to the solution. We discuss
these one-term solutions in Section 5.5. But first, let us see what happens
if the slab had been subjected to b.c.’s of the third kind.

Suppose that the walls of the slab had been cooled by symmetrical
convection such that the b.c.’s were

h(T∞ − T)x=−L = −k
∂T
∂x

⃓⃓⃓⃓
x=−L

and h(T − T∞)x=L = −k
∂T
∂x

⃓⃓⃓⃓
x=L
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or in dimensionless form, using Θ and ξ as before and setting Bi = hL/k,

−Θ
⃓⃓⃓⃓
ξ=0

= − 1
Bi
∂Θ
∂ξ

⃓⃓⃓⃓
⃓
ξ=0

and
∂Θ
∂ξ

⃓⃓⃓⃓
⃓
ξ=1

= 0

The solution is somewhat harder to find than eqn. (5.33) was, but the
result is4

Θ =
∞∑︂
n=1

exp
(︂
−λ̂2

n Fo
)︂(︄2 sin λ̂n cos

[︁
λ̂n(ξ − 1)

]︁
λ̂n + sin λ̂n cos λ̂n

)︄
(5.34)

where the values of λ̂n are given as a function of n and Bi = hL/k by the
transcendental equation

cot λ̂n =
λ̂n
Bi

(5.35)

The successive positive roots of this equation, λ̂n = λ̂1, λ̂2, λ̂3, . . . , depend
upon Bi. Thus, Θ = fn(ξ, Fo,Bi), as we would expect. This result, although
more complicated than the result for b.c.’s of the first kind, still reduces
to a single term for Fo ❳ 0.2.

Similar series solutions can be constructed for cylinders and spheres
that are convectively cooled at their outer surface, r = ro. The solutions
for slab, cylinders, and spheres all have the form

Θ = T − T∞
Ti − T∞

=
∞∑︂
n=1

An exp
(︂
−λ̂2

n Fo
)︂
fn (5.36)

where the coefficients An, the functions fn, and the equations for the
dimensionless eigenvalues λ̂n are given in Table 5.1.

5.4 Temperature-response charts

Methods of solution like those in Section 5.3 were once the norm in
solving heat conduction problems. Today, direct numerical solution
of the differential equations has largely replaced series methods for
problems of any complexity. Available software requires little more
than inputting the shape, boundary and initial conditions, and material
properties. The series solutions, however, lead to certain simplified

4See, for example, [5.1, §2.3.4] or [5.2, §3.4.3] for details of this calculation.
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equations and to graphical representations which are often far easier to
use than software. Graphs also reveal much about the behavior of heat
conduction in simple configurations.

Such graphs can take many forms. We offer Figs. 5.7, 5.8, and 5.9 as
forms we deem most useful. They are for slabs cooled or heated on one
side and insulated on the other, for infinitely long cylinders cooled or
heated on the outside, and for spheres heated or cooled on the outside.
In each chart, the temperature Θ is given as a function of the Biot number
at different values of the Fourier number (the dimensionless time). Each
set of curves is for four positions within the body.

Notice some features common to all these sets of curves:

• For a given Biot number and position, Θ decreases from the initial
value of one, toward a final value of zero as Fo increases. For Bi > 1,
the heat transfer process is effectively finished by the time Fo reaches
1 to 2, depending on the shape of the body.

• The rate of cooling or heating increases with increasing Bi since the
external thermal resistance is lower.

• When Bi is on the order of 0.1 or less, the internal temperature
is nearly the same at all positions within the body: internal tem-
perature gradients are negligible because the external resistance
dominates. This is pure lumped-capacity behavior, and the simple
lumped capacity solution eqn. (1.22) can be used instead of the
series solutions.

• As mentioned in Section 5.3, when Fo ❳ 0.2, only the first term of
either eqn. (5.34) or (5.36) is important. We can then have a very
simple equation for Θ, which we will discuss in Section 5.5.

• For small values of Fo (very short times after the transient begins),
the center of the body remains close toΘ = 1 (negligible temperature
change) especially when Bi is not very large. In fact, for the sphere,
Θ > 0.965 for all Bi when Fo ≤ 0.05. Cases like this are best analyzed
using the semi-infinite body solutions to be discussed in Section 5.6
[especially eqn. (5.53)].

Figures 5.7, 5.8, and 5.9 are of greatest value for doing calculations
in the ranges 0.05 ❲ Fo ❲ 0.2 and Bi ❳ 0.1, where simplifications of the
series solutions do not apply. They can also be used to quickly read an
approximate value in other ranges.
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Figure 5.7 The transient temperature distribution in a slab at
four positions: x/L = 0 is the center, x/L = 1 is one outside
boundary.
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Figure 5.8 The transient temperature distribution in a long
cylinder of radius ro at four positions: r/ro = 0 is the centerline;
r/ro = 1 is the outside boundary.
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Figure 5.9 The transient temperature distribution in a sphere
of radius ro at four positions: r/ro = 0 is the center; r/ro = 1
is the outside boundary.
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Figures 5.7, 5.8, and 5.9 are the authors’ original work. However,
various temperature response charts are often called by the generic name
Heisler charts, after charts published by Heisler in 1947 [5.3].

Another useful chart derivable from eqn. (5.34) gives the heat removal
from a body up to a time of interest:∫︂ t

0
Qdt = −

⌠⌡ t
0

kA
∂T
∂x

⃓⃓⃓⃓
surface

dt

= −
⌠⌡ Fo

0

kA
(Ti − T∞)

L
∂Θ
∂ξ

⃓⃓⃓⃓
⃓

surface

(︄
L2

α

)︄
dFo

Dividing this integral by the internal energy of the body relative to T∞,
we get a quantity Φ that approaches one as t ⎯→∞, when all the energy
has been transferred to the surroundings:

Φ ≡

∫︂ t
0
Qdt

ρcV(Ti − T∞)
= −

⌠⌡ Fo

0

∂Θ
∂ξ

⃓⃓⃓⃓
⃓

surface

dFo (5.37)

For a slab, the volume isV = AL. Substituting the appropriate temperature
distribution [e.g., eqn. (5.34) for a slab] into eqn. (5.37), we obtain Φ as an
infinite series

Φ(Fo, Bi) = 1−
∞∑︂
n=1

Dn exp
(︂
−λ̂2

n Fo
)︂

(5.38)

The coefficients Dn are functions of λ̂n—and thus of Bi—for slabs, cylin-
ders, and spheres (e.g., for a slab Dn = An sin λ̂n

/︁
λ̂n). These functions

can be used to plot Φ(Fo,Bi) once and for all. Such curves are given in
Fig. 5.10.

The quantity Φ has a close relationship to the mean temperature of a
body at any time, T(t). Specifically, the internal energy lost as heat by
time t determines the difference between the initial temperature and the
mean temperature at time t∫︂ t

0
Qdt =

[︁
U(0)−U(t)

]︁
= ρcV

[︁
Ti − T(t)

]︁
(5.39)

Thus, we find the relationship of T(t) to Φ, defining Θ as shown:

Θ ≡ T(t)− T∞
Ti − T∞

= 1−

∫︂ t
0
Q(t)dt

ρcV(Ti − T∞)
= 1− Φ (5.40)
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Figure 5.10 The heat removal from suddenly-cooled bodies as a function
of h and time.
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Example 5.2

A dozen approximately spherical apples, 10 cm in diameter are taken
from a 30◦C environment and laid out on a rack in a refrigerator at
5◦C. They have approximately the same physical properties as water,
and h is approximately 6 W/m2K as the result of natural convection.
What will be the temperature of the centers of the apples after 1 hr?
How long will it take to bring the centers to 10◦C? How much heat will
the refrigerator have to carry away to get the centers to 10◦C?

Solution. After 1 hr, or 3600 s:

Fo = αt
r2
o
=
(︄
k
ρc

)︄
20◦C

3600 s
(0.05 m)2

= (0.603 J/s·m·K)(3600 s)
(997.6 kg/m3)(4180 J/kg·K)(0.0025 m2)

= 0.208

Furthermore, Bi = (hro/k) = 6(0.05)/0.603 = 0.498 ≈ 0.5. Therefore,
we read from Fig. 5.9 in the upper middle:

Θ ≈ 0.84

After 1 hr:

Tcenter = 0.84(30− 5)◦C+ 5◦C = 26.0◦C

To find the time to bring the center to 10◦C, we first calculate

Θ = 10− 5
30− 5

= 0.2

and Bi is still 0.5. Then from Fig. 5.9 we read

Fo ≈ 1.3 = αt
r2
o

so

t = 1.3(997.6)(4180)(0.0025)
0.603

= 22,475 s = 6 hr 15 min

Finally, we look up Φ at Bi = 0.5 and Fo = 1.3 in Fig. 5.10, for
spheres:

Φ ≈ 0.82 =

∫︂ t
0
Qdt

ρc
(︂

4
3πr

3
0

)︂
(Ti − T∞)
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so∫︂ t
0
Qdt = 997.6(4180)

(︃
4
3
π(0.05)3

)︃
(25)(0.82) = 44,760 J/apple

Therefore, for the 12 apples,

total energy removal = 12(44.76) = 537 kJ

The temperature-response charts in Fig. 5.7 through Fig. 5.10 without
a doubt cover the most useful configurations. And they can be adapted to
still more physical situations. Beyond these charts, hundreds of additional
charts have been drawn for other cases; see, for example, Schneider’s [5.4]
catalog of such charts. Analytical solutions, including many other series
results, are available for thousands more problems, and any reader faced
with a complex heat conduction calculation would do well consult the
literature before trying to solve it. An excellent starting point is Carslaw
and Jaeger’s comprehensive treatise on heat conduction [5.5].

Example 5.3

We use a 1 mm diameter Nichrome (20% Ni, 80% Cr) wire, immersed
in liquid, both as an electrical resistance heater and as a resistance
thermometer. We wish to measure the boiling heat transfer coefficient,
h, by supplying an alternating current and measuring the difference
between the liquid temperature, T∞, and the average heater tempera-
ture, Tav. We get h = 30,000 W/m2K at a wire temperature of 100◦C
and are delighted with such a high value. Then a colleague suggests
that h is so high because the surface temperature is rapidly oscillating
as a result of the alternating current. Is this hypothesis correct?

Solution. Heat is being generated in proportion to the product of
voltage and current, or as sin2ωt, where ω is the frequency of the
current in rad/s. If the boiling action removes heat rapidly enough in
comparison with the heat capacity of the wire, the surface temperature
may well vary significantly. This transient conduction problem was
first solved by Jeglic in 1962 [5.6]. It was redone in a different form two
years later by Switzer and Lienhard (see, e.g. [5.7]), who gave response
curves in the form

Tmax − Tav

Tav − T∞
= fn

(︁
Bi,ψ

)︁
(5.41)
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where the left-hand side is the dimensionless range of the temperature
oscillation, and ψ = ωδ2/α, where δ is a characteristic length [see
Problem 5.56]. Because this problem is common and the solution is
not widely available, we include the curves for flat plates and cylinders
in Figs. 5.11 and 5.12, respectively, on pages 217 and 218.

In the present case:

Bi = h radius
k

= 30,000(0.0005)
13.8

= 1.09

ωr2

α
= [2π(60)](0.0005)2

0.00000343
= 27.5

and from the chart for cylinders, Fig. 5.12, we find that

Tmax − Tav

Tav − T∞
≃ 0.04

A temperature fluctuation of only 4% is probably not serious. The
experiment appears to have been valid.

5.5 One-term solutions

We have noted previously that when the Fourier number is greater than
0.2 or so, the series solutions from eqn. (5.36) may be approximated using
only the first term:

Θ ≈ A1 · f1 · exp
(︂
−λ̂2

1 Fo
)︂
. (5.42)

Likewise, the fractional heat loss, Φ, or the mean temperature Θ from
eqn. (5.40), can be approximated using just the first term of eqn. (5.38):

Θ = 1− Φ ≈ D1 exp
(︂
−λ̂2

1 Fo
)︂
. (5.43)

Table 5.2 lists the values of λ̂1, A1, andD1 for slabs, cylinders, and spheres
as a function of the Biot number. The one-term solution’s error in Θ is
less than 0.1% for a sphere with Fo ≥ 0.28 and for a slab with Fo ≥ 0.43.
These errors are largest for Biot numbers near one. If high accuracy is
not required, the one-term solutions may be used whenever Fo ≥ 0.2.

Ostrogorsky [5.8] has provided simple correlations for λ̂1, A1, and
D1, as well as two and three term solutions accurate for Fo ❳ 0.05 [5.9].
These solutions are convenient for numerical work—in fact, we used those
results to compute Figs. 5.7–5.10.

To appreciate the greater precision possible with the one-term solu-
tions, the reader should repeat Example 5.2 using them (Problem 5.57).
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Table 5.2 One-term coefficients for transient conduction with surface convection [5.1].

Slab Cylinder Sphere
Bi

λ̂1 A1 D1 λ̂1 A1 D1 λ̂1 A1 D1

0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000
0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000
0.03 0.17234 1.0049 1.0000 0.24403 1.0075 1.0000 0.29910 1.0090 1.0000
0.04 0.19868 1.0066 1.0000 0.28143 1.0099 1.0000 0.34503 1.0120 1.0000
0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000
0.06 0.24253 1.0098 0.9999 0.34383 1.0148 0.9999 0.42173 1.0179 0.9999
0.07 0.26153 1.0114 0.9999 0.37092 1.0173 0.9999 0.45506 1.0209 0.9999
0.08 0.27913 1.0130 0.9999 0.39603 1.0197 0.9999 0.48600 1.0239 0.9999
0.09 0.29557 1.0145 0.9998 0.41954 1.0222 0.9998 0.51497 1.0268 0.9999

0.10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.9998
0.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996
0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993
0.25 0.48009 1.0382 0.9988 0.68559 1.0598 0.9988 0.84473 1.0737 0.9990
0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985
0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974
0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960
0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944
0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925
0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904
0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880

1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855
1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828
1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800
1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770
1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739
1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707
1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674
1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605
2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534
2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462
2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389

3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171
4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830
5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533
6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281
8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889

10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607
20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922
50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434

100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259
∞ 1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079
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5.6 Transient heat conduction to a semi-infinite
region

Introduction

Bronowksi’s classic television series, The Ascent of Man [5.10], included
a brilliant reenactment of the ancient ceremonial procedure by which
the Japanese forged Samurai swords (see Fig. 5.13). The metal is heated,
folded, beaten, and formed, over and over, to create a blade of remarkable
toughness and flexibility. When the blade is formed to its final configura-
tion, a tapered sheath of clay is baked on the outside of it, so the cross
section is as shown in Fig. 5.13. The red-hot blade with the clay sheath is
then subjected to a rapid quenching, which cools the uninsulated cutting
edge quickly and the back part of the blade very slowly. The result is a
layer of case-hardening that makes the blade very hard at the edge and
more flexible at points farther from the edge.

Figure 5.13 The ceremonial case-hardening of a Samurai sword.

http://www.dailymotion.com/video/x1ztzjc_bbc-ascent-of-man-03-hidden-structure_tv
http://www.uh.edu/engines/epi1384.htm
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Figure 5.14 The initial cooling of a thin
sword blade. Prior to t = t4, the blade might
as well be infinitely thick insofar as cooling is
concerned.

The blade is then tough and ductile, so it will not break, but has a fine
hard outer shell that can be honed to sharpness. We need only look a
little way up the side of the clay sheath to find a cross section that was
thick enough to prevent the blade from experiencing the sudden effects
of the cooling quench. The success of the process actually relies on the
failure of the cooling to penetrate the clay very deeply in a short time.

So we need to ask, “Is a particular heating or cooling restricted to
the surface of a body?” or, turning the question around, “Under what
conditions can we view the depth of a body as infinite with respect to the
thickness of the region that has felt the heat transfer process?”

First let us answer this question in the case where a finite body is
exposed to a sudden temperature change—no clay retardant or even a
heat transfer coefficient—just a sudden change of surface temperature.
The temperature distribution, in this case, is sketched in Fig. 5.14 for
four sequential times. Only the fourth curve—that for which t = t4—is
noticeably influenced by the opposite wall. Up to that time, the wall might
as well have infinite depth.

Since any body subjected to a sudden change of temperature is in-
finitely large in comparison with the initial region of temperature change,
we must learn how to treat heat transfer during this initial period.

Solution aided by dimensional analysis

The calculation of the temperature distribution in a semi-infinite region
poses a difficulty: we can impose a definite b.c. at only one position—the
exposed boundary. We get around that difficulty in a nice way with the
help of dimensional analysis.
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When the one boundary of a semi-infinite region, initially at T = Ti, is
suddenly cooled (or heated) to a new temperature, T∞, as in Fig. 5.14, the
dimensional function equation is

T − T∞ = fn
[︁
t, x,α, (Ti − T∞)

]︁
which has no characteristic length or time. Since there are five variables
in K, m, and s, we should look for two nondimensional groups:

T − T∞
Ti − T∞⏞ ⏟⏟ ⏞

≡Θ

= fn
(︃

x√
αt⏞ ⏟⏟ ⏞
≡ζ

)︃
(5.44)

The very important thing that we learn from this exercise in dimen-
sional analysis is that position and time collapse into one independent
variable. This means that the heat conduction equation and its b.c.s must
transform from a partial differential equation into a simpler ordinary dif-
ferential equation in the single variable, ζ = x

/︁√
αt. Thus, we transform

each side of
∂2T
∂x2

= 1
α
∂T
∂t

as follows, where we set ∆T ≡ Ti − T∞:

∂T
∂t

= (Ti − T∞)
∂Θ
∂t

= ∆T ∂Θ
∂ζ

∂ζ
∂t

= ∆T
(︃
− x

2t
√
αt

)︃
∂Θ
∂ζ

;

∂T
∂x

= ∆T ∂Θ
∂ζ

∂ζ
∂x

= ∆T√
αt

∂Θ
∂ζ

;

and
∂2T
∂x2

= ∆T√
αt

∂2Θ
∂ζ2

∂ζ
∂x

= ∆T
αt

∂2Θ
∂ζ2

.

Substituting the first and last of these derivatives in the heat conduction
equation, we get the ordinary differential equation

d2Θ
dζ2

= −ζ
2
dΘ
dζ

(5.45)

Notice that we changed from partial to total derivative notation since
Θ now depends solely on ζ. The i.c. for eqn. (5.45) is

T(t = 0) = Ti or Θ
(︁
ζ →∞

)︁
= 1 (5.46)
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and the one known b.c. is

T(x = 0) = T∞ or Θ
(︁
ζ = 0

)︁
= 0 (5.47)

If we denote dΘ/dζ as χ, then eqn. (5.45) becomes the first-order
equation

dχ
dζ

= −ζ
2
χ

which can be integrated once to get

χ ≡ dΘ
dζ

= C1 e−ζ
2/4 (5.48)

We integrate this a second time to get

Θ = C1

∫︂ ζ
0
e−ζ

2/4 dζ + Θ(0)⏞ ⏟⏟ ⏞
= 0 according

to the b.c.

(5.49)

The b.c. is now satisfied, and we need only substitute eqn. (5.49) in the
i.c., eqn. (5.46), to solve for C1:

1 = C1

∫︂∞
0
e−ζ

2/4 dζ

This particular definite integral is given by integral tables as
√
π , so

C1 =
1√
π

Thus the solution to the problem of conduction in a semi-infinite region,
subject to a b.c. of the first kind is

Θ = 1√
π

∫︂ ζ
0
e−ζ

2/4 dζ = 2√
π

∫︂ ζ/2
0

e−s
2
ds ≡ erf

(︁
ζ/2

)︁
(5.50)

The second integral in eqn. (5.50), obtained by a change of variables,
is called the error function, erf(x). Its name arises from its relationship
to certain statistical problems related to the Gaussian distribution, which
describes random errors. In Table 5.3, we list values of the error function
and the complementary error function, erfc(x) ≡ 1 − erf(x). Equation
(5.50) is also plotted in Fig. 5.15.
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Table 5.3 Error function and complementary error function.

ζ
/︁
2 erf(ζ/2) erfc(ζ/2) ζ

/︁
2 erf(ζ/2) erfc(ζ/2)

0.00 0.00000 1.00000 1.10 0.88021 0.11980
0.05 0.05637 0.94363 1.20 0.91031 0.08969
0.10 0.11246 0.88754 1.30 0.93401 0.06599
0.15 0.16800 0.83200 1.40 0.95229 0.04771
0.20 0.22270 0.77730 1.50 0.96611 0.03389
0.30 0.32863 0.67137 1.60 0.97635 0.02365
0.40 0.42839 0.57161 1.70 0.98379 0.01621
0.50 0.52050 0.47950 1.80 0.98909 0.01091
0.60 0.60386 0.39614 1.8214 0.99000 0.01000
0.70 0.67780 0.32220 1.90 0.99279 0.00721
0.80 0.74210 0.25790 2.00 0.99532 0.00468
0.90 0.79691 0.20309 2.50 0.99959 0.00041
1.00 0.84270 0.15730 3.00 0.99998 0.00002

In Fig. 5.15 we see that the early-time curves shown in Fig. 5.14 have
collapsed into a single curve. We did this using what is known as a
similarity transformation5: ζ/2 = x/2

√
αt. From the figure or from Table

5.3, we see that Θ ≥ 0.99 when

ζ
2
= x

2
√
αt

≥ 1.8214 or x ≥ δ99 ≡ 3.64
√︁
αt (5.51)

In other words, the local value of (T − T∞) is more than 99% of (Ti − T∞)
for positions in the slab farther from the surface than δ99 = 3.64

√
αt.

Example 5.4

For what maximum time can a Samurai sword be analyzed as a semi-
infinite region after it is quenched, if it has no clay coating and hexternal

≊ ∞?

Solution. First, we must guess the half-thickness of the sword (say, 3
mm) and its material (probably wrought iron with an average α around
1.5× 10−5 m2/s). The sword will be semi-infinite until δ99 equals the

5The transformation is based upon the “similarity” of spatial and temporal changes
in this problem.
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0

0.5

1

erf (ζ/𝟤)

ζ/𝟤 = 𝗑/𝟤√α𝗍

Θ =
𝖳− 𝖳∞

𝖳𝗂 − 𝖳∞

Figure 5.15 Temperature distribution
in a semi-infinite region.

half-thickness. Inverting eqn. (5.51), we find

t ⩽
δ2

99

3.642α
= (0.003 m)2

13.3(1.5)(10)−5 m2/s
= 0.045 s

Thus the quench would be felt at the centerline of the sword within
only 1 ⁄20 s. The thermal diffusivity of clay is smaller than that of steel
by a factor of about 30, so the quenching of the clay-covered steel must
continue for over 1 s before the temperature of the steel is affected at
all, if the clay and the sword thicknesses are comparable.

Equation (5.51) provides an interesting foretaste of the notion of a fluid
boundary layer. In the context of Fig. 1.9 and Fig. 1.10, we observe that free
stream flow around an object is disturbed in a thin layer near the object
because the fluid adheres to it. It turns out that the thickness, δ99, of
this boundary layer of altered flow velocity increases in the downstream
direction. For flow over a flat plate, this thickness is approximately
4.92

√
νt, where t is the time required for an element of the stream fluid

to move from the leading edge of the plate to a point of interest. This is
quite similar to eqn. (5.51), except that the thermal diffusivity, α, has been
replaced by its counterpart, the kinematic viscosity, ν , and the constant
is a bit larger. The velocity profile will resemble Fig. 5.15.

If we repeated the problem with a boundary condition of the third
kind, we would expect to get Θ = Θ(Bi, ζ)—except that there is no length,
L, upon which to build a Biot number. Therefore, we must replace L with√
αt, which has the dimension of length, so that

Θ = Θ
(︄
ζ,
h
√
αt
k

)︄
≡ Θ

(︁
ζ,β

)︁
(5.52)
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The term β ≡ h
√
αt
/︁
k is like the product: Bi

√
Fo. The solution of this

problem (see, e.g., [5.5], §2.7) can be conveniently written in terms of the
complementary error function, erfc(x) = 1− erf(x):

Θ = erf
ζ
2
+ exp

(︂
βζ + β2

)︂[︃
erfc

(︃
ζ
2
+ β

)︃]︃
(5.53)

We offer our own original graph of this result in Fig. 5.16. This figure
effectively shows curves of temperature (Θ) as a function of position (βζ)
for various values of time (β).

Equation (5.53) can be used for bodies of any shape as long as Fo is
low, that is, as long as heat transfer still occurs only near the surface.
When we apply this equation to a cylinder or a sphere, their curvature will
give rise to small errors—less than 6% for cylinders and 12% for spheres
when Fo ❲ 0.05, decreasing quickly as Fo as Fo decreases [5.9]. For larger
Fo, Figs. 5.7–5.9 may be used.

Example 5.5

Many of us have passed our finger through an 800◦C candle flame and
know that if we limit exposure to about 1 ⁄4 s we will not be burned.
Why not?

Solution. The short exposure to the flame causes only a very super-
ficial heating, so we consider the finger to be a semi-infinite region and
go to eqn. (5.53) to calculate (Tburn − Tflame)/(Ti − Tflame). It turns out
that the burn threshold of human skin, Tburn, is about 65◦C. (That is
why 140◦F or 60◦C tap water is considered to be “scalding.”) Therefore,
we shall calculate how long it will take for the surface temperature
of the finger to rise from body temperature (37◦C) to 65◦C, when
it is protected by an assumed h ≊ 100 W/m2K. We shall assume
that the thermal conductivity of human flesh equals that of its major
component—water—and that the thermal diffusivity is equal to the
known value for beef. Then

Θ = 65− 800
37− 800

= 0.963

βζ = hx
k
= 0 since x = 0 at the surface

β2 = h
2
αt
k2

= 1002(0.135× 10−6)t
0.632

= 0.0034(t s)
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The situation is quite far into the top-left corner of Fig. 5.16. We can
see only that β < 0.1. Instead, we must go to eqn. (5.53):

0.963 = erf 0⏞ ⏟⏟ ⏞
=0

+e0.0034t
[︂
erfc

(︂
0+

√︁
0.0034 t

)︂]︂

By trial and error, we get t ≊ 0.33 s. In fact, it can be shown that

Θ(ζ = 0, β) ≊ 1− 2β√
π

for β≪ 1

which can be solved directly for β = (1 − 0.963)
√
π/2 = 0.03279,

which is about the same answer.
Thus one’s skin comes to the burn point in about 1 ⁄3 of a second if

we have guessed a reasonable value of h.

Experiment 5.1

Immerse your hand in the subfreezing air in the freezer compartment
of your refrigerator. Next immerse your finger in a mixture of ice cubes
and water, but do not move it. Then, immerse your finger in a mixture
of ice cubes and water , swirling it around as you do so. Describe your
initial sensation in each case, and explain the differences in terms of
Fig. 5.16. What variable has changed from one case to another? ♦

Heat transfer

Heat will be removed from the exposed surface of a semi-infinite re-
gion, with a b.c. of either the first or the third kind, in accordance with
Fourier’s law:

q = −k ∂T
∂x

⃓⃓⃓⃓
x=0

= k(T∞ − Ti)√
αt

dΘ
dζ

⃓⃓⃓⃓
⃓
ζ=0

For the b.c. of the first kind, we differentiate Θ as given by eqn. (5.50)
to obtain

q = k(T∞ − Ti)√
αt

(︃
1√
π
e−ζ

2/4
)︃
ζ=0

= k(T∞ − Ti)√
παt

(5.54)

Thus, q decreases with increasing time, as t−1/2. When the temperature
of the surface is first changed, the heat removal rate is enormous. Then
it drops off rapidly.
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We also might suddenly apply a specified heat flux, qw , at the boundary
of a semi-infinite region (a second-kind b.c.). In such a case, we can
differentiate the heat conduction equation with respect to x, so that

α
∂3T
∂x3

= ∂2T
∂t ∂x

When we substitute q = −k∂T/∂x in this, we obtain

α
∂2q
∂x2

= ∂q
∂t

with the b.c.’s:

q(x = 0, t > 0) = qw or
qw − q
qw

⃓⃓⃓⃓
⃓
x=0

= 0

q(x ⩾ 0, t = 0) = 0 or
qw − q
qw

⃓⃓⃓⃓
⃓
t=0

= 1

What we have done here is quite elegant. We have made the problem
of predicting the local heat flux q into exactly the same form as that of
predicting the local temperature in a semi-infinite region subjected to
a step change of wall temperature. Therefore, the solution must be the
same:

qw − q
qw

= erf
(︃

x
2
√
αt

)︃
. (5.55)

The temperature distribution is obtained by integrating Fourier’s law. At
the wall, for example ∫︂ Tw

Ti
dT = −

∫︂ 0

∞

q
k
dx

where Ti = T(x →∞) and Tw = T(x = 0). Then

Tw = Ti +
qw
k

∫︂∞
0

erfc
(︁
x/2

√︁
αt
)︁
dx

This becomes

Tw = Ti +
qw
k

√︁
αt
∫︂∞

0
erfc(ζ/2)dζ⏞ ⏟⏟ ⏞
=2/

√
π

so

Tw(t) = Ti + 2
qw
k

√︄
αt
π

(5.56)
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Figure 5.17 A bubble growing in
a superheated liquid.

Example 5.6 Predicting the Growth Rate of a Vapor Bub-
ble in an Infinite Superheated Liquid

This prediction is relevant to a large variety of processes, ranging from
nuclear reactor thermohydraulics to direct-contact heat exchangers.
It was originally presented by Max Jakob and others in the early 1930s
(see, e.g., [5.11, Chap. I]). Jakob (pronounced Yah′-kob) was an impor-
tant figure in heat transfer during the 1920s and 1930s. He left Nazi
Germany in 1936 to come to the United States. We will encounter his
name again in Chapter 8.

Figure 5.17 shows how growth occurs. A small gas or vapor cavity
in the heated surface below the liquid will grow into the liquid above.
The bottom of a tea kettle is such a surface.

This bubble grows into the surrounding liquid because its boundary
is kept at the saturation temperature, Tsat, by the coexistence of liquid
and vapor. Therefore heat must flow from the surrounding liquid,
which is slightly hotter, at Tsup, to the interface, where evaporation
occurs. So long as the layer of cooled liquid is thin, we may not suffer
too much error by using the one-dimensional semi-infinite region
solution to predict the heat flow.

http://www.uh.edu/engines/epi1546.htm
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Thus, we can write the energy balance at the bubble interface, R(t):

(︃
−q W

m2

)︃(︂
4πR2 m2

)︂
⏞ ⏟⏟ ⏞

heat transfer into bubble

=
(︃
ρghfg

J
m3

)︃(︄
dV
dt

m3

s

)︄
⏞ ⏟⏟ ⏞

rate of energy increase
of the bubble

where ρg and hfg are the vapor density and latent heat of vaporization
at the saturation temperature. Substituting eqn. (5.54) for q and
4πR3

/︁
3 for the volume, V , the result is

k(Tsup − Tsat)√
απt

= ρghfg
dR
dt

(5.57)

Integrating eqn. (5.57) from R = 0 at t = 0 up to R at t, we obtain
Jakob’s prediction:

R = 2√
π

k∆T
ρghfg

√
α

√︁
t (5.58)

This analysis was done without assuming the curved bubble interface
to be plane, 24 years after Jakob’s work, by Plesset and Zwick [5.12]. It was
verified in a more exact way after another 5 years by Scriven [5.13]. These
calculations are more complicated, but they lead to a very similar result:

R = 2
√

3√
π

k∆T
ρghfg

√
α

√︁
t =

√
3RJakob. (5.59)

Both predictions are compared with some of the data of Dergarabedian
[5.14] in Fig. 5.18. The data and the exact theory match almost perfectly.
The simple theory of Jakob et al. shows the correct dependence of R on
all its variables, but has a growth rate that is low by a factor of

√
3. This

discrepancy occurs because the expansion of the spherical bubble causes
a relative motion of liquid toward the bubble surface, which helps to
thin the region of thermal influence in the radial direction [5.15, pg. 89].
Consequently, the temperature gradient and heat transfer rate are higher
than in Jakob’s model, which neglected the liquid motion. Therefore, the
temperature profile flattens out more slowly than Jakob predicted, and
the bubble grows more rapidly.
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Figure 5.18 The growth of a vapor bubble—predictions and
measurements.

Contact temperature between two semi-infinite regions

The more advanced theory of heat conduction (see, e.g., [5.5]) shows that
if two semi-infinite regions at uniform temperatures T1 and T2 are placed
together suddenly, their interface temperature, Ts , is given by

Ts − T2

T1 − T2
=

√︂(︁
kρcp

)︁
1√︂(︁

kρcp
)︁

1 +
√︂(︁
kρcp

)︁
2

(5.60)

For semi-infinite regions initially at uniform temperatures, Ts does not
vary with time. A constant value of Ts means the two bodies each behave as
a semi-infinite body whose surface temperature changed to Ts at time zero.
Consequently, our previous results—eqns. (5.50), (5.51), and (5.54)—all
apply to each of these bodies during the period when they may be treated
as semi-infinite.6 We need only replace T∞ by Ts in those equations.

Experiment 5.2

Let us touch various objects in the room around us—glass, wood,
corkboard, paper, steel—perhaps even gold or diamond. Rank them

6For any finite body, Ts will eventually change.
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in order of which feels coldest at the first instant of contact (see
Problem 5.29).

We identify one region with our body temperature (T1 ≃ 37◦C) and
the other with an with an object at, say T2 ≃ 20◦C, that we touch.
Equation (5.60) will then allow us to calculate the temperature, Ts , that
the surface of our finger immediately reaches upon contact. Compare
the ranking you obtain experimentally to the ranking given by this
equation.

Notice that our bloodstream and capillary systems provide a heat
source to our finger, so eqn. (5.60) is valid only for a moment. Then
we start replacing the heat we’ve lost to the objects. If we include a
diamond among the objects that we touch, it will first seem quite cold
since it has the highest known value of α. Diamonds are sometimes
called by the slang term “ice” for that reason. However, most diamonds
are also quite small. They thus behave as a semi-infinite region only
very briefly before they warm toward our finger’s temperature. ♦

Conduction to a semi-infinite region with a harmonically
oscillating temperature at the boundary

Suppose that we approximate the annual variation of the ambient temper-
ature as sinusoidal, T +∆T cosωt, where T is the time-average surface
temperature. Then we may ask what the influence of this variation will
be on the temperature T(x, t) beneath the ground. We want to calculate
T − T as a function of: depth, x; thermal diffusivity, α; frequency of
oscillation, ω; amplitude of oscillation, ∆T ; and time, t. There are six
variables in K, m, and s, so the problem can be represented in three
dimensionless variables:

Θ ≡ T − T
∆T

; Ω ≡ωt; ξ ≡ x
√︃
ω
2α
.

We pose the problem as follows in these variables. The heat conduction
equation is

1
2
∂2Θ
∂ξ2

= ∂Θ
∂Ω

(5.61)

and the b.c.’s are

Θ
⃓⃓⃓
ξ=0

= cosωt and Θ
⃓⃓⃓
ξ>0

= finite

No i.c. is needed because, after the initial transient decays, the remaining
steady oscillation must be periodic.
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Figure 5.19 The temperature variation within a semi-infinite
region whose temperature varies harmonically at the boundary.

The solution is given by Carslaw and Jaeger (see [5.5, §2.6] or work
Problem 5.16):

Θ
(︁
ξ,Ω

)︁
= e−ξ cos

(︁
Ω − ξ

)︁
(5.62)

This result is plotted in Fig. 5.19. The surface temperature variation decays
exponentially into the region and suffers a phase shift as it does so.

Example 5.7

How deep in the earth must we dig to find the temperature wave that
was launched by the coldest part of the last winter if it is now high
summer?

Solution. ω = 2π rad/yr, and Ω = ωt = 0 at the hottest time in
summer. First, we must find the depths at which the Ω = 0 curve
reaches its local extrema.

dΘ
dξ

⃓⃓⃓⃓
⃓
Ω=0

= −e−ξ cos
(︁
0− ξ

)︁
+ e−ξ sin

(︁
0− ξ

)︁
= 0

This gives

tan
(︁
0− ξ

)︁
= 1 so ξ = 3π

4
,
7π
4
, . . .
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and the first minimum occurs where ξ = 3π/4 = 2.356, as we can see
in Fig. 5.19. Thus,

ξ = x
√︁
ω/2α = 2.356

or, if we take α = 0.139× 10−6 m2/s (for coarse, gravelly earth [5.16]),

x = 2.356

/︄√︄
2π

2
(︁
0.139× 10−6

)︁ 1
365(24)(3600)

= 2.783 m

If we dug in the earth, we would find it growing colder and colder until
it reached a maximum coldness at a depth of about 2.8 m. Farther
down, it would begin to warm up again, but not much. In midwinter
(Ω = π), the reverse would be true.

5.7 Steady multidimensional heat conduction

Introduction

The general equation for T(r⃗ ) during steady conduction in a region of
constant thermal conductivity, without heat sources, is called Laplace’s
equation:

∇2T = 0 (5.63)

It looks easier to solve than it is, since the Laplacian, ∇2T , is a sum of
several second partial derivatives [recall eqn. (2.12) and eqn. (2.14)]. We
solved one two-dimensional heat conduction problem in Example 4.1,
but this was not difficult because the boundary conditions matched the
coordinates very nicely. Depending upon one’s mathematical background
and the specific problem, the analytical solution of multidimensional
problems can be anything from a straightforward calculation to a consid-
erable challenge. The reader who wishes to study such analyses in depth
should refer to [5.5] or [5.17].

Faced with a steady multidimensional problem, four routes are open
to us:

• Check whether the analytical solution is available in a heat conduc-
tion text or in other published literature.

• Solve the problem analytically.

• Obtain the solution by numerical analysis.

• Obtain the solution graphically if the problem is two-dimensional.
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Figure 5.20 The two-dimensional flow of
heat between two isothermal walls.

The last of these options is out of style as a solution method, yet it is
remarkably simple and effective. We turn to it next since anyone who
takes the trouble to master it will develop an uncommonly strong intuitive
understanding of multidimensional heat transfer along the way.

The flux plot

The method of flux plotting will solve all steady planar problems in which
all boundaries are held at either of two temperatures or are insulated.
With a little skill, it provides accuracies of a few percent—almost always
greater than the accuracy with which the b.c.’s and k can be specified.
And it reveals the physics of the problem very clearly.

Figure 5.20 shows heat flowing from one isothermal wall to another
in a regime that does not conform to any convenient coordinate scheme.
We identify a series of channels, each which carries the same heat flow,
δQ W/m. We also include a set of equally spaced isotherms, δT apart,
between the walls. Since the heat fluxes in all channels are the same,⃓⃓⃓

δQ
⃓⃓⃓
= k δT

δn
δs (5.64)

Notice that if we arrange things so that δQ, δT , and k are the same
for flow through each rectangle in the flow field, then δs/δn must be the
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same for each rectangle. We therefore arbitrarily set the ratio equal to
one, so all the elements appear as distorted squares.

The objective then is to sketch the isothermal lines and the adiabatic,7

or heat flow, lines that run perpendicular to them. This sketch is to be
done subject to two constraints:

1. Isothermal and adiabatic lines must intersect at right angles.

2. They must subdivide the region into elements that are nearly square—
“nearly” because they have slightly curved sides.

Once the grid has been sketched, the temperature anywhere in the field
can be read directly from the sketch. And the heat flow per unit depth
into the paper is

Q (W/m) = NkδT δs
δn

= N
I
k∆T (5.65)

where N is the number of heat flow channels and I is the number of
temperature increments, ∆T/δT .

The first step in constructing a flux plot is to draw the boundaries of the
region accurately in ink, using drawing software or drafting instruments.
The next is to obtain a soft pencil (such as a no. 2 grade) and a soft eraser.
We begin with an example that was executed nicely in the influential Heat
Transfer Notes [5.18] of the mid-twentieth century. This example is shown
in Fig. 5.21.

The particular example happens to have an axis of symmetry in it. We
immediately interpret this as an adiabatic boundary because heat cannot
cross it. The problem therefore reduces to the simpler one of sketching
lines in only one half of the area. We illustrate this process in four steps.
Notice the following steps and features in this plot:

• Begin by dividing the region, by sketching in either a single isother-
mal or adiabatic line.

• Fill in the lines perpendicular to the original line so as to make
squares. Allow the original line to move in such a way as to accom-
modate squares. This will always require some erasing. Therefore:

• Never make the original lines dark and firm.

7Adiabatic lines are ones in the direction of heat flow : Since by definition there can
be no component of heat flow normal to them, they must be adiabatic.
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• By successive subdividing of the squares, make the final grid. Do
not make the grid very fine. If you do, you will lose accuracy because
the lack of perpendicularity and squareness will be less evident to
the eye. Step IV in Fig. 5.21 is as fine a grid as should ever be made.

• If you have doubts about whether any large, ill-shaped regions are
correct, fill them in with an extra isotherm and adiabatic line to be
sure that they resolve into appropriate squares (see the dashed lines
in Fig. 5.21).

• Fill in the final grid, when you are sure of it, either in hard pencil or
pen, and erase any lingering background sketch lines.

• Your flow channels need not come out even. Notice that there is an
extra 1/7 of a channel in Fig. 5.21. This is simply counted as 1/7 of
a square in eqn. (5.65).

• Never allow isotherms or adiabatic lines to intersect themselves.

When the sketch is complete, we return to eqn. (5.65) to compute the
heat flux. In this case

Q = N
I
k∆T = 2(6.14)

4
k∆T = 3.07k∆T

When the authors of [5.18] drew the flux plot for this problem, they
obtained N/I = 3.00—a value only 2% below ours. This kind of agreement
is typical when flux plotting is done with care.

One must be careful not to grasp at a false axis of symmetry. Figure
5.22 shows a shape similar to the one that we just treated, but with
unequal legs. In this case, no lines must enter (or leave) the corners A and
B. The reason is that since there is no symmetry, we have no guidance as
to the direction of the lines at these corners. In particular, we know that
a line leaving A will no longer arrive at B.

Example 5.8

A structure consists of metal walls, 8 cm apart, with insulating material
(k = 0.12 W/m·K) between. Ribs 4 cm long protrude from one wall
every 14 cm. They can be assumed to stay at the temperature of that
wall. Find the heat flux through the wall if the first wall is at 40◦C and
the one with ribs is at 0◦C. Find the temperature in the middle of the
wall, 2 cm from a rib, as well.
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Figure 5.22 A flux plot with no axis of symmetry to guide
construction.

Solution. The flux plot for this configuration is shown in Fig. 5.23.
For a typical section, there are approximately 5.6 isothermal incre-
ments and 6.15 heat flow channels, so

Q = N
I
k∆T = 2(6.15)

5.6
(0.12)(40− 0) = 10.54 W/m

where the factor of 2 accounts for the fact that there are two halves in
the section. We deduce the temperature for the point of interest, A,
by a simple proportionality:

Tpoint A =
2.1
5.6

(40− 0) = 15◦C

The shape factor

A heat conduction shape factor S may be defined for steady problems
involving two isothermal surfaces as follows:

Q ≡ S k∆T (5.66)

Thus far, every steady heat conduction problem we have done has taken
this form. For these situations, the heat flow always equals a function of
the geometric shape of the body multiplied by k∆T .
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Figure 5.23 Heat transfer through a wall with isothermal ribs.

The shape factor can be obtained analytically, numerically, or through
flux plotting. For example, let us compare eqn. (5.65) and eqn. (5.66):

Q (W/m) = (S dimensionless)
(︃
k∆T

W
m

)︃
= N
I
k∆T (5.67)

This shows S to be dimensionless in a two-dimensional problem; but in
three dimensions S has units of meters:

Q (W) = (S m)
(︃
k∆T

W
m

)︃
(5.68)

It also follows that the thermal resistance of a two-dimensional body is

Rt =
1
kS

where Q = ∆T
Rt

(5.69)

For a three-dimensional body, eqn. (5.69) is unchanged except that the
dimensions of Q and Rt differ.8

8Recall that we noted after eqn. (2.22) that the dimensions of Rt changed, depending
on whether or not Q was expressed per unit length.
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Figure 5.24 The shape factor for two similar bodies of different size.

The virtue of the shape factor is that it summarizes a heat conduction
solution in a given configuration. Once S is known, it can be used again
and again. That S is nondimensional in two-dimensional configurations
means that Q is independent of the size of the body. Thus, in Fig. 5.21, S
is always 3.07—regardless of the size of the figure—and in Example 5.8,
S is 2(6.15)/5.6 = 2.20, whether or not the wall is made larger or smaller.
When a body’s breadth is increased so as to increase Q, its thickness in
the direction of heat flow is also increased so as to decrease Q by the
same factor.

Example 5.9

Calculate the shape factor for a one-quarter section of a thick cylinder.

Solution. We already know Rt for a thick cylinder. It is given by
eqn. (2.22). From it we compute

Scyl =
1
kRt

= 2π
ln(ro/ri)

so on the case of a quarter-cylinder,

S = π
2 ln(ro/ri)

The quarter-cylinder is pictured in Fig. 5.24 for a radius ratio, ro/ri = 3,
but for two different sizes. In both cases S = 1.43. (Note that the
same S is also given by the flux plot shown.)
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Figure 5.25 Heat transfer through a
thick, hollow sphere.

Example 5.10

Calculate S for a three-dimensional object—a thick hollow sphere, as
shown in Fig. 5.25. Notice that, in this case, since we expect the shape
factor to have the dimension of length, it should increase linearly with
the size of the sphere.

Solution. The general solution of the heat conduction equation in
spherical coordinates for purely radial heat flow (see Problem 4.1) is:

T = C1

r
+ C2

when T = fn(r only). The b.c.’s are

T(ri) = Ti and T(ro) = To

substituting the general solution in the b.c.’s we get

C1

ri
+ C2 = Ti and

C1

ro
+ C1 = To

Therefore,

C1 =
Ti − To
ro − ri

riro and C2 = Ti −
Ti − To
ro − ri

ro

Putting C1 and C2 in the general solution, and setting ∆T ≡ Ti − To,
we get

T = Ti +∆T
[︄

riro
r(ro − ri)

− ro
ro − ri

]︄
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Then

Q = −kA dT
dr

= 4π(riro)
ro − ri

k∆T

S = 4π(riro)
ro − ri

m

where S does indeed have the dimension of meters and is hence
size dependent.

Table 5.4 on page 246 includes a number of analytically derived shape
factors for use in calculating the heat flux in different configurations.
Notice that these results will not give temperature distributions. To obtain
that information, one must solve the Laplace equation,∇2T = 0, by one of
the methods listed at the beginning of this section. Notice, too, that this
table is restricted to bodies with isothermal and insulated boundaries.

The table lists two-dimensional configurations only for situations in
which we have two fixed temperatures, so that heat flows from one object
to another or from one side of an object to the other. Steady solutions
are not possible for a two-dimensional object that transfers heat to an
infinite or semi-infinite medium. For the same reason, cases 5, 6, and
7 in the table require that the medium far from the isothermal plane
also be at temperature T2. (Of course, no real medium is truly infinite,
so some steady state can eventually be reached.) Three-dimensional
configurations are a different story. They can come to equilibrium in
infinite or semi-infinite surroundings (see cases 4, 8, 12, and 13.)

Two other useful facts can help in finding shape factors. One is that
the shape factor inside a two-dimensional polygon is equal to the shape
factor for the infinite region outside it, for any combination of isothermal
and adiabatic boundaries, if no heat is transferred to the region at infinity.
The other is that objects with inverse symmetry, as in Problem 5.22,
cases (g) and (j), have a shape factor of one [5.19].

Example 5.11

A spherical heat source 6 cm in diameter, and kept at 35◦C, is buried
with its center 30 cm below a soil surface. The surface of the soil
is kept at 21◦C. If the steady heat transfer rate is 14 W, what is the
thermal conductivity of this sample of soil?

Solution. The value is S by situation 7 in Table 5.4:

Q = S k∆T =
(︃

4πR
1− R/2h

)︃
k∆T
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Then

k = 14 W
(35− 21)K

1− (0.06/2)
/︁
2(0.3)

4π(0.06/2) m
= 2.55 W/m·K

Readers who desire a broader catalogue of shape factors should refer
to [5.20] or [5.21].

The problem of locally vanishing resistance

Suppose that two different temperatures are specified on adjacent sides
of a square, as shown in Fig. 5.26. Counting channels beyond N ≃ 10
is futile, but it is clear that they multiply without limit in the lower left
corner. The shape factor in this case is

S = N
I
= ∞

4
= ∞

The problem is that we have violated our rule that isotherms cannot
intersect and have created a singularity at the corner. If we actually tried
to sustain such a situation, the figure would be correct at some distance
from the corner. At the corner itself, heat conduction in the bounding
region would force the two temperatures to merge smoothly. And an
infinite S could never really occur.

Figure 5.26 Resistance vanishes where
two isothermal boundaries intersect.



Table 5.4 Conduction shape factors: Q = S k∆T , Rt = 1
/︁
(kS).

Situation Shape factor, S Dimensions Source

1. Conduction through a slab A/L meter Example 2.2

2. Conduction through wall of a long
thick cylinder

2π
ln(ro/ri)

none Example 5.9

3. Conduction through a thick-walled
hollow sphere

4π(rori)
ro − ri

meter Example 5.10

4. The boundary of a spherical hole of
radius R conducting into an infinite
medium

4πR meter Problems 5.19
and 2.15

5. Cylinder of radius R and length L,
transferring heat to a parallel
isothermal plane; h≪ L

2πL
cosh−1(h/R)

meter [5.20]

6. Same as item 5, but with L ⎯→∞
(two-dimensional conduction)

2π
cosh−1(h/R)

none [5.20]

7. An isothermal sphere of radius R
transfers heat to an isothermal
plane; R/h < 0.8 (see item 4)

4πR
1− R/2h meter [5.20, 5.22]
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Table 5.4 Conduction shape factors: Q = S k∆T , Rt = 1
/︁
(kS) (con’t).

Situation Shape factor, S Dimensions Source

8. An isothermal sphere of radius R,
near an insulated plane, transfers
heat to a semi-infinite medium at T∞
(see items 4 and 7) 4πR

1+ R/2h meter [5.23]

9. Parallel cylinders exchange heat in
an infinite conducting medium

2π

cosh−1

(︄
L2 − R2

1 − R2
2

2R1R2

)︄ none [5.5]

10. Same as 9, but with cylinders widely
spaced; L≫ R1 and R2

2π

cosh−1
(︃
L

2R1

)︃
+ cosh−1

(︃
L

2R2

)︃ none [5.20]

11. Cylinder of radius Ri surrounded by
eccentric cylinder of radius Ro > Ri;
centerlines a distance L apart (see
item 2)

2π

cosh−1

(︄
R2
o + R2

i − L2

2RoRi

)︄
none [5.5]

12. Isothermal disk of radius R on an
otherwise insulated plane conducts
heat into a semi-infinite medium at
T∞ below it

4R meter [5.5]

13. Isothermal ellipsoid of semimajor
axis b and semiminor axes a
conducts heat into an infinite
medium at T∞ with b > a (see
item 4 for b = a)

4πb
√︂

1− a2
/︁
b2

tanh−1
(︂√︂

1− a2
/︁
b2
)︂ meter [5.20]
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5.8 Transient multidimensional heat conduction—
the tactic of superposition

Consider the cooling of a stubby cylinder, such as the one shown in
Fig. 5.27a. The cylinder is initially at T = Ti, and it is suddenly subjected
to a common b.c. on all sides. It has a length 2L and a radius ro. Finding the
temperature field in this situation is inherently complicated. It requires
solving the heat conduction equation for T = T(r , z, t) with b.c.’s of the
first, second, or third kind.

However, Fig. 5.27a suggests that this can somehow be viewed as a
combination of an infinite cylinder and an infinite slab. It turns out that
the problem can be analyzed from that point of view.

If the body is subject to uniform b.c.’s of the first, second, or third kind,
and it has a uniform initial temperature, then its temperature response will
simply be the product of the infinite slab and infinite cylinder solutions.
(Carslaw and Jaeger [5.5, §1.15] provide a proof of this useful fact.) So,
when the cylinder in Fig. 5.27a begins convective cooling into surroundings
at T∞ at time t = 0, we can write the temperature response as

T (r , z, t)− T∞ =
[︂
Tslab(z, t)− T∞

]︂
×
[︂
Tcyl(r , t)− T∞

]︂
(5.70a)

Observe that the slab has as a characteristic length L, its half thickness,
while the cylinder has as its characteristic length R, its radius. In dimen-
sionless form, we may write eqn. (5.70a) as

Θ ≡ T(r , z, t)− T∞
Ti − T∞

=
[︂
Θinf slab(ξ, Fos ,Bis)

]︂
×
[︂
Θinf cyl(ρ, Foc ,Bic)

]︂
(5.70b)

For the cylindrical component of the solution,

ρ = r
ro
, Foc =

αt
r2
o
, and Bic =

hro
k
,

while for the slab component of the solution

ξ = z
L
+ 1, Fos =

αt
L2
, and Bis =

hL
k
.

The component solutions are none other than those discussed in Sec-
tions 5.3–5.5. Note that the component solutions usually have different
values of Fo and Bi.



Figure 5.27 Various solid bodies whose transient cooling can
be treated as the product of one-dimensional solutions.
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Figure 5.27b shows a point inside a one-eighth-infinite region, near the
corner. This case may be regarded as the product of three semi-infinite
bodies. To find the temperature at this point we write

Θ ≡ T(x1, x2, x3, t)− T∞
Ti − T∞

=
[︁
Θsemi(ζ1, β)

]︁[︁
Θsemi(ζ2, β)

]︁[︁
Θsemi(ζ3, β)

]︁
(5.71)

in which Θsemi is either the semi-infinite body solution given by eqn. (5.53)
when convection is present at the boundary or the solution given by
eqn. (5.50) when the boundary temperature itself is changed at time zero.

Several other geometries can also be represented by product solutions.
Note that, for each of these solutions, the initial condition must be Θ = 1
for each factor in the product.

Example 5.12

A very long 4 cm square iron rod at Ti = 100◦C is suddenly immersed in
a coolant at T∞ = 20◦C with h = 800 W/m2K. What is the temperature
on a line 1 cm from one side and 2 cm from the adjoining side, after
10 s?

Solution. With reference to Fig. 5.27c, see that the bar may be
treated as the product of two slabs, each 4 cm thick. We first evaluate
Fo1 = Fo2 = αt/L2 = (0.0000226 m2/s)(10 s)

/︁
(0.04 m/2)2 = 0.565,

and Bi1 = Bi2 = hL
/︁
k = 800(0.04/2)/76 = 0.2105, and we then

write

Θ
[︃(︃
x
L

)︃
1
= 0,

(︃
x
L

)︃
2
= 1

2
, Fo1, Fo2,Bi−1

1 ,Bi−1
2

]︃

= Θ1

[︃(︃
x
L

)︃
1
= 0, Fo1 = 0.565, Bi−1

1 = 4.75
]︃

⏞ ⏟⏟ ⏞
≃ 0.93 from interpolation in the

upper set of curves in Fig. 5.7

×Θ2

[︃(︃
x
L

)︃
2
= 1

2
, Fo2 = 0.565, Bi−1

2 = 4.75
]︃

⏞ ⏟⏟ ⏞
≃ 0.91 from interpolation in the
second set of curves in Fig. 5.7

Thus, at the axial line of interest,

Θ = (0.93)(0.91) = 0.846
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so
T − 20

100− 20
= 0.846 or T = 87.7◦C

Product solutions can also be used to determine the mean tempera-
ture, Θ, and the total heat removal, Φ, from a multidimensional object.
For example, when two or three solutions (Θ1, Θ2, and perhaps Θ3) are
multiplied to obtain Θ, the corresponding mean temperature of the multi-
dimensional object is simply the product of the one-dimensional mean
temperatures from eqn. (5.40):

Θ = Θ1(Fo1,Bi1)×Θ2(Fo2,Bi2) for two factors (5.72a)

Θ = Θ1(Fo1,Bi1)×
Θ2(Fo2,Bi2)×Θ3(Fo3,Bi3) for three factors (5.72b)

Since Φ = 1 − Θ, a simple calculation shows that Φ can found from Φ1,
Φ2, and Φ3 as follows:

Φ = Φ1 + Φ2 (1− Φ1) for two factors (5.72c)

Φ = Φ1 + Φ2 (1− Φ1)+
Φ3 (1− Φ2) (1− Φ1) for three factors (5.72d)

Example 5.13

For the bar described in Example 5.12, what is the mean temperature
after 10 s and how much heat has been lost at that time?

Solution. For the Biot and Fourier numbers given in Example 5.12,
we find from Fig. 5.10a

Φ1(Fo1 = 0.565,Bi1 = 0.2105) ≃ 0.10

Φ2(Fo2 = 0.565,Bi2 = 0.2105) ≃ 0.10

and, with eqn. (5.72c),

Φ = Φ1 + Φ2 (1− Φ1) = 0.19

The mean temperature is

Θ = T − 20
100− 20

= 1− Φ = 0.81
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so

T = 20+ 80(0.81) = 84.8◦C

The heat lost, per unit length, is∫︂ t
0
Qdt = ρcpA(Ti − T∞)Φ

= (7,897)(447)(0.04)2(100− 20)(0.19) = 85.8 kJ/m

Problems

5.1 Rework Example 5.1, and replot the solution, with one change.
This time, insert the thermometer at time zero with an initial
temperature less than (Ti − bT ).

5.2 A body at an initial temperature Ti is suddenly immersed in a bath
whose temperature is rising as Tbath = Ti + (T0 − Ti)et/τ . Find the
temperature response of the body if: it is immersed at time t = 0;
the Biot number of the body is small; and the time constant of the
bath, τ , is ten times that of the body, T . Plot the temperatures of
the body and the bath temperature for 0 ≤ t/τ ≤ 2.

5.3 A body of known volume and surface area is immersed in a bath
whose temperature is varying sinusoidally with a frequency ω
about an average value. The heat transfer coefficient is known and
the Biot number is small. Find the temperature variation of the
body after a long time has passed, and plot it along with the bath
temperature. Comment on any interesting aspects of the solution.

A suggested program for solving this problem follows.

• Write the differential equation for the body’s temperature
response.

• To get the particular solution of the complete equation, guess
that T − Tmean = C1 cosωt + C2 sinωt. Substitute this in the
differential equation and find C1 and C2 values that will make
the resulting equation valid.

• Then add the homogeneous solution to the particular solution.
The result will have one unknown constant.
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• Write any initial condition you wish—the simplest one you can
think of—to eliminate the constant.

• Let the time be large and note which terms vanish from the
solution. Throw them away.

• Combine the two trigonometric terms in the solution into a
term involving sin(ωt − β), where β = fn(ωT ) is the phase
lag of the body temperature.

5.4 A block of copper floats on a large pool of liquid mercury in a thin
metal container (Fig. 5.28). The system is initially at a uniform
temperature, Ti. The heat transfer coefficient between the mercury
and external environment is hm, and that between the copper and
the mercury is hc . The external temperature is suddenly reduced
from Ti to Ts < Ti. Predict the temperature response of the copper
block, neglecting the internal resistance of both the copper and
the mercury. Check your result by seeing that it fits both initial
conditions and that it gives the expected behavior as t ⎯→∞.

Cu

Hg

hc

hm Figure 5.28 Configuration for
Problem 5.4.

5.5 Sketch the electrical circuit that is analogous to the second-order
lumped capacity system treated in Fig. 5.5 and explain it fully.

5.6 A one-inch diameter copper sphere with a thermocouple in its
center is mounted as shown in Fig. 5.29 and immersed in water that
is saturated at 211◦F. The figure shows an actual thermocouple
reading as a function of time during the quenching process. If the
Biot number is small, the center temperature can be interpreted as
the uniform temperature of the sphere during the quench. First
draw tangents to the curve, and graphically differentiate it. Then
use the resulting values of dT/dt to construct a graph of the heat
transfer coefficient as a function of (Tsphere − Tsat). Check to see
whether or not the largest value of the Biot number is too great to
permit the use of lumped-capacity methods.
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Figure 5.29 Configuration and temperature response for Problem 5.6

5.7 A butt-welded 36-gage thermocouple is placed in a gas flow whose
temperature rises at the rate 20◦C/s. The thermocouple steadily
records a temperature 2.4◦C below the known gas flow temperature.
If ρc is 3800 kJ/m3K for the thermocouple material, what is h on
the thermocouple? [h = 1006 W/m2K]

5.8 Check the point on Fig. 5.7 at Fo = 0.1, Bi = 10, and x/L = 0
analytically. How many eigenvalues do you need compute to obtain
two-digit accuracy?

5.9 Prove that when Bi is large, eqn. (5.34) reduces to eqn. (5.33).

5.10 For a slab, calculate Φ for Bi = 0.1 and Fo = 2.5 analytically and
compare to Fig. 5.10a.

5.11 Sketch the chart for one position in Fig. 5.7, 5.8, or 5.9 and identify:
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• The region in which b.c.’s of the third kind can be replaced
with b.c.’s of the first kind.

• The region in which a lumped-capacity response can be as-
sumed.

• The region in which the solid can be viewed as a semi-infinite
region.

5.12 Water flows over a flat slab of Nichrome, 0.05 mm thick, which
serves as a resistance heater using AC power. The apparent value
of h is 2000 W/m2K. How much surface temperature fluctuation
will there be? [1.4% of average ∆T ]

5.13 Put Jakob’s bubble growth formula, eqn. (5.58), into dimensionless
form, identifying a “Jakob number”, Ja ≡ cp(Tsup − Tsat)/hfg as
one of the groups. (Ja is the ratio of sensible heat to latent heat.)
Be certain that your nondimensionalization is consistent with the
Buckingham pi-theorem.

5.14 A 7 cm long vertical glass tube is filled with water that is slightly
superheated to T = 102◦C—not enough to trigger boiling. The
top is suddenly opened to an ambient pressure of 1 atm. Plot the
decrease of the height of water in the tube by evaporation as a
function of time until the bottom of the tube has cooled by 0.05◦C.
[Total time is 29 minutes]

5.15 A slab is cooled convectively on both sides from a known initial
temperature. Compare the variation of surface temperature with
time as given in Fig. 5.7 with that given by eqn. (5.53) if Bi = 2.
Discuss the meaning of your comparisons.

5.16 To obtain eqn. (5.62), assume a complex solution of the form
Θ = f(ξ)exp(iΩ), where i ≡

√
−1. This form assures that the

real part of your solution has the required periodicity; and, by
substituting into eqn. (5.61), you get an easy-to-solve ordinary d.e.
for f(ξ).

5.17 A steel piston cylinder wall is subjected to an oscillating surface
temperature which we approximate as T = 650◦C+(300◦C) cosωt.
The piston cycles eight times per second. To assess the thermal
stress, we need to plot the amplitude of the temperature variation
in the steel as a function of depth. Make this plot. If the cylinder
is 1 cm thick, can we view it as having infinite depth?
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5.18 A 40 cm diameter pipe at 75◦C is buried in a large block of Portland
cement. It runs parallel with a 15◦C isothermal surface at a depth
of 1 m. Plot the temperature distribution along the line normal
to the 15◦C surface that passes through the center of the pipe.
Compute the heat loss from the pipe analytically. Then obtain the
solution using either a flux plot or (if available) numerical software.

5.19 Derive shape factor 4 in Table 5.4.

5.20 Verify shape factor 9 in Table 5.4 with a flux plot. Use R1/R2 = 2
and R1/L = ½. (Be sure to start out with enough blank paper
surrounding the cylinders.)

5.21 A copper block 1 in. thick and 3 in. square is held at 100◦F on one 1
in. by 3 in. surface. The opposing 1 in. by 3 in. surface is adiabatic
for 2 in. and 90◦F for 1 inch. The remaining surfaces are adiabatic.
Find the rate of heat transfer using a flux plot. [Q ≃ 39 W]

5.22 Obtain the shape factor for any or all of the situations pictured
in Fig. 5.30a through j on pages 257–258. In each case, present a
well-drawn flux plot. You may optionally check these results using
numerical simulation software. [Sb ≃ 1.03, Sc ≃ 0.29, Sg = 1]

5.23 Two copper slabs, 3 cm thick and insulated on the outside, are
suddenly slapped tightly together. The one on the left side is
initially at 100◦C and the one on the right side at 0◦C. Determine
the left-hand adiabatic boundary’s temperature after 2.3 s have
elapsed. [Twall ≃ 80.5◦C]

5.24 Eggs cook as their proteins denature and coagulate. An egg is
considered to be “hard-boiled” when its yolk is firm, which corre-
sponds to a center temperature of 75◦C. Estimate the time requiredThe time to cook

depends on whether a
soft or hard boiled egg

desired. Eggs may be
cooked by placing them
(cold or warm) into cold

water before heating
starts or by placing warm

eggs directly into
simmering water [5.24].

to hard-boil an egg if:

• The minor diameter is 45 mm.

• k for the entire egg is about the same as for egg white. No
significant heat release or change of properties occurs during
cooking.

• h between the egg and the water is 1000 W/m2K.

• The egg has a uniform temperature of 20◦C when it is put into
simmering water at 85◦C.



Figure 5.30 Configurations for Problem 5.22

257



Figure 5.30 Configurations for Problem 5.22 (con’t)

258
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5.25 Prove that T1 cannot oscillate for the second-order lumped capacity
system described by eqn. (5.23).

5.26 Explain the reason that when isothermal and adiabatic lines are
interchanged in a two-dimensional body, the new shape factor is
the inverse of the original one.

5.27 A 0.5 cm diameter cylinder at 300◦C is suddenly immersed in
saturated water at 1 atm. The water boils and h = 10,000 W/m2K.
Find the centerline and surface temperatures for the cases that
follow. Hint: Evaluate Bi in each case before you begin.

a. After after 0.2 s if the cylinder is copper.

b. After after 0.2 s if the cylinder is Nichrome V. [Tsfc ≃ 216◦C]

c. If the cylinder is Nichrome V, obtain the most accurate value
of the temperatures after 0.04 s that you can [Tsfc ≃ 259◦C]

5.28 A large, flat electrical resistance strip heater is fastened to a firebrick
wall, which is uniformly at 15◦C. When the heater is suddenly turned
on, it releases heat at the uniform rate of 4000 W/m2. Plot the
temperature of the brick immediately under the heater as a function
of time if the other side of the heater is insulated. What is the heat
flux at a depth of 1 cm inside the wall when the surface reaches
200◦C. [q = 338 W/m2K]

5.29 Do Experiment 5.2 and submit a report on the results.

5.30 An approximately spherical container, 2 cm in diameter, containing
electronic equipment is placed in wet mineral soil with its center
2 m below the surface. The soil surface is kept at 0◦C. If the
interior construction of the sphere is such that its temperature
stays uniform, determine the rate at which energy can be released
by the equipment without driving the sphere surface above 30◦C.
[Q = 1.0 kW]

5.31 A semi-infinite slab of ice at−10◦C is exposed to air at 15◦C through
a heat transfer coefficient of 10 W/m2K. First, describe in words
what happens after the ice is exposed. Then determine the initial
and asymptotic (t →∞) rates of melting in kg/m2s. The latent heat
of fusion of ice, hsf , is 333,300 J/kg. [ṁmelt = 0.45 g/m2s]

5.32 One side of an insulating firebrick wall, 10 cm thick and initially at
20◦C, is exposed to 1000◦C flame through a heat transfer coefficient
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of 230 W/m2K. How long will it be before the other side is too hot
to touch, say, at 65◦C? Estimate properties at 500◦C, and assume
that h is low enough that the cool side can be treated as insulated.
[A little under 4 hours]

5.33 A particular lead bullet travels for 0.5 s within a shock wave that
heats the air near the bullet to 300◦C. Approximate the bullet as
a cylinder 0.8 cm in diameter. What is its surface temperature at
impact if h = 600 W/m2K and if the bullet was initially at 20◦C?
What is its center temperature?

5.34 A loaf of bread is removed from an oven at 125◦C and set on a
counter to cool in a kitchen at 25◦C. The loaf is 30 cm long, 15 cm
high, and 12 cm wide. Assume, for this problem, that the counter
is a very poor heat conductor so that bottom of the loaf loses no
heat. If k = 0.05 W/m·K and α = 5 × 10−7 m2/s for bread, and
h = 10 W/m2K, when will the hottest part of the loaf have cooled
to 60◦C? [About 1 h 5 min.]

5.35 A 1½ ton block of lead, 50 cm on each side, is initially at 20◦C. The
block is hoisted into a hot air stream at 200◦C and h around the
cube is 272 W/m2K. Plot the cube temperature along a line from
the center to the middle of one face after 20 minutes have elapsed.

5.36 A 1.24 mm diameter jet of clean water, superheated to 150◦C,
issues from a small orifice at 27 m/s, into air at 1 atm. Evaporation
at T = Tsat begins immediately on the surface of the jet. Plot the
centerline temperature of the jet and T(r/ro = 0.6) as functions
of distance from the orifice up to about 5 m. Neglect any axial
conduction and any dynamic interactions between the jet and the
air. (See [5.25] for this experiment.)

5.37 A 3 cm thick slab of aluminum (initially at 50◦C) is slapped tightly
against a 5 cm slab of copper (initially at 20◦C). The outsides are
both insulated and the contact resistance is negligible. What is the
initial interfacial temperature? Which slab will determine how long
the interface keeps its initial temperature? Estimate the time until
the interface temperature begins to change. [At least 0.7 s]

5.38 A cylindrical underground gasoline tank, 2 m in diameter and
4 m long, is embedded in 10◦C soil with k = 0.8 W/m·K and
α = 1.3×10−6 m2/s. Water at 27◦C is injected into the tank to test
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it for leaks. It is well-stirred with a submerged ½ kW pump. We
observe the water level in a 10 cm I.D. transparent standpipe and
measure its rate of rise and fall. What rate of change of height will
occur after one hour if there is no leakage? Will the level rise or
fall? Neglect thermal expansion and deformation of the tank, which
should be complete by the time the tank is filled. Hint: You will
need to look ahead to eqn. (8.7) to solve this problem. [−18.4 cm/h]

5.39 A 47◦C copper cylinder, 3 cm in diameter, is suddenly immersed
horizontally in water at 27◦C in a reduced gravity environment.
Plot Tcyl as a function of time if g = 0.76 m/s2 and if h = [2.733+
10.448(∆T ◦C)1/6 ]2 W/m2K. (If you cannot integrate the resulting
equation analytically, do it numerically.)

5.40 The mechanical engineers at the University of Utah end spring
semester by roasting a pig and having a picnic. The pig is roughly
cylindrical and about 26 cm in diameter. It is roasted over a propane
flame, whose products have properties similar to those of air, at
280◦C. The hot gas flows across the pig at about 2 m/s. If the meat
is cooked when it reaches 95◦C, and if it is to be served at 2:00 pm,
what time should cooking commence? Assume Bi to be large, but
note Problem 7.40. The pig is initially at 25◦C. [About 9:30 am]

5.41 People from cold northern climates know not to grasp metal with
their bare hands in subzero weather. A very slightly frosted piece of,
say, cast iron will stick to your hand like glue in, say, −20◦C weather
and might tear off patches of skin. Explain this quantitatively.

5.42 A 4 cm diameter rod of type 304 stainless steel has a very small hole
down its center. The hole is clogged with wax that has a melting
point of 60◦C. The rod is at 20◦C. In an attempt to free the hole,
a workman swirls the end of the rod—and about a meter of its
length—in a tank of water at 80◦C. If h is 688 W/m2K on both the
end and the sides of the rod, plot the depth of the melt front as a
function of time up to, say, 4 cm. Hint: Look back at Section 5.8.

5.43 A cylindrical insulator contains a single, very thin electrical resistor
wire that runs along a line halfway between the center and the
outside. The wire liberates 480 W/m. The thermal conductivity
of the insulation is 3 W/m·K, and the outside perimeter is held at
20◦C. Develop a flux plot for the cross section, considering carefully
how the field should look in the neighborhood of the point through
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which the wire passes. Evaluate the temperature at the center of
the insulation.

5.44 A long, 10 cm square copper bar is bounded by 260◦C gas flows
on two opposing sides. These flows impose heat transfer coef-
ficients of 46 W/m2K. The two intervening sides are cooled by
natural convection to water at 15◦C, with a heat transfer coefficient
of 525 W/m2K. What is the heat flow through the block and the
temperature at the center of the block? Hint: This could be a pretty
complicated problem, but take the trouble to calculate the Biot
numbers for each side before you begin. What do they tell you?
[34.7 ◦C]

5.45 Lord Kelvin made an interesting estimate of the age of the earth in
1864. He assumed that the earth originated as a mass of molten
rock at 4144 K (7000◦F) and that it had been cooled by outer space
at 0 K ever since. To do this, he assumed that Bi for the earth is
very large and that cooling had thus far penetrated through only a
relatively thin (one-dimensional) layer. Using αrock = 1.18× 10−6

m2/s and the measured surface temperature gradient of the earth,
1 ⁄27 K/m, find Kelvin’s value of Earth’s age. (Kelvin’s result turns out
to be much less than the accepted value of 4.54 billion years. His
calculation fails because Earth is not solid. Rather, the molten core
is convectively stirred below the solid lithosphere. Consequently,
the surface gradient has little to do with Earth’s age.)

5.46 A pure aluminum cylinder, 4 cm diam. by 8 cm long, is initially at
300◦C. It is plunged into a liquid bath at 40◦C with h = 500 W/m2K.
Calculate the hottest and coldest temperatures in the cylinder
after one minute. Compare these results with the lumped capacity
calculation, and discuss the comparison.

5.47 When Ivan cleaned his freezer, he accidentally put a large can of
frozen juice into the refrigerator. The juice can is 17.8 cm tall and
has an 8.9 cm I.D. The can was at −15◦C in the freezer, but the
refrigerator is at 4◦C. The can now lies on a shelf of widely-spaced
plastic rods, and air circulates freely over it. Thermal interactions
with the rods can be ignored. The effective heat transfer coefficient
to the can (for simultaneous convection and thermal radiation)
is 8 W/m2K. The can has a 1.0 mm thick cardboard skin with

http://www.uh.edu/engines/epi1568.htm
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k = 0.2 W/m·K. The frozen juice has approximately the same
physical properties as ice.

a. How important is the cardboard skin to the thermal response
of the juice? Justify your answer quantitatively.

b. If Ivan finds the can in the refrigerator 30 minutes after putting
it in, will the juice have begun to melt?

5.48 A cleaning crew accidentally switches off the heating system in a
warehouse one Friday night during the winter, just ahead of the
holidays. When the staff return two weeks later, the warehouse is
quite cold. In some sections, moisture that condensed has formed a
layer of ice 1 to 2 mm thick on the concrete floor. The concrete floor
is 25 cm thick and sits on compacted earth. Both the slab and the
ground below it are now at 20◦F. The building operator turns on the
heating system, quickly warming the air to 60◦F. If the heat transfer
coefficient between the air and the floor is 15 W/m2K, how long will
it take for the ice to start melting? Take αconcr = 7.0× 10−7 m2/s
and kconcr = 1.4 W/m·K, and make justifiable approximations as
appropriate.

5.49 A thick wooden wall, initially at 25◦C, is made of fir. It is suddenly
exposed to flames at 800◦C. If the effective heat transfer coefficient
for convection and radiation between the wall and the flames is
80 W/m2K, how long will it take the wooden wall to reach an
assumed ignition temperature of 430◦C?

5.50 Cold butter does not spread as well as warm butter. A small tub
of whipped butter bears a label suggesting that, before use, it
be allowed to warm up in room air for 30 minutes after being
removed from the refrigerator. The tub has a diameter of 9.1 cm
with a height of 5.6 cm, and the properties of whipped butter are:
k = 0.125 W/m·K, cp = 2520 J/kg·K, and ρ = 620 kg/m3. Assume
that the tub’s plastic walls offer negligible thermal resistance, that
h = 10 W/m2K outside the tub. Ignore heat gained from the
countertop below the tub. If the refrigerator temperature was 5◦C
and the tub has warmed for 30 minutes in a room at 20◦C, find:
the temperature in the center of the butter tub, the temperature
around the edge of the top surface of the butter, and the total
energy (in J) absorbed by the butter tub.
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5.51 A two-dimensional, 90◦ annular sector has an adiabatic inner arc,
r = ri, and an adiabatic outer arc, r = ro. The flat surface along
θ = 0 is isothermal at T1, and the flat surface along θ = π/2 is
isothermal at T2. Show that the shape factor is S = (2/π) ln(ro/ri).

5.52 Suppose that T∞(t) is the time-dependent temperature of the envi-
ronment surrounding a convectively-cooled, lumped object.

a. When T∞ is not constant, show that eqn. (1.19) leads to

d
dt
(T − T∞)+

(T − T∞)
T

= −dT∞
dt

where the time constant T is defined as usual.

b. If the object’s initial temperature is Ti, use either an integrating
factor or Laplace transforms to show that T(t) is

T(t) = T∞(t)+
[︁
Ti − T∞(0)

]︁
e−t/T − e−t/T

∫︂ t
0
es/T

d
ds
T∞(s)ds

5.53 Use the equation derived in Problem 5.52b to verify eqn. (5.14).

5.54 Suppose that a thermocouple with an initial temperature Ti is
placed into an airflow for which its Bi ≪ 1 and its time constant
is T . Suppose also that the temperature of the airflow varies
harmonically as T∞(t) = Ti +∆T cos (ωt).

a. Use the equation derived in Problem 5.52b to find the tem-
perature of the thermocouple, Ttc(t), for t > 0. (If you wish,
note that the real part of eiωt is Re

{︁
eiωt

}︁
= cosωt and use

complex variables to do the integration.)

b. Approximate your result for t≫ T . Then determine the value
of Ttc(t) for ωT ≪ 1 and for ωT ≫ 1. Explain in physical
terms the relevance of these limits to the frequency response
of the thermocouple—its ability to follow various frequencies.

c. If the thermocouple has a time constant of T = 0.1 sec, esti-
mate the highest frequency temperature variation that it will
measure accurately.

5.55 A particular tungsten lamp filament has a diameter of 100 µm and
sits inside a glass bulb filled with inert gas. The effective heat
transfer coefficient for convection and radiation is 750 W/m·K and
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the electrical current is at 60 Hz. How much does the filament’s
surface temperature fluctuate if the gas temperature is 200◦C and
the average wire temperature is 2900◦C?

5.56 The consider the parameter ψ in eqn. (5.41).

a. If the timescale for heat to diffuse a distance δ is δ2/α, explain
the physical significance of ψ and the consequence of large
or small values of ψ.

b. Show that the timescale for the thermal response of a wire of
radius δ with Bi ≪ 1 is ρcpδ/(2h). Then explain the meaning
of the new parameter φ = ρcpωδ/(4πh).

c. When Bi ≪ 1, is φ or ψ a more relevant parameter?

5.57 Repeat the calculations of Example 5.2 using the one-term solutions.
Discuss the differences between your solution and the numbers in
the example. Which provides greater accuracy?

5.58 The lumped-capacity solution, eqn. (1.22) depends on t/T . (a) Write
t/T in terms of Bi and Fo for a slab, a cylinder, and a sphere [slab:
t/T = BiLFol]. (b) For a sphere with Fo = 1, 2, and 5, plot the
lumped-capacity solution as a function of Bi on semilogarithmic
coordinates. How do these curves compare to those in Fig. 5.9?

5.59 Use the lumped-capacity solution to derive an equation for the heat
removal, Φ, as a function of t. Then put this equation in terms of Fo
and Bi for a cylinder. Plot the result on semilogarithmic coordinates
as a function of Bi for Fo = 25, 10, 5, and 2. Compare these curves
to Fig. 5.10b.

5.60 Write down the one-term solutions for Θ for a slab with Bi = {0.01,
0.05,0.1,0.5,1}. Compare these to the corresponding lumped
capacity equation (see Problem 5.58). Ostrogorsky [5.8] has shown
that λ̂1 ≃

√
m · Bi for Bi ⩽ 0.1, where m = 1 for a slab, 2 for a

cylinder, and 3 for a sphere. How does that formula compare to
your results?

5.61 When the one-term solution, eqn. (5.42), is plotted on semilogarith-
mic coordinates as logΘ versus Fo for fixed values of Bi and position,
what is the shape of the curve obtained? Make such a plot for a
sphere with Bi = {0.5,1,2,5,10} at r/ro = 1 for 0.2 ⩽ Fo ⩽ 1.5.
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5.62 The solution for a semi-infinite body with convection, eqn. (5.53),
contains a parameter β which is like Bi

√
Fo. For cylinders with

Bi = 1 and Bi = 10, use eqn. (5.53) to find Θ when Fo = 0.05 for
each of the four positions shown in Fig. 5.8, noting that r and x
coordinates have different origins. How to these values compare
to the values in Fig. 5.8?

5.63 Use eqn. (5.53), for a semi-infinite body, to write an equation for
Θ at the surface of a body as a function of Bi and Fo. Plot this
function on semilogarithmic axes for Fo = 0.05, 0.02, and 0.01
over the domain 0.01 ⩽ Bi ⩽ 100. Compare to Figs. 5.7–5.9. (If
you encounter numerical problems for large values of Bi, note that
ex2

erfcx ∼ 1
/︁√
πx as x ⎯→∞.)

5.64 Use the method outlined in [5.19] to find the shape factors for
Figs. 5.30g and 5.30j.

5.65 Work Problem 11.56, about an ablating heat shield on a spacecraft.

5.66 The flux plots in Fig. 5.31 are for pentagons with bottom edge at
T = 1. In (a), the top right edge is at T = 0, while in (b), both top
edges are at T = 0. All other edges are adiabatic. Find the shape
factor for each flux plot. What is the product of these two shape
factors? Explain why.

a. Top right edge isothermal b. Both top edges isothermal

Figure 5.31 Flux plots for regular pentagons with isothermal
bottom edges and either one or two top edges isothermal.
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6. Laminar and turbulent boundary
layers

In cold weather, if the air is calm, we are not so much chilled as when there
is wind along with the cold; for in calm weather, our clothes and the air
entangled in them receive heat from our bodies; this heat. . .brings them
nearer than the surrounding air to the temperature of our skin. But in
windy weather, this heat is prevented. . .from accumulating; the cold air, by
its impulse. . .both cools our clothes faster and carries away the warm air
that was entangled in them.

notes on “The General Effects of Heat”, Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s centuries-old description of heat convection sounds odd
to our ears. Yet it is surprisingly accurate. Cold air really does sweep
away warm air that is “entangled” with a warm body. Cold air really does
replace warm air. What Black called “entanglement” is a fluid-mechanical
process that we must deal with before we can analyze convective heating
and cooling.

Our aim in this chapter is to predict h and h for various situations.
Our first step will be learning how fluids move around the bodies that
they heat or cool. Only then can we predict how much heat flow results
from those fluid motions.

Flow boundary layer

Fluids stick to bodies as they flow over them. Their velocity drops from
that of the flowing fluid stream down to zero at the surface. This change
takes place in a layer that builds up around the body, as shown in Fig. 6.1.
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Figure 6.1 A boundary layer of thickness δ.

We call this layer the boundary layer, or b.l. We define the b.l. thickness,
δ, as the distance above the surface at which the fluid has 99% of the
outer, “free-stream” velocity, u∞. A boundary layer is normally very thin
compared with the size of the body in the flow.1

Ludwig Prandtl2 (see Fig. 6.2) and his students first predicted boundary
layer behavior in 1904. We shall discuss their results and other mathe-
matical analyses in Sections 6.2 and 6.3. Then we shall move on to the
analysis of heat transfer in boundary layers.

First, however, let us describe the b.l. more completely. We begin with
the dimensional functional equation for the boundary layer thickness on
a flat surface

δ = fn(u∞, ρ, µ,x)

where x is the length along the surface and ρ and µ are the fluid density
in kg/m3 and dynamic viscosity in kg/m·s. We have five variables in kg,
m, and s, so we anticipate two pi-groups:

δ
x
= fn

(︁
Rex

)︁
Rex ≡

ρu∞x
µ

= u∞x
ν

(6.1)

1We qualify this remark when we treat the b.l. quantitatively.
2Prandtl was educated at the Technical University in Munich and finished his doctorate

there in 1900. He was given a chair in a new fluid mechanics institute at Göttingen
University in 1904—the same year that he presented his historic paper explaining the
boundary layer. His work at Göttingen during the early 20th century set the course of
modern fluid mechanics and aerodynamics and laid the foundations for the analysis of
heat convection [6.2].



§6.1 Some introductory ideas 273

Figure 6.2 Ludwig Prandtl (1875–1953).
(Courtesy of Appl. Mech. Rev. [6.1])

Here, ν is the kinematic viscosity µ/ρ, and Rex is called the Reynolds
number. The Reynolds number characterizes the relative influences of
inertial and viscous forces in a fluid flow problem. The subscript on Re—x
in this case—tells what length it is based upon.

Prandtl’s analysis gave the actual form of eqn. (6.1) for one case: a flat
surface where u∞ is constant:

δ
x
= 4.92√︁

Rex
(6.2)

Thus, if the Reynolds number is large—more than 1000 or so—then δ/x
will be small. This condition is often met, except very near the leading
edge or when the fluid moves slowly or has high viscosity. Later, we shall
find that thinner boundary layers offer less resistance to heat flow. And
we now see that the b.l. is the “entangled” fluid that Joseph Black found
to carry heat away.
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Osborne Reynolds (1842 to 1912)
Reynolds was born in Ireland but he
taught at the University of Manchester.
He was a significant contributor to the
subject of fluid mechanics in the late
19th C. [6.3]. His original laminar-to-
turbulent flow transition experiment,
pictured below, was still being used as
a student experiment at the University
of Manchester in the 1970s.

Figure 6.3 Osborne Reynolds and his laminar–turbulent flow
transition experiment. (Detail from a portrait at the University
of Manchester.)

The Reynolds number is named after Osborne Reynolds (see Fig. 6.3),
who discovered the laminar–turbulent transition during fluid flow in a
tube. He injected ink into a steady and undisturbed flow of water and
found that, beyond a certain average velocity, uav, the liquid streamline
marked with ink would become wobbly and then break up into increasingly
disorderly eddies, and it would finally be completely mixed into the water,
as is suggested in the sketch.

To define the transition, we first note that the transitional value of
the average velocity, (uav)crit, must depend on the pipe diameter, D, on
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Figure 6.4 Boundary layer on a long, flat surface with a sharp
leading edge.

µ, and on ρ—four variables in kg, m, and s. Therefore, only one pi-group
arises:

Recritical ≡
ρD(uav)crit

µ
(6.3)

The maximum Reynolds number for which laminar flow in a pipe will
always be stable, regardless of the level of background noise, is 2100.
In a reasonably careful experiment, laminar flow can be made to persist
up to Re = 10,000. With enormous care it can be increased still another
order of magnitude. But the value below which the flow will always be
laminar—the critical value of Re—is 2100.

Much the same sort of thing happens in a boundary layer. Figure 6.4
shows a b.l. within a fluid flowing over a plate with a sharp leading edge.
The flow is laminar up to a location xl where Rex has the value

Recritical =
u∞xl
ν

(6.4)

At larger values of x the b.l. exhibits sporadic vortex-like instabilities
over a fairly long range, and it finally settles into a fully turbulent b.l. at a
location xu, at which Rex = u∞xu

/︁
ν .
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The locations where transition begins and ends depend on a number
of factors. These include the level of free-stream turbulence, the shape
of the leading edge, the surface roughness, and the presence of acoustic
or structural vibrations [6.4, §5.5]. Laminar flow can begin to break down
when Rex ❳ 30,000. The number 30,000 is practical minimum for a
highly disturbed flow. For the conditions of a laboratory wind tunnel,
transition often starts for Rex between 2 × 105 and 5 × 105. However,
very careful laboratory experiments have delayed the onset of transition
to Rex ≃ 2.8× 106 and fully turbulent flow to Rex ≃ 4× 106 [6.5]. The
transition region has about same length as the laminar region [6.6].

These numbers are all for flat surfaces. If a surface curves away from
the flow (as in Fig. 6.1), turbulence can begin at even lower Reynolds
numbers. The fact that the transition to turbulence is subject to so many
influences creates much troublesome uncertainty. We deal further with
transition in Section 6.9.

Thermal boundary layer

When a wall is at a temperature Tw , different from the temperature of
the free stream, T∞, a thermal boundary layer is present. The thermal b.l.
has a thickness, δt , different from the flow b.l. thickness, δ. A thermal b.l.
is pictured in Fig. 6.5. Now, with reference to this picture, we equate the
heat conducted away from the wall by the fluid to the same heat transfer
expressed in terms of a convective heat transfer coefficient

−kf
∂T
∂y

⃓⃓⃓⃓
⃓
y=0⏞ ⏟⏟ ⏞

conduction
into the fluid

≡ h(Tw − T∞) (6.5)

where kf is the fluid’s thermal conductivity. Notice two things about this
result. First, Fourier’s law of conduction correctly expresses the heat
removal at the wall because the fluid touching the wall has zero velocity.
Second, although eqn. (6.5) looks like a b.c. of the third kind, is not. This
condition defines h, whose value we have yet to determine.

Equation (6.5) can be arranged in the form

∂
(︃
Tw − T
Tw − T∞

)︃
∂(y/L)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
y/L=0

= hL
kf

≡ NuL, the Nusselt number (6.5a)
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Figure 6.5 The thermal boundary layer
during the flow of cool fluid over a warm
plate. The b.l. thickness δt is a few times
greater than the extrapolated thickness δ′t .

where L is a characteristic dimension of the body—the length of a plate
or the diameter of a cylinder, say. If if we write eqn. (6.5) at a point, x,
along a flat surface, then we can put Nux ≡ hx/kf . From Fig. 6.5 we see
immediately that the physical significance of Nu is

NuL =
L
δ′t

(6.6)

In other words, the Nusselt number is inversely proportional to the thick-
ness of the thermal b.l.

The Nusselt number is named after Wilhelm Nusselt,3 whose work on
convective heat transfer was as fundamental as Prandtl’s was in analyzing
the related fluid dynamics (see Fig. 6.6).

We now turn to the detailed evaluation of h. And, as the preceding re-
marks make very clear, this evaluation will have to start with a description
of the flow field in the boundary layer.

3Nusselt finished his doctorate in mechanical engineering at the Technical University
in Munich in 1907 [6.7]. During a teaching appointment at Dresden (1913 to 1917) he
made two of his most important contributions. He did the dimensional analysis of heat
convection before he had access to Buckingham and Rayleigh’s work. In so doing, he
showed how to generalize limited data, and he set the pattern of subsequent analysis.
He also showed how to predict convective heat transfer during film condensation. After
moving about Germany and Switzerland from 1907 until 1925, he was named to the
prestigious Chair of Theoretical Mechanics at Munich. During his early years in this
post, he made seminal contributions to heat exchanger design methodology. He held
this position until 1952. He was succeeded in the chair by another of Germany’s heat
transfer luminaries, Ernst Schmidt.
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Figure 6.6 Ernst Kraft Wilhelm Nusselt
(1882–1957). This photograph, provided
by his student, G. Lück, shows Nusselt at
the Kesselberg waterfall in 1912. He was
an avid mountain climber.

6.2 Laminar incompressible boundary layer on a flat
surface

We predict the boundary layer flow field by solving the equations that
express conservation of mass and momentum in the b.l. Thus, the first
order of business is to develop these equations.

Conservation of mass—The continuity equation

A two- or three-dimensional velocity field can be expressed in vectorial
form as

u⃗ = uı⃗+ vȷ⃗+wk⃗

where u, v , and w are the x, y , and z components of velocity. Figure 6.7
shows a two-dimensional velocity flow field. If the flow is steady, the paths
of individual particles appear as steady streamlines. The streamlines can
be expressed in terms of a stream function, ψ(x,y) = constant, where
each value of the constant identifies a separate streamline, as shown in
the figure.

Since the streamlines are the paths followed by fluid particles, the
velocity vector, u⃗, is always tangent to them. Therefore, no fluid flows
across a streamline. This means that the mass flow rate between two
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dA

dAs

n

ns

Figure 6.7 A steady, incompressible, two-dimensional flow field
represented by streamlines, or lines of constant ψ.

adjacent streamlines is constant, like the difference in ψ between them.
If the area per unit depth between two adjacent streamlines is dA and n⃗
is the unit normal vector to that area, then the mass flow rate between
the streamlines is dṁ = ρu⃗ · n⃗ dA. To obtain a convenient relationship
between velocity and the stream function, we may require that the differ-
ence in ψ be proportional to the mass flow rate between the streamlines

dṁ = ρu⃗ · n⃗ dA = ρdψ (6.7)

(for an incompressible flow with constant ρ along each streamline).
Next we can consider an area dAs that lies on a streamline—the cross-

hatched section in Fig. 6.7. The normal vector n⃗s for this section points
toward the upper left of the figure. No mass crosses a streamline, so
the mass flow through dAs is dṁ = ρu⃗ · n⃗s dAs = 0. With trigonometry,
we may show that n⃗sdAs = −dy ı⃗ + dx ȷ⃗. Taking the dot product, dṁ
becomes

dṁ = −ρv dx + ρudy = 0 (6.8)

To find dψ in terms of dx and dy , we may differentiate the stream
function along any streamline, ψ(x,y) = constant, in Fig. 6.7, with the
result:

dψ = ∂ψ
∂x

⃓⃓⃓⃓
y
dx + ∂ψ

∂y

⃓⃓⃓⃓
⃓
x
dy = 0 (6.9)
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These relations define the stream function in terms of the velocities. By
substituting eqns. (6.8) and (6.9) into eqn. (6.7), and dividing through by
ρ, we obtain

v ≡ − ∂ψ
∂x

⃓⃓⃓⃓
y

and u ≡ ∂ψ
∂y

⃓⃓⃓⃓
⃓
x

(6.10)

Furthermore,
∂2ψ
∂y∂x

= ∂2ψ
∂x∂y

so that

∂u
∂x

+ ∂v
∂y

= 0 (6.11a)

This result is called the two-dimensional continuity equation for in-
compressible flow. The equation states mathematically that the flow is
continuous, in the sense that whatever mass enters an incompressible
volume of fluid must also leave it. In three dimensions, the continuity
equation for an incompressible flow is

∇ · u⃗ ≡ ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 (6.11b)

Example 6.1

Fluid moves with a uniform velocity, u∞, in the x-direction. Find the
stream function and see if it gives plausible behavior (see Fig. 6.8).

Solution. u = u∞ and v = 0. Therefore, from eqns. (6.10)

u∞ =
∂ψ
∂y

⃓⃓⃓⃓
⃓
x

and 0 = −∂ψ
∂x

⃓⃓⃓⃓
y

Integrating these equations, we get

ψ = u∞y + fn(x) and ψ = 0+ fn(y)

Comparing these equations, we see that fn(x) = constant and fn(y) =
u∞y+ constant, so

ψ = u∞y + constant

The final equation gives a series of equally spaced, horizontal
streamlines, as we would expect (see Fig. 6.8). We set the arbitrary
constant equal to zero in the figure so that the stream function is zero
at the wall.
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Figure 6.8 Streamlines in a uniform
horizontal flow field, ψ = u∞y .

Conservation of momentum

The momentum equation in a viscous flow is a complicated vectorial
expression called the Navier-Stokes equation, which is derived in any
advanced fluid mechanics text [6.8, 6.9]. We shall offer a very restrictive
derivation of the equation—one that applies only to a two-dimensional
incompressible b.l. flow, as shown in Fig. 6.9.

Here we see how shear stresses acting upon an element A continuously
distort and rotate it. We use heavy arrows in the enlargement of A to
display pressure forces and horizontal shear stresses.4 Lighter arrows
show the momentum fluxes entering and leaving A. Notice that both x-
and y-directed momentum enters and leaves element A.

To see how momentum flux works, let us imagine a man standing in
the open door of a moving railroad boxcar. A child standing on the ground
throws him a soccer ball. The man catches the ball, and one component
of its momentum pushes him backward. However, the other component
pushes him to the side opposite the direction the train is moving. Fluid
entering element A affects its motion in the same way.

The velocities must adjust to satisfy the conservation of linear mo-
mentum. To evaluate momentum conservation, we consider a stationary
control volume surrounding the particle A at one instant in time, say the
instant when it is rectangular as shown in the figure. We require that the
sum of the external forces acting on the control volume in the x-direction

4The stress, τ, is often given two subscripts. The first one identifies the direction
normal to the plane on which it acts, and the second one identifies the line along which
it acts. Thus, if both subscripts are the same, the stress acts normal to a surface—it
must be a pressure or tension instead of a shear stress.



282 Laminar and turbulent boundary layers §6.2

Figure 6.9 Forces acting in a two-dimensional incompressible
boundary layer.

must be balanced by the rate at which x-directed momentum flows out
of the control volume.

The external forces, shown in Fig. 6.9, are(︄
τyx +

∂τyx
∂y

dy
)︄
dx − τyx dx + pdy −

(︃
p + dp

dx
dx

)︃
dy

=
(︄
∂τyx
∂y

− dp
dx

)︄
dx dy

The rate at which x-directed momentum flows out of A is(︄
ρu2 + ∂ρu

2

∂x
dx

)︄
dy − ρu2 dy +

[︄
u(ρv)+ ∂uρv

∂y
dy

]︄
dx

−u(ρv)dx =
(︄
∂ρu2

∂x
+ ∂ρuv

∂y

)︄
dx dy

Setting the right-hand sides of these two equations equal, we obtain a
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statement of conservation of x-directed momentum for the b.l.:(︄
∂τyx
∂y

− dp
dx

)︄
dx dy =

(︄
∂ρu2

∂x
+ ∂ρuv

∂y

)︄
dx dy

The shear stress in this result can be eliminated with the help of Newton’s
law of viscous shear stress

τyx = µ
∂u
∂y

so that the momentum equation becomes

∂
∂y

(︄
µ
∂u
∂y

)︄
− dp
dx

=
(︄
∂ρu2

∂x
+ ∂ρuv

∂y

)︄
Finally, we may limit use of the equation to temperature and pressure

ranges for which ρ ≊ constant and µ ≊ constant. Then

∂u2

∂x
+ ∂uv
∂y

= −1
ρ
dp
dx

+ ν ∂
2u
∂y2

(6.12)

This equation is one form of the steady, two-dimensional, incompressible
boundary layer momentum equation.5

If we multiply eqn. (6.11a) by u and subtract the result from the left-
hand side of eqn. (6.12), we obtain a second form of the momentum
equation:

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ ν ∂
2u
∂y2

(6.13)

Equation (6.13) has a number of so-called boundary layer approximations
built into it:

•
⃓⃓
∂u/∂x

⃓⃓
≪

⃓⃓
∂u/∂y

⃓⃓
. Shear stress in the x-direction is much

greater than in the y-direction (τyx ≫ τxy ).

• v ≪ u. The y-component of momentum is negligible.

• p ≠ fn(y). The y pressure gradient is negligible.

We may obtain the streamwise pressure gradient by writing the Bern-
oulli equation for the free-stream flow just above the boundary layer
where there is no viscous shear stress:

p
ρ
+ u

2
∞

2
= constant

5A more complete derivation shows this result to remain valid for variable density if
µ is constant and gravity is not important. Gravity taken into account in Section 8.2.
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By differentiating this equation, we determine the pressure gradient in
terms of the free-stream velocity gradient:

1
ρ
dp
dx

= −u∞
du∞
dx

Substituting into eqn. (6.13):

u
∂u
∂x

+ v ∂u
∂y

= u∞
du∞
dx

+ ν ∂
2u
∂y2

(6.14)

And if there is no pressure gradient in the flow—if u∞ and p are constant,
as they would be for flow past a flat plate—then eqns. (6.13) and (6.14)
become

u
∂u
∂x

+ v ∂u
∂y

= ν ∂
2u
∂y2

(6.15)

Predicting the velocity profile in the laminar boundary layer
without a pressure gradient

Exact solution. Two strategies for solving eqn. (6.15) for the velocity
profile have long been widely used. The first was developed by Prandtl’s
student, H. Blasius,6 before World War I. This approach gives an exact
solution, and we shall sketch it only briefly.

First we introduce the stream function,ψ, into eqn. (6.15), reducing the
number of dependent variables from two (u and v) to just one—namely,
ψ. By substituting eqns. (6.10) into eqn. (6.15):

∂ψ
∂y

∂2ψ
∂y∂x

− ∂ψ
∂x

∂2ψ
∂y2

= ν ∂
3ψ
∂y3

(6.16)

Equation (6.16) can be converted into an ordinary d.e. with the following
change of variables

ψ(x,y) ≡ √u∞νx f(η) where η ≡
√︃
u∞
νx

y (6.17)

where f(η) is an as-yet-undetermined function. [This transformation
is quite similar to the one that we used to make an ordinary d.e. of the

6Blasius achieved great fame for many accomplishments in fluid mechanics and then
gave it up. Despite how much he had achieved, he was eventually quoted as saying: “I
decided that I had no gift for it; all of my ideas came from Prandtl.”
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Table 6.1 Exact velocity profile in the boundary layer on a flat
surface with no pressure gradient

y
√︁
u∞/νx u

/︁
u∞ v

√︁
x/νu∞

η f(η) f ′(η) (ηf ′ − f)
/︁
2 f ′′(η)

0.00 0.00000 0.00000 0.00000 0.33206
0.20 0.00664 0.06641 0.00332 0.33199
0.40 0.02656 0.13277 0.01322 0.33147
0.60 0.05974 0.19894 0.02981 0.33008
0.80 0.10611 0.26471 0.05283 0.32739
1.00 0.16557 0.32979 0.08211 0.32301
2.00 0.65003 0.62977 0.30476 0.26675
3.00 1.39682 0.84605 0.57067 0.16136
4.00 2.30576 0.95552 0.75816 0.06424
4.918 3.20169 0.99000 0.83344 0.01837
6.00 4.27964 0.99898 0.85712 0.00240
8.00 6.27923 1.00000− 0.86039 0.00001

heat conduction equation, between eqns. (5.44) and (5.45).] After some
manipulation of partial derivatives, this substitution gives (Problem 6.2)

f
d2f
dη2

+ 2
d3f
dη3

= 0 (6.18)

and
u
u∞

= df
dη

v√︁
u∞ν/x

= 1
2

(︄
η
df
dη

− f
)︄

(6.19)

The boundary conditions for this flow are

u(y = 0) = 0 or
df
dη

⃓⃓⃓⃓
⃓
η=0

= 0

u(y = ∞) = u∞ or
df
dη

⃓⃓⃓⃓
⃓
η=∞

= 1

v(y = 0) = 0 or f(η = 0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(6.20)

The solution of eqn. (6.18) subject to these b.c.’s must be done numerically
(see Problem 6.3).

The solution of the Blasius problem is listed in Table 6.1, and the
dimensionless velocity components are plotted in Fig. 6.10. The u com-
ponent increases from zero at the wall (η = 0) to 99% of u∞ at η = 4.92.
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Figure 6.10 The dimensionless velocity components in a
laminar boundary layer.

Thus, the b.l. thickness is given by

4.92 = δ√︁
νx/u∞

or, as we stated earlier, in eqn. (6.2),

δ
x
= 4.92√︁

u∞x/ν
= 4.92√︁

Rex

Concept of similarity. The exact solution for u(x,y) reveals a most
useful fact—namely, that u can be expressed as a function of a single
variable, η:

u
u∞

= f ′(η) = f ′
(︃
y
√︃
u∞
νx

)︃
We call this a similarity solution. To see why, we solve eqn. (6.2) for√︃

u∞
νx

= 4.92
δ(x)
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and substitute this into f ′(y
√︁
u∞/νx). The result is

f ′ = u
u∞

= fn
[︃
y
δ(x)

]︃
(6.21)

The velocity profile thus has the same shape with respect to the b.l.
thickness at each x-position. We say, in other words, that the profile is
similar at each position. We found the same behavior for conduction into
a semi-infinite region. In that case [recall eqn. (5.51)], x

/︁√
t always had

the same value at the outer limit of the thermally disturbed region.
Boundary layer similarity makes it especially easy to use a simple

approximate method for solving other b.l. problems. That method, called
the momentum integral method, is the subject of the next subsection.

Example 6.2

Air at 27◦C blows over a flat surface with a sharp leading edge at
1.5 m/s. Find the b.l. thickness 0.5 m from the leading edge. Check
the b.l. assumption that u≫ v at that location.

Solution. The kinematic viscosity is ν = 1.575× 10−5 m2/s. Then

Rex =
u∞x
ν

= 1.5(0.5)
1.575× 10−5

= 47,619

The Reynolds number is low enough that the flow will be laminar
(unless the b.l. is subject to large disturbances. See pg. 275). Then

δ = 4.92x√︁
Rex

= 4.92(0.5)√︁
47,619

= 0.01127 = 1.127 cm

Remember that the b.l. analysis is valid only if δ/x≪ 1. In this case,
δ/x = 1.127/50 = 0.0225.

From Fig. 6.10 or Table 6.1, we observe that v/u is greatest beyond
the outside edge of the b.l., at large η. Using data from Table 6.1 at
η = 8, v at x = 0.5 m is

v = 0.8604√︁
x/νu∞

= 0.8604

√︄
(1.575× 10−5)(1.5)

(0.5)
= 0.00591 m/s

or, since u/u∞ ⎯→ 1 at large η
v
u
= v
u∞

= 0.00591
1.5

= 0.00394

Since v grows larger as x grows smaller, the condition v ≪ u is not satis-
fied very near the leading edge. There, the b.l. approximations themselves
break down. We say more about this breakdown after eqn. (6.34).
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Momentum integral method.7 A second method for solving the b.l.
momentum equation is approximate and much easier to apply to a wide
range of problems than is any exact method of solution. The idea is this:
We are not really interested in the details of the velocity or temperature
profiles in the b.l., beyond learning their slopes at the wall: these slopes
give us the shear stress at the wall, τw = µ(∂u/∂y)y=0, and the heat
flux at the wall, qw = −k(∂T/∂y)y=0. Therefore, we integrate the b.l.
equations from the wall, y = 0, to the b.l. thickness, y = δ, to make
ordinary d.e.’s of them. Although these much simpler equations do not
reveal anything new about the temperature and velocity profiles, they do
give quite accurate explicit equations for τw and qw .

Let us see how this procedure works with the b.l. momentum equation.
We consider the case in which the pressure gradient is zero (dp/dx = 0),
and integrate eqn. (6.12) across the b.l.:∫︂ δ

0

∂u2

∂x
dy +

∫︂ δ
0

∂(uv)
∂y

dy = ν
∫︂ δ

0

∂2u
∂y2

dy

At y = δ, u can be approximated as the free-stream value, u∞, and other
quantities can be evaluated as if y lay outside the b.l.:

∫︂ δ
0

∂u2

∂x
dy+

[︂
(uv)y=δ⏞ ⏟⏟ ⏞
=u∞v∞

− (uv)y=0⏞ ⏟⏟ ⏞
=0

]︂
= ν

⎡⎣(︄∂u
∂y

)︄
y=δ⏞ ⏟⏟ ⏞

≊0

−
(︄
∂u
∂y

)︄
y=0

⎤⎦ (6.22)

The continuity equation (6.11a) can be integrated thus:

v∞ − vy=0⏞ ⏟⏟ ⏞
=0

= −
∫︂ δ

0

∂u
∂x

dy (6.23)

Multiplying this equation by u∞ gives

u∞v∞ = −
∫︂ δ

0

∂uu∞
∂x

dy

Using this result in eqn. (6.22), we obtain∫︂ δ
0

∂
∂x

[︁
u(u−u∞)

]︁
dy = −ν ∂u

∂y

⃓⃓⃓⃓
⃓
y=0

7This method was developed by Pohlhausen, von Kármán, and others. See the
discussion in [6.8, Chap. XII].
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Finally, since µ(∂u/∂y)y=0 = τw , the shear stress on the wall at position
x, we have7

d
dx

∫︂ δ(x)
0

u(u−u∞)dy = −
τw
ρ

(6.24)

Equation (6.24) expresses the conservation of linear momentum in
integral form. This equation shows that the momentum deficit of the
fluid in the b.l. changes at a rate proportional the wall shear stress. When
we use eqn. (6.24) in place of eqn. (6.15), we are said to be using an
integral method.

We may nondimensionalize eqn. (6.24) as follows:

d
dx

[︄
δ
∫︂ 1

0

u
u∞

(︃
u
u∞

− 1
)︃
d
(︃
y
δ

)︃]︄
= −τw(x)

ρu2∞
≡ −1

2
Cf (x) (6.25)

where τw
/︁
(ρu2

∞/2) is the skin friction coefficient, Cf (see pg. 291). Equa-
tion (6.25) will be satisfied precisely by Blasius’s exact solution for u/u∞
(Problem 6.4). However, the point is to use eqn. (6.25) to determine
u/u∞ when we do not already have an exact solution, by making an
approximation to the velocity profile.

To find an approximate velocity profile, we recall that the laminar
boundary layer exhibits similarity. So, we can guess that the profile has
the form of eqn. (6.21): u/u∞ = fn(y/δ). The approximation should
satisfy the following four boundary conditions on the velocity profile:

i) u/u∞ = 0 at y/δ = 0

ii) u/u∞ ≊ 1 at y/δ = 1

iii) ∂u
/︁
∂y ≊ 0 at y/δ = 1

⎫⎪⎪⎬⎪⎪⎭ (6.26)

and, by evaluating eqn. (6.15) at the wall,

u⏞⏟⏟⏞
=0

∂u
∂x

+ v⏞⏟⏟⏞
=0

∂u
∂y

= ν ∂2u
∂y2

⃓⃓⃓⃓
⃓
y=0

so

iv) ∂2u
/︁
∂y2 = 0 at y/δ = 0 (6.27)

7The interchange of integration and differentiation is consistent with Leibnitz’s rule
for differentiation of an integral (Problem 6.14).
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If we now write fn(y/δ) as a polynomial with four constant coefficients—
a, b, c, and d—

u
u∞

= a+ b y
δ
+ c

(︃
y
δ

)︃2

+ d
(︃
y
δ

)︃3

(6.28)

then the four b.c.s on the velocity profile give

i) 0 = a which eliminates a immediately
ii) 1 = 0+ b + c + d
iii) 0 = b + 2c + 3d
iv) 0 = 2c which eliminates c as well

Solving the middle two equations for b and d, we obtain d = −1
2 and

b = +3
2 , so

u
u∞

= 3
2
y
δ
− 1

2

(︃
y
δ

)︃3

(6.29)

We compare this approximate velocity profile with the exact Blasius
profile in Fig. 6.11, and they agree to within a maximum error of 8%. The
only remaining problem is calculating δ(x). To do this, we substitute
eqn. (6.29) into eqn. (6.25) and integrate to get (see Problem 6.5):

− d
dx

[︃
δ
(︃

39
280

)︃]︃
= − ν

u∞δ

(︃
3
2

)︃
(6.30)

or

− 39
280

(︃
2
3

)︃(︃
1
2

)︃
dδ2

dx
= − ν

u∞

We integrate using the b.c. δ = 0 at x = 0:

δ2 = 280
13

νx
u∞

(6.31a)

or

δ
x
= 4.64√︁

Rex
(6.31b)

This b.l. thickness is of the correct functional form, and the constant is
lower than the exact value by only 5.6%.
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Figure 6.11 Comparison of the third-degree polynomial fit,
eqn. (6.29), to the exact b.l. velocity profile. Notice that the
approximate result has been forced to u/u∞ = 1 instead of 0.99
at y = δ.

The skin friction coefficient

Since the function f(η) gives all information about flow in the b.l., the
shear stress at the wall can be obtained from it by using Newton’s law of
viscous shear:

τw = µ
∂u
∂y

⃓⃓⃓⃓
⃓
y=0

= µ ∂
∂y

(︁
u∞f ′

)︁⃓⃓⃓⃓⃓
y=0

= µu∞
(︄
df ′

dη
∂η
∂y

)︄
y=0

= µu∞
√
u∞√
νx

d2f
dη2

⃓⃓⃓⃓
⃓
η=0

But from Fig. 6.10 and Table 6.1, we see that d2f
/︁
dη2

⃓⃓
η=0 = 0.33206, so

τw = 0.332
µu∞
x

√︁
Rex (6.32)

The integral method that we just outlined would have given 0.323 for the
constant in eqn. (6.32) instead of 0.332 (Problem 6.6).
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The local skin friction coefficient is defined as

Cf ≡
τw

ρu2∞/2
= 0.664√︁

Rex
(6.33)

The overall skin friction coefficient, Cf , is based on the average of the
shear stress over the length, L, of the plate

τw =
1
L

⌠⌡ L
0

τw dx =
ρu2

∞
2L

⌠⌡ L
0

0.664√︁
u∞x/ν

dx = 1.328
ρu2

∞
2

√︄
ν
u∞L

so

Cf ≡
τw

ρu2∞/2
= 1.328√︁

ReL
(6.34)

Notice that Cf (x) approaches infinity at the leading edge of the flat
surface. This means that to stop the fluid that first touches the front of
the plate—dead in its tracks—would require infinite shear stress right at
that point. Nature, of course, will not allow such a thing to happen; and
it turns out that the boundary layer approximations are not valid near
the leading edge.

In fact, the range x ❲ 5δ is too close to the leading edge to use this
analysis with accuracy because the b.l. is relatively thick and v is no longer
≪ u. With eqn. (6.2), this range converts to approximately

x ❳ 600ν/u∞ for a boundary layer to exist

or Rex ❳ 600. In Example 6.2, this condition is satisfied for x greater
than about 6 mm. The region where b.l. approximations fail is usually
very small.

Example 6.3

Calculate the average shear stress and the overall friction coefficient for
the surface in Example 6.2 if its total length is L = 0.5 m. Compare τw
with τw at the trailing edge. At what point on the surface does τw =
τw? Finally, estimate what fraction of the surface can legitimately be
analyzed using boundary layer theory.

Solution.

Cf =
1.328√︁
Re0.5

= 1.328√︁
47,619

= 0.00609
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and

τw =
ρu2

∞
2

Cf =
1.177(1.5)2

2
0.00609 = 0.00806 kg/m·s2⏞ ⏟⏟ ⏞

N/m2

This is very little drag. (In English units, it amounts only to about
1/5 ounce/ft2.) At x = L,

τw(x)
τw

⃓⃓⃓⃓
x=L

= ρu
2
∞/2

ρu2∞/2

[︄
0.664

/︁√︁
ReL

1.328
/︁√︁

ReL

]︄
= 1

2

and τw(x) = τw at the location where

0.664√
x

= 1.328√
0.5

Solving, the local shear stress equals the average value at

x = 1
8

m or
x
L
= 1

4

Thus, the shear stress, which is initially infinite, plummets to τw one-
fourth of the way from the leading edge and drops to only one-half of
τw over the remaining 75% of the plate.

The boundary layer approximations fail when

x ❲ 600
ν
u∞

= 600
1.575× 10−5

1.5
= 0.0063 m

Thus, the preceding analysis should be good over almost 99% of the
0.5 m length of the surface.

6.3 The energy equation

Derivation

We now know how fluid moves in the b.l. Next, we must extend the heat
conduction equation to allow for fluid motion. Then, we can solve it to get
the temperature field in the b.l. and then calculate h, using Fourier’s law:

h = q
Tw − T∞

= − k
Tw − T∞

∂T
∂y

⃓⃓⃓⃓
⃓
y=0

(6.35)
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Figure 6.12 Control volume in a
heat-flow and fluid-flow field.

To predict T , we extend the analysis of Section 2.1. Figure 2.4 shows a
volume containing a solid subjected to a temperature field. We now allow
this volume to contain a moving fluid with a velocity field u⃗(x,y, z), as
shown in Fig. 6.12. We make the following restrictive approximations:

• Pressure variations in the flow are not large enough to affect ther-
modynamic properties. From thermodynamics, we know that the
specific internal energy, û, is related to the specific enthalpy as ĥ =
û+p/ρ, and that dĥ = cp dT +(∂ĥ/∂p)T dp, where cp = (∂h/∂T)p.
We shall neglect the effect of dp on enthalpy, internal energy, and
density. This approximation is reasonable for most liquid flows and
for gases flowing at speeds less than about 1/3 the speed of sound.

• Under these conditions, density changes result only from tempera-
ture changes. If temperature-induced changes in density are also
small, the flow will behave as if incompressible. In that case,∇·u⃗ = 0
(Section 6.2).

• Temperature variations in the flow are not large enough to change k
significantly. When we consider the flow field, we will also presume
µ to be unaffected by temperature change.

• Potential and kinetic energy changes are negligible in comparison
to thermal energy changes. Since the kinetic energy of a fluid can
change as a result of pressure gradients, this again means that
pressure variations may not be too large.

• The viscous stresses do not dissipate enough energy to warm the
fluid significantly.
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Just as we wrote eqn. (2.7) for a control volume in Section 2.1, we now
write conservation of energy for a moving fluid in the form

d
dt

∫︂
R
ρûdR⏞ ⏟⏟ ⏞

rate of internal
energy increase

in R

= −
∫︂
S

(︁
ρĥ
)︁
u⃗ · n⃗ dS⏞ ⏟⏟ ⏞

rate of internal energy and
flow work out of R

−
∫︂
S
(−k∇T) · n⃗ dS⏞ ⏟⏟ ⏞

net heat conduction
rate out of R

+
∫︂
R
q̇ dR⏞ ⏟⏟ ⏞

rate of heat
generation in R

(6.36)

In the second integral, u⃗ · n⃗ dS represents the volume flow rate through
an element dS of the control surface. The position of R is not changing
in time, so we can bring the time derivative inside the first integral. If we
then we call in Gauss’s theorem [eqn. (2.8)] to make the surface integrals
into volume integrals, eqn. (6.36) becomes∫︂

R

(︃
∂(ρû)
∂t

+∇ ·
(︁
ρu⃗ĥ

)︁
−∇ · k∇T − q̇

)︃
dR = 0

Because the integrand must vanish identically (recall the footnote on
pg. 55 in Chapter 2) and, if k depends only weakly on T ,

∂(ρû)
∂t

+∇ ·
(︁
ρu⃗ĥ

)︁
⏞ ⏟⏟ ⏞ − k∇2T − q̇ = 0

= ρu⃗ · ∇ĥ+ ĥ∇ · (ρu⃗)

Since we are neglecting pressure effects, we may introduce the following
approximation:

d(ρû) = d(ρĥ)− dp ≈ d(ρĥ) = ρdĥ+ ĥ dρ

Thus, collecting and rearranging terms

ρ
(︄
∂ĥ
∂t
+ u⃗ · ∇ĥ

)︄
+ ĥ

(︃
∂ρ
∂t
+∇ ·

(︁
ρu⃗

)︁)︃
⏞ ⏟⏟ ⏞

=0

= k∇2T + q̇

The two derivatives involving density are each negligible when density
changes are small. However, we can show (Problem 6.36) that the two
terms sum to zero for density changes of any size.
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Upon substituting dĥ ≈ cp dT , we obtain our final result:

ρcp
(︃

∂T
∂t⏞ ⏟⏟ ⏞

energy
storage

+ u⃗ · ∇T⏞ ⏟⏟ ⏞
enthalpy

convection

)︃
= k∇2T⏞ ⏟⏟ ⏞

heat
conduction

+ q̇⏞ ⏟⏟ ⏞
heat

generation

(6.37)

This is the energy equation for a flow with low pressure gradients. It is
the same as the corresponding equation for a solid body, (2.11), except
for the enthalpy transport—or convection—term, ρcpu⃗ · ∇T .

Consider the term in parentheses in eqn. (6.37):

∂T
∂t
+ u⃗ · ∇T = ∂T

∂t
+u∂T

∂x
+ v ∂T

∂y
+w∂T

∂z
≡ DT
Dt

(6.38)

D/Dt is the so-called material derivative, which is treated in some detail
in every fluid mechanics course. The material derivative of temperature
gives the rate of change of the temperature of a fluid particle as it moves
in a flow field.

In a steady two-dimensional flow field without heat sources, eqn. (6.37)
reduces to

u
∂T
∂x

+ v ∂T
∂y

= α
(︄
∂2T
∂x2

+ ∂
2T
∂y2

)︄
(6.39)

Furthermore, in a b.l., ∂2T
/︁
∂x2 ≪ ∂2T

/︁
∂y2, so our b.l. energy equation

for a takes the form

u
∂T
∂x

+ v ∂T
∂y

= α∂
2T
∂y2

(6.40)

Heat and momentum transfer analogy for ν = α
Consider a b.l. in a fluid of temperature T∞, flowing over a flat surface
at temperature Tw . The momentum equation (6.15) and its b.c.’s can be
written as

u
∂
∂x

(︃
u
u∞

)︃
+v ∂

∂y

(︃
u
u∞

)︃
= ν ∂2

∂y2

(︃
u
u∞

)︃
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
u∞

⃓⃓⃓⃓
y=0

= 0

u
u∞

⃓⃓⃓⃓
y=∞

= 1

∂
∂y

(︃
u
u∞

)︃
y=∞

= 0

(6.41)
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And the energy equation (6.40) can be expressed in terms of a dimension-
less temperature, Θ = (T − Tw)

/︁
(T∞ − Tw), as

u
∂Θ
∂x

+ v ∂Θ
∂y

= α∂
2Θ
∂y2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Θ(y = 0) = 0

Θ(y = ∞) = 1

∂Θ
∂y

⃓⃓⃓⃓
⃓
y=∞

= 0

(6.42)

Notice that the problems of predicting u/u∞ and Θ are identical, with
one exception: eqn. (6.41) has ν in it whereas eqn. (6.42) has α. If ν and
α should happen to be equal, the temperature distribution in the b.l. is

for ν = α :
T − Tw
T∞ − Tw

= f ′(η) derivative of the Blasius function

because the two problems must have the same solution.
In this case, we can immediately calculate the heat transfer coefficient

using eqn. (6.5):

h = k
T∞ − Tw

∂(T − Tw)
∂y

⃓⃓⃓⃓
⃓
y=0

= k
(︄
∂f ′

∂η
∂η
∂y

)︄
η=0

but d2f
/︁
dη2

⃓⃓
η=0 = 0.33206 (see Fig. 6.10) and ∂η/∂y =

√︁
u∞/νx, so

hx
k
= Nux = 0.33206

√︁
Rex for ν = α (6.43)

Normally, in using eqn. (6.43) or any other forced convection equation,
properties should be evaluated at the film temperature, Tf = (Tw +T∞)/2.

Example 6.4

Water flows over a flat heater, 0.06 m in length, at 15 atm pressure
and 440 K. The free-stream velocity is 2 m/s and the heater is held at
460 K. What is the average heat flux?

Solution. At Tf = (460+ 440)/2 = 450 K:

ν = 1.725× 10−7 m2/s

α = 1.724× 10−7 m2/s
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Therefore, ν ≊ α, and we can use eqn. (6.43). First, we must calculate
the average heat flux, q. To do this, we set ∆T ≡ Tw − T∞ and write

q = 1
L

∫︂ L
0
(h∆T)dx = ∆T

L

∫︂ L
0

k
x

Nux dx = 0.332
k∆T
L

∫︂ L
0

√︃
u∞
νx

dx⏞ ⏟⏟ ⏞
= 2

√︁
u∞L/ν

so

q = 2
(︃

0.332
k
L
√︁

ReL

)︃
∆T = 2qx=L

Note that the average heat flux is twice that at the trailing edge, x = L.
Using k = 0.674 W/m·K for water at the film temperature,

q = 2(0.332)
0.674
0.06

√︄
2(0.06)

1.72× 10−7
(460− 440)

= 124,604 W/m2 = 125 kW/m2

Equation (6.43) is clearly a very restrictive heat transfer solution. We
must now find how to evaluate q when ν does not equal α.

6.4 The Prandtl number and the boundary layer
thicknesses

Dimensional analysis

We now apply dimensional analysis to expose an important link between
the velocity and thermal boundary layers. To find the dimensional func-
tional equation, look at the parameters in the b.l. momentum equation,
(6.15), the b.l. energy equation, (6.40), the definition of h, eqn. (6.35), and
the boundary conditions on u and T . From these,

h = fn
(︁
ν,α, k,x,u∞

)︁
We have excluded Tw − T∞ on the basis of Newton’s original hypothesis,
borne out in eqn. (6.43)—that h ≠ fn(∆T) during forced convection.

In this situation, as discussed at the end of Section 4.3, heat and work
do not convert into one another. That means we should not regard J
as N·m, but rather as a single dimension. Further, J and K appear only
together, as J/K, in h and k. Hence, the six variables have only dimensions
J/K, m, and s. The 6− 3 = 3 dimensionless groups are then:

Π1 =
hx
k
≡ Nux Π2 =

ρu∞x
µ

≡ Rex
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Figure 6.13 Momentum and energy transfer in a gas with a
velocity or temperature gradient.

and a new group:

Π3 =
µcp
k

= ν
α
≡ Pr, Prandtl number

Thus,
Nux = fn

(︁
Rex,Pr

)︁
(6.44)

Equation (6.43) was developed for the case in which ν = α or Pr =
1; therefore, (6.43) is of the same form as eqn. (6.44), although the Pr
dependence of Nux is not displayed.

We can better understand the physical meaning of the Prandtl number
if we briefly consider how to predict its value in a gas.

Kinetic theory of µ and k

Figure 6.13 shows a small neighborhood of a point in a gas where there
exists a velocity or temperature gradient. We identify the mean free path
of molecules between collisions as ℓ. The planes at y ± ℓ/2 bracket the
average travel of those molecules passing through plane y .8

8Actually, if we consider only those collisions that pass the plane y , the average
travel of the colliding molecules is greater than ℓ/2—a fact that does not affect our
discussion here. This and other fine points of kinetic theory are explained in detail
in [6.10].
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The shear stress, τyx , can be expressed as the change of x-momentum
of molecules that pass through the y-plane of interest, per unit area:

τyx =
(︄

mass flux of molecules
from y − ℓ/2 to y + ℓ/2

)︄
·
(︄

change in fluid
velocity

)︄

The mass flux from bottom to top is proportional to ρC , where C , the
mean molecular speed. The molecular speed C is ≫ u and v (except for
gases flow near the speed of sound). Thus,

τyx = C1

(︂
ρC

)︂(︄
ℓ
du
dy

)︄
N

m2
and this also equals µ

du
dy

(6.45a)

where C1 is a constant on the order of one (see Problem 6.50). By the
same token,

qy = C2

(︂
ρcvC

)︂(︄
ℓ
dT
dy

)︄
W
m2

and this also equals − kdT
dy

(6.45b)

where cv is the specific heat at constant volume and C2 is another constant
of order one. It follows immediately that

µ = C1

(︂
ρCℓ

)︂
so ν = C1

(︂
Cℓ
)︂

(6.45c)

and

k = C2

(︂
ρcvCℓ

)︂
so α = C2

Cℓ
γ

(6.45d)

where γ ≡ cp/cv is approximately constant and on the order of one for a
given gas. Thus, for a gas,

Pr ≡ ν
α
= a constant on the order of one

More detailed use of the kinetic theory of gases reveals more specific
information as to the value of the Prandtl number, and the following points
are borne out reasonably well experimentally, as you can determine from
Tables A.5 and A.6:

• For simple monatomic gases, Pr = 2
3 .

• For diatomic gases in which vibration is unexcited (such as N2 and
O2 at room temperature), Pr = 5

7 .

• As the complexity of gas molecules increases, Pr approaches an
upper value of one.



§6.4 The Prandtl number and the boundary layer thicknesses 301

• Pr is least sensitive to temperature in gases made up of the simplest
molecules because their structure is least responsive to temperature
changes.

In a liquid, the physical mechanisms of molecular momentum and
energy transport are much more complicated, and Pr can be far from one.
For example (cf. Table A.3):

• For liquids composed of fairly simple molecules, excluding metals,
Pr is of the order of magnitude of 1 to 10.

• For liquid metals, Pr is of the order of magnitude of 10−2 or less.

• If the molecular structure of a liquid is very complex, Pr might reach
values on the order of 105. This is true of oils made of long-chain
hydrocarbons, for example.

• In liquids, Pr is much more sensitive to temperature than in gases. Pr
often decreases rapidly as temperature rises, as a result of declining
viscosity.

Thus, while Pr can vary over almost eight orders of magnitude in
common fluids, it is still the result of molecular mechanisms of heat and
momentum transfer.

Boundary layer thicknesses, δ and δt , and the Prandtl number

We have seen that, for Pr = 1, the dimensionless velocity and temperature
profiles are identical on a flat surface. Thus, δ = δt for Pr = 1. We also
can make the following inferences:

• When Pr > 1, δ > δt , and when Pr < 1, δ < δt . This is true because
high viscosity ν leads to a thick velocity b.l., and a high thermal
diffusivity α gives a thick thermal b.l.

• Since the exact governing equations (6.41) and (6.42) are identical
for either b.l., except for the appearance of α in one and ν in the
other, we expect that

δt
δ
= fn

(︃
ν
α

only
)︃

Combining these observations, and defining φ ≡ δt/δ, we conclude that

φ = monotonically decreasing function of Pr only (6.46)
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The fact that φ is independent of x will greatly simplify the use of
the integral method to find h. We shall establish the correct form of
eqn. (6.46) in the next section.

6.5 Heat transfer coefficient for laminar,
incompressible flow over a flat surface

The integral method for solving the energy equation

Integrating the b.l. energy equation (6.40) in the same way as the momen-
tum equation gives∫︂ δt

0
u
∂T
∂x

dy +
∫︂ δt

0
v
∂T
∂y

dy = α
∫︂ δt

0

∂2T
∂y2

dy

And, with the chain rule of differentiation in the form xdy = d(xy)−
ydx, we can rearrange this as∫︂ δt

0

∂uT
∂x

dy −
∫︂ δt

0
T
∂u
∂x

dy +
∫︂ δt

0

∂vT
∂y

dy −
∫︂ δt

0
T
∂v
∂y

dy = α∂T
∂y

⃓⃓⃓⃓
⃓
δt

0

or∫︂ δt
0

∂uT
∂x

dy + vT
⃓⃓⃓⃓δt

0⏞ ⏟⏟ ⏞
= T∞v

⃓⃓
y=δt − 0

−
∫︂ δt

0
T
(︄
∂u
∂x

+ ∂v
∂y

)︄
⏞ ⏟⏟ ⏞
= 0, eqn. (6.11a)

dy

= α ∂T
∂y

⃓⃓⃓⃓
⃓
δt⏞ ⏟⏟ ⏞

= 0

− α ∂T
∂y

⃓⃓⃓⃓
⃓

0

We can evaluate v at y = δt with the continuity equation in the form of
eqn. (6.23). Then the preceding expression reduces to:∫︂ δt

0

∂
∂x
u(T − T∞)dy =

1
ρcp

(︄
−k ∂T

∂y

⃓⃓⃓⃓
⃓

0

)︄
= fn(x only)

or

d
dx

∫︂ δt
0
u(T − T∞)dy =

qw
ρcp

(6.47)

Equation (6.47) expresses the conservation of thermal energy in integrated
form. It shows that the rate thermal energy is carried away by the b.l. flow
is matched by the rate heat is transferred into the b.l. at the wall.
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Predicting the temperature distribution in the laminar thermal
boundary layer

Next we shall paraphrase our use of an approximate velocity profile
(Section 6.3) to create an approximate temperature profile. We previously
guessed the velocity profile in such a way as to make it match what we
know to be true. We also know certain things to be true of the temperature
profile.

The temperatures at the wall and at the outer edge of the b.l. are
known. Furthermore, the temperature distribution should be smooth
as it blends into T∞ for y > δt . This condition is imposed by setting
∂T/∂y equal to zero at y = δt . A fourth condition is obtained by writing
eqn. (6.40) at the wall, where u = v = 0. This gives ∂2T/∂y2

⃓⃓
y=0 = 0.

These four conditions take the following dimensionless form:

T − T∞
Tw − T∞

= 1 at y/δt = 0

T − T∞
Tw − T∞

= 0 at y/δt = 1

∂[(T − T∞)
/︁
(Tw − T∞)]

∂(y/δt)
= 0 at y/δt = 1

∂2[(T − T∞)
/︁
(Tw − T∞)]

∂(y/δt)2
= 0 at y/δt = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.48)

Equations (6.48) provide enough information to approximate the tem-
perature profile with a cubic function:

T − T∞
Tw − T∞

= a+ b y
δt
+ c

(︃
y
δt

)︃2

+ d
(︃
y
δt

)︃3

(6.49)

Substituting eqn. (6.49) into eqns. (6.48), we get

a = 1 − 1 = b + c + d 0 = b + 2c + 3d 0 = 2c

which gives
a = 1 b = −3

2 c = 0 d = 1
2

so the temperature profile is

T − T∞
Tw − T∞

= 1− 3
2
y
δt
+ 1

2

(︃
y
δt

)︃3

(6.50)



304 Laminar and turbulent boundary layers §6.5

Predicting the heat flux in the laminar boundary layer

Equation (6.47) contains an as-yet-unknown quantity—the thermal b.l.
thickness, δt . To calculate δt , we substitute the temperature profile,
eqn. (6.50), and the velocity profile, eqn. (6.29), into the integral form of
the energy equation, (6.47), which we first express as

u∞(Tw − T∞)
d
dx

[︄
δt
∫︂ 1

0

u
u∞

(︃
T − T∞
Tw − T∞

)︃
d
(︃
y
δt

)︃]︄

= − α(Tw − T∞)
δt

d
(︃
T − T∞
Tw − T∞

)︃
d(y/δt)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
y/δt=0

(6.51)

This form will work fine as long as δt < δ. But if δt > δ, the velocity
will be given by u/u∞ = 1, instead of eqn. (6.29), beyond y = δ. Let us
proceed for the moment in the hope that the requirement δt ⩽ δ will be
met. Introducing φ = δt/δ and defining η ≡ y/δt , we get

δt
d
dx

⎡⎢⎣δt ∫︂ 1

0

(︃
3
2
ηφ− 1

2
η3φ3

)︃(︃
1− 3

2
η+ 1

2
η3
)︃
dη⏞ ⏟⏟ ⏞

= 3
20φ−

3
280φ

3

⎤⎥⎦ = 3α
2u∞

(6.52)

Since φ is a constant for any Pr [recall eqn. (6.46)], we separate variables:

2δt
dδt
dx

= dδ
2
t

dx
= 3α/u∞(︃

3
20
φ− 3

280
φ3
)︃

Integrating this result with respect to x and taking δt = 0 at x = 0, we
get

δt =
√︄

3αx
u∞

/︄√︄
3
20
φ− 3

280
φ3 (6.53)

In the integral formulation, δ = 4.64x
/︁√︁

Rex [eqn. (6.31b)]. We use this
expression, to be consistent, and divide by δ to obtain

δt
δ
≡ φ = 0.9638

/︃√︂
Prφ

(︁
1−φ2/14

)︁
Rearranging this gives

δt
δ
= 1

1.025 Pr1/3
[︂
1− (δ2

t /14δ2)
]︂1/3 ≊

1

1.025 Pr1/3 (6.54)
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10−2 0.1 1 10 102 103
0.1

1

10

Prandtl number, Pr

φ
=
δ 𝗍
/δ

Equation (6.54)
Pr−𝟣/𝟥

Exact calculation

Figure 6.14 The exact and approximate Prandtl number influence
on the ratio of b.l. thicknesses for Tw = constant.

The unsimplified form of eqn. (6.54) is shown in Fig. 6.14, along with
the exact solution given by Pohlhausen in 1921 [6.8, 6.11]. (Pohlhausen’s
numerical calculations were extended by Evans [6.12], whose results were
used to make this figure.) The results agree to within 0.4% for Pr ⩾ 0.3.

It turns out that the exact ratio, δ/δt , is represented to within 1–2%
by the simple expression

δt
δ
= Pr−1/3 Pr ⩾ 0.6 (6.55)

The integral method’s simplified result is only slightly more accurate for
high Pr: within 0.5–1% for Pr ⩾ 4.

In Section 6.4, we noted that the lowest Pr for pure gases is 0.67 and
that Pr for nonmetallic liquids ranges from about 1 to 105. Thus, Fig. 6.14
shows that the integral method’s solution for δt/δ is very accurate for
gases and nonmetallic liquids. Liquid metals, on the other hand, have
Prandtl numbers in the range of 0.005–0.05 for which the figure shows
3 < δt/δ < 9. The assumptions of the integral analysis fail completely
for liquid metals.
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The final step in predicting the heat flux is to write Fourier’s law:

q = −k ∂T
∂y

⃓⃓⃓⃓
⃓
y=0

= −k Tw − T∞
δt

∂
(︃
T − T∞
Tw − T∞

)︃
∂(y/δt)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
y/δt=0

(6.56)

Using the dimensionless temperature distribution given by eqn. (6.50),
we get

q = +k Tw − T∞
δt

3
2

or

h ≡ q
∆T

= 3k
2δt

= 3
2
k
δ
δ
δt

(6.57)

Notice that h is greater when the thermal b.l. is thinner.
Substituting eqns. (6.54) and (6.31b) for δ/δt and δ, we obtain

Nux ≡
hx
k
= 3

2

√︁
Rex

4.64
1.025 Pr1/3 = 0.3314 Re1/2

x Pr1/3

Considering the various approximations, this equation is very close to
Pohlhausen’s exact solution, which he fitted to this power-law:

Nux = 0.332 Re1/2
x Pr1/3 Pr ⩾ 0.6 (6.58)

Equation (6.58) is within 2% of the exact solution for any Pr ⩾ 0.6, and
within 1% for 0.6 ⩽ Pr ⩽ 2. It applies to a laminar, two-dimensional b.l.
on a flat surface with Tw = constant.

Some other laminar boundary layer heat transfer equations

We have thus far shown how to derive many boundary layer convection
equations. We now simply present the final results for additional, constant
wall temperature situations.

High Pr. At high Pr, the exact solution approaches this limit [6.8, Chp. XII]:

Nux ⎯→ 0.3387 Re1/2
x Pr1/3, Pr ⎯→∞ (6.59)

This equation is accurate to better than 1% for Pr ⩾ 2.
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Figure 6.15 A laminar b.l. in a low-Pr liquid. The velocity b.l. is
so thin that u ≊ u∞ in almost the entire the thermal b.l.

Low Pr. Figure 6.15 shows a low-Pr liquid flowing over a flat plate. In
this case δt ≫ δ, and for all practical purposes u = u∞ everywhere within
the thermal b.l. It is as though the no-slip condition [u(y = 0) = 0]
and the influence of viscosity were removed from the problem. Thus,
by considering the energy equation and the definition of h, we find the
following dimensional functional equation:

h = fn
(︁
k,x,u∞, ρcp

)︁
(6.60)

There are five variables in J/K, m, and s, so there are only two pi-groups:

Nux =
hx
k

and Π2 ≡ RexPr = u∞x
α

The new group, Π2, is called the Péclet number, Pex , where the sub-
script identifies the length upon which it is based. It can be interpreted
as follows:

Pex ≡
u∞x
α

= ρcpu∞∆T
k∆T

= heat capacity rate of fluid in the b.l.
axial heat conductance of the b.l.

(6.61)

So long as Pex is large, the b.l. approximation that ∂2T/∂x2 ≪ ∂2T/∂y2

will be valid; but for small Pex (i.e., Pex ≪ 100), the approximation will
be violated and a boundary layer solution cannot be used.

The limit of the exact solution of the b.l. equations for low Pr is:

Nux ⎯→
√︄

Pex
π

= 0.565 Pe1/2
x , Pr ⎯→ 0 (6.62)

The exact solution is no more than 20% greater than this expression when
Pr ⩽ 0.05 [6.13]. We must also have Pex ❳ 100.

https://en.wikipedia.org/wiki/Jean_Claude_Eugene_Peclet
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General correlation for any Pr. Churchill and Ozoe [6.14] recommend
the following empirical correlation for laminar flow on a flat, constant-
temperature surface for the entire range of Pr:

Nux =
0.339 Re1/2

x Pr1/3[︂
1+ (0.0468/Pr)2/3

]︂1/4

Pex > 100

Tw = constant
(6.63)

This relationship proves to be quite accurate, and it approximates eqns.
(6.59) and (6.62), respectively, in the high- and low-Pr limits. The calcu-
lations of an average Nusselt number for the general case is left as an
exercise (Problem 6.10).

Boundary layer with an unheated starting length. Figure 6.16 shows
a b.l. with a heated region that starts at a distance x0 from the leading
edge. The heat transfer in this instance is easily obtained using integral
methods (see Problem 6.41):

Nux =
0.332 Re1/2

x Pr1/3[︂
1− (x0/x)3/4

]︂1/3 ,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x > x0

Pr ⩾ 0.6

Tw = const. for x > x0

(6.64)

Figure 6.16 A b.l. with an unheated region at the leading edge.

Average heat transfer coefficient, h. The heat transfer coefficient h, is
the ratio of two quantities, q and ∆T , either of which might vary with x.
So far, we have only dealt with the uniform wall temperature problem.
Equations (6.58), (6.59), (6.62), and (6.63), for example, can all be used to
calculate q(x) when Tw (and ∆T ≡ Tw − T∞) is a specified constant.

At the end of this section (pg. 311), we will see how to predict T(x)−T∞
when q = qw is a specified constant. That is called the uniform wall heat
flux problem.
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The term h designates either q/∆T in the uniform wall temperature
problem or q/∆T in the uniform wall heat flux problem. Thus,

uniform wall temp.: h ≡ q
∆T

= 1
∆T

[︄
1
L

∫︂ L
0
qdx

]︄
= 1
L

∫︂ L
0
h(x)dx

(6.65)

uniform heat flux: h ≡ q
∆T

= q
1
L

∫︂ L
0
∆T(x)dx

(6.66)

The Nusselt number based on h and a characteristic length, L, is desig-
nated NuL. This average Nusselt number is not to be construed as an
average of Nux , which would be meaningless in either of these cases.

Thus, for a flat surface (with x0 = 0), we use eqn. (6.58) in eqn. (6.65)
to get

h = 1
L

∫︂ L
0
h(x)⏞ ⏟⏟ ⏞
= kx Nux

dx = 0.332kPr1/3

L

√︃
u∞
ν

∫︂ L
0

√
xdx
x

= 0.664 Re1/2
L Pr1/3

(︃
k
L

)︃
(6.67)

Thus, h = 2h(x = L) in a laminar flow, and

NuL =
hL
k
= 0.664 Re1/2

L Pr1/3 Pr ⩾ 0.6

Tw = constant
(6.68)

A similar calculation gives NuL for liquid metal flows, under the same
conditions as eqn. (6.62):

NuL = 1.13 Pe1/2
L (6.69)

Some further observations. The preceding results are restricted to the
two-dimensional, incompressible, laminar b.l. on a flat isothermal wall at
velocities that are not too high. These conditions are usually met if:

• Rex or ReL is not above the turbulent transition value, which is
typically over one hundred thousand (see discussion on pg. 275).
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• The Mach number of the flow, Ma ≡ u∞/(sound speed), is less than
about 0.3. For low Ma, temperature and density changes caused
by the pressure gradients that drive the flow are negligible. (If
pdV work were significant, we would also need to include N and m
separately in the dimensional analysis of this problem, rather than
including only J.) A related condition is:

• The Eckert number, Ec ≡ u2
∞/cp(Tw −T∞), is substantially less than

one. This means that heating by viscous dissipation—which we have
neglected—does not play any role in the problem.

And we note how h and Nu depend on their independent variables:

h or h∝ 1√
x

or
1√
L
, k2/3,

√
ρu∞, c

1/3
p , µ−1/6

Nux or NuL ∝
√
x or

√
L, k−1/3,

√
ρu∞, c

1/3
p , µ−1/6

(6.70)

Thus, h ⎯→∞ and Nux vanishes at the leading edge, x = 0. Of course, an
infinite value of h, like infinite shear stress, will not really occur at the
leading edge because the b.l. description will actually break down in a
small neighborhood of x = 0.

Fluid Properties. In all of the preceding discussion, we have assumed
the fluid properties to be constant. Actually, k, ρ, cp, and especially liquid
viscosity µ, might all vary noticeably with T within the b.l. Fortunately, if
the properties are all evaluated at the average, or film, temperature of the
b.l., Tf = (Tw + T∞)/2, the results will normally be quite accurate.

Appendix A gives liquid and gas properties only at one pressure for
each temperature. However, µ, k, and cp change very little with pressure,
especially in liquids. Gas density increases almost linearly with pressure.

Example 6.5

In a wind tunnel experiment, air at 20◦C and moving at 15 m/s is
warmed by an isothermal steam-heated plate at 110◦C, ½ m in length
and ½ m in width. Find the average heat transfer coefficient and the
total heat transferred. What are h, δt , and δ at the trailing edge?

Solution. We evaluate properties at Tf = (110+20)/2 = 65◦C. Then

Pr = 0.703 and ReL =
u∞L
ν

= 15(0.5)
0.0000195

= 384,600

https://www.nap.edu/read/11912/chapter/21#109
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and if the wind tunnel has low turbulence, the flow ought to be laminar
up to the trailing edge. The Nusselt number is then

NuL = 0.664 Re1/2
L Pr1/3 = 366.2

and

h = 366.2
k
L
= 366.2(0.0292)

0.5
= 21.4 W/m2K

The value is quite low because of the low conductivity of air. The total
heat flux is then

Q = hA∆T = 21.4(0.5)2(110− 20) = 482 W

By comparing eqns. (6.58) and (6.68), we see that h(x = L) = ½h, so

h(trailing edge) = 1
2(21.4) = 10.7 W/m2K

And finally,

δ(x = L) = 4.92L
/︁√︁

ReL =
4.92(0.5)√︁
384,600

= 3.97 mm

and

δt =
δ

3√Pr
= 3.97

3√0.703
= 4.46 mm

Note that the b.l. is indeed very thin: δt/L = 4.46/500 = 0.0089.

The problem of uniform wall heat flux

When the heat flux at the heater wall, qw , is specified instead of the
temperature, we need to calculate Tw . We leave as an exercise the problem
of estimating Nux for qw = constant by the integral method (Problem 6.11).
The exact result is represented to 1% accuracy by [6.6, App. B]

Nux = 0.4587 Re1/2
x Pr1/3 Pr ⩾ 0.7 (6.71)

where Nux = hx/k = qwx/k(Tw − T∞).
We must be very careful in discussing average results in the constant

heat flux case. The problem now might be that of finding an average
temperature difference [cf. eqn. (6.66)]:

Tw − T∞ =
1
L

∫︂ L
0
(Tw − T∞)dx =

1
L

∫︂ L
0

qwx
k
(︁
0.4587

√︁
u∞/ν Pr1/3)︁ dx√x
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or

Tw − T∞ =
qwL/k

0.688 Re1/2
L Pr1/3 (6.72)

which can be put into the form NuL = hL/k = 0.688 Re1/2
L Pr1/3 for h =

qw
/︁
(Tw − T∞).
Churchill and Ozoe later pointed out that their eqn. (6.63) will describe

(Tw − T∞) with high accuracy over the full range of Pr if the constants
are changed as follows [6.15]:

Nux =
0.464 Re1/2

x Pr1/3[︂
1+ (0.0205/Pr)2/3

]︂1/4

Pex > 100

qw = constant
(6.73)

The average Nusselt number for this case is derived in Problem 6.44.
The result for an unheated starting length followed by a uniform heat

flux is discussed later [see eqn. (6.116) and Fig. 6.22)].

Example 6.6

Air at 15◦C flows at 1.8 m/s over a 0.6 m-long heating panel. The panel
is intended to supply 420 W/m2 to the air, but the surface can sustain
only about 110◦C without being damaged. What are the maximum
and the average temperatures of the plate? Is it safe?

Solution. In accordance with eqn. (6.71),

∆Tmax = ∆Tx=L =
qL

kNux=L
= qL/k

0.4587 Re1/2
x Pr1/3

or if we evaluate properties at (85+ 15)/2 = 50◦C, for the moment,

∆Tmax =
420(0.6)/0.0281

0.4587
[︁
0.6(1.8)/1.797× 10−5

]︁1/2 (0.705)1/3
= 89.6◦C

This will give Twmax = 15 + 89.6 = 104.6◦C. This is very close to
110◦C. If 110◦C is at all conservative, q = 420 W/m2 should be safe—
particularly since it only occurs over a very small distance at the end
of the plate.

From eqn. (6.72) we find that

∆T = 0.4587
0.6795

∆Tmax = 60.5◦C
so

Tw = 15+ 60.5 = 75.5◦C
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6.6 The Reynolds-Colburn analogy

We have seen that the molecular mechanisms of heat and momentum
transport are very similar and that the laminar thermal and momentum
boundary layers grow in a similar way. The difference between heat and
momentum transport in a laminar b.l. on an isothermal wall comes down
to a single physical property, the Prandtl number (Fig. 6.4). We might
then wonder whether the heat transfer rate and the wall shear stress are
also related through Pr.

To see if this is the case, we can compare the skin friction coefficient,
eqn. (6.33), to the Nusselt number for an isothermal wall, eqn. (6.58). We
rearrange eqn. (6.58) to find

Nux
RexPr1/3 =

0.332√︁
Rex

(6.74)

The right-hand side is precisely Cf
/︁
2. This result is an example of what

has come to be called the Reynolds-Colburn analogy between heat transfer
and momentum transfer.

The analogy is usually expressed in terms of a slightly different ratio
of dimensionless groups, called the Stanton number :

St, Stanton number ≡ Nux
RexPr

= h
ρcpu∞

(6.75)

The physical significance of the Stanton number is

St = h∆T
ρcpu∞∆T

= actual heat flux
maximum possible enthalpy change

(6.76)

We may write the Reynolds-Colburn analogy in terms of St as

St Pr2/3 =
Cf
2

(6.77)

The Reynolds-Colburn analogy can be used directly to infer shear
stress from heat transfer measurements, or vice versa. For example, if the
skin friction coefficient has been measured in one fluid, the analogy may
allow us to estimate heat transfer for another fluid that has a different
Prandtl number.

At this point, we may wonder whether this analogy is generally appli-
cable. Suppose that we had used the Nusselt number for a constant heat
flux wall, eqn. (6.71), instead:

Nux
RexPr1/3 =

0.4587√︁
Rex

≠
Cf
2
= 0.332√︁

Rex
(6.78)
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The previous analogy does not apply here because the laminar thermal
boundary layer grows at a different rate on a constant flux wall than on a
constant temperature wall. Other changes to the flow, such as having a
pressure gradient or using liquid metal (very low Pr), can also invalidate
the analogy.

The Reynolds-Colburn analogy is more widely applicable for turbulent
flow. The reason is that turbulent motion transports heat and momentum
in a way that is much less sensitive to the wall boundary condition. We
develop a more general version of the analogy for turbulent flow in
Section 6.8.

In fact, Reynolds, who developed the analogy in 1874 [6.16], later used
it to study heat transfer in turbulent pipe flow. His approach was followed
by many researchers during the 20th century (see Section 7.3). The chem-
ical engineer A. P. Colburn formalized the Prandtl number dependence
of the analogy in 1933 [6.17]. He then successfully correlated data for a
number of configurations involving turbulent flow.9

6.7 Turbulent boundary layers

Turbulence

Big whirls have little whirls,
That feed on their velocity.
Little whirls have littler whirls,
And so on, to viscosity.

This bit of doggerel by British fluid mechanician L. F. Richardson, says
much about the nature of turbulence. We can view fluid turbulence as
a spectrum of vortices (or “whirls”). Kinetic energy dissipates from the
larger ones to smaller ones, until viscous shear stresses damp out the
very smallest of these vortices.

Notice, for example, the cloud patterns in a weather satellite image.
One or two enormous vortices have continental proportions. They in
turn feed smaller “weather-making” vortices hundreds of kilometers in
diameter. These further dissipate into vortices of cyclone and tornado

9Colburn also looked at the flat plate boundary layer, and his plot of laminar flow
data using eqn. (6.77) seemed to work. But in 1946, he admitted to Max Jakob that a
“slide-rule error” had slipped into that plot. In fact, the problem ran deeper than just
a calculation: He had plotted data from a constant heat flux experiment. When his
plot was corrected, the data lay above eqn. (6.77)—as we would expect from eqn. (6.78).
Neither Colburn nor Jakob noted the importance of the wall boundary condition [6.6].
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Figure 6.17 Fluctuation of u and other quantities in a turbulent
pipe flow.

proportions—sometimes with that level of violence but more often not.
These dissipate into still smaller whirls as they interact with the ground
and its various protrusions. The next time the wind blows, stand behind
any tree and feel the vortices. In the Great Plains of North America, where
there are few vortex generators (such as trees), one sees small cyclonic
eddies called “dust devils.” The process continues right on down to
millimeter or even micrometer scales. There, momentum exchange is no
longer identifiable as turbulence but appears simply as viscous twisting
and stretching of the fluid.

The same kind of process exists within, say, a turbulent pipe flow at
high Reynolds number. Such a flow is shown in Fig. 6.17. Turbulence
in such a case consists of coexisting vortices which vary in size from a
substantial fraction of the pipe radius down to micrometer dimensions.
The spectrum of sizes varies with location in the pipe. The size and
intensity of vortices at the wall must clearly approach zero, since the fluid
velocity goes to zero at the wall.
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Figure 6.17 shows the fluctuation of a typical flow variable—namely,
velocity—both with location in the pipe and with time. This fluctuation
arises because of the turbulent motions that are superposed on the average
local flow. Other flow variables, such as T or ρ, can vary in the same
manner. For any variable, in this case u, we can write a local time-average
value as

u ≡ 1
T

∫︂ T

0
udt (6.79)

where T is a time that is much longer than the period of typical fluctua-
tions.10 Equation (6.79) is most useful for so-called stationary processes—
ones for which u is nearly time-independent.

If we substitute u = u+u′ in eqn. (6.79), where u is the actual local
velocity and u′ is the instantaneous magnitude of the fluctuation, we
obtain

u = 1
T

∫︂ T

0
udt⏞ ⏟⏟ ⏞

=u

+ 1
T

∫︂ T

0
u′ dt⏞ ⏟⏟ ⏞

=u′

(6.80)

This is consistent with the fact that

u′ or any other average fluctuation = 0 (6.81)

since the fluctuations are defined as deviations from the average.
We now want to create a measure of the size, or length scale, of

turbulent vortices. This might be done experimentally by placing two
velocity-measuring devices very close to one another in a turbulent flow
field. When the probes are close, their measurements will be very highly
correlated with one another. Then, suppose that the two velocity probes
are moved apart until the measurements first become unrelated to one
another. That spacing gives an indication of the average size of the
turbulent vortices.

Prandtl invented a slightly different (although related) measure of the
length scale of turbulence, called the mixing length, ℓ. He saw ℓ as an
average distance that a parcel of fluid moves between interactions. It is
essentially the size of a typical turbulent eddy. The mixing length is thus
similar to the molecular mean free path (although far larger). We can use
the idea of ℓ, along with physical reasoning, to examine the behavior of
the turbulent shear stress.

10Take care not to interpret this T as the thermal time constant that we introduced in
Chapter 1; we denote time constants with italics as T .
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Figure 6.18 The shear stress, τyx , in a laminar or turbulent flow.

The shear stresses of turbulence arise from the same kind of momen-
tum exchange process that gives rise to the molecular viscosity. Recall
that, in the latter case, a kinetic calculation gave eqn. (6.45a) for the
laminar shear stress

τyx = (constant)
(︂
ρC

)︂(︄
ℓ
∂u
∂y

)︄
⏞ ⏟⏟ ⏞
=u′

(6.45a)

where ℓ was the molecular mean free path and u′ was the velocity differ-
ence for a molecule that had travelled a distance ℓ in the mean velocity
gradient. In the turbulent flow case, pictured in Fig. 6.18, we can think of
Prandtl’s parcels of fluid (rather than individual molecules) as carrying
the x-momentum. Let us rewrite eqn. (6.45a) in the following way:

• The shear stress τyx becomes a fluctuation in shear stress, τ′yx ,
resulting from the turbulent movement of a parcel of fluid relative
to the mean flow

• ℓ changes from the mean free path to the mixing length

• C is replaced by v = v + v′, the instantaneous vertical speed of the
fluid parcel

• The velocity fluctuation, u′, is for a fluid parcel that moves a distance
ℓ through the mean velocity gradient, ∂u/∂y , so thatu′ = ℓ(∂u/∂y)
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With these changes, we replace eqn. (6.45a) by

τ′yx = (constant)
[︁
ρ
(︁
v + v′

)︁]︁
u′ (6.82)

Equation (6.82) can also be derived formally and precisely from the Navier-
Stokes equation. When this is done, the constant turns out to equal −1.

The time average of the fluctuating shear stress, eqn. (6.82), is

τ′yx = −
ρ
T

∫︂ T

0

(︁
vu′ + v′u′

)︁
dt = −ρv u′⏞⏟⏟⏞

=0

−ρv′u′ (6.83)

Notice that, while u′ = v′ = 0, averages of products of fluctuations (such
as u′v′ or u′2) do not generally vanish. Thus,

τ′yx = −ρv′u′ (6.84)

In addition to the fluctuating shear stress, the flow will have a mean shear
stress associated with the mean velocity gradient, ∂u/∂y . That stress is
simply µ(∂u/∂y), just as in Newton’s law of viscous shear.

How to calculate v′u′ is not obvious (although it can be measured), so
we shall not make direct use of eqn. (6.84). Instead, we can try to model
v′u′. From the preceding discussion, we see that v′u′ should go to zero
when the velocity gradient, ∂u/∂y , is zero, and that it should increase
when the velocity gradient increases. We might therefore assume v′u′ to
be proportional to ∂u/∂y . Then the total time-average shear stress, τyx ,
can be expressed as the sum of mean flow and turbulent contributions
that are each proportional to the mean velocity gradient. Specifically,

τyx = µ
∂u
∂y

− ρv′u′ (6.85a)

= µ ∂u
∂y

+
(︄

some other factor, which
reflects turbulent mixing

)︄
⏞ ⏟⏟ ⏞

≡ ρ · εm

∂u
∂y

(6.85b)

or

τyx = ρ(ν + εm)
∂u
∂y

(6.85c)

where εm is called the eddy diffusivity for momentum.
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The eddy diffusivity itself may be expressed in terms of the mixing
length. Suppose that u increases in the y-direction, so that ∂u/∂y > 0.
Then, when a fluid parcel moves downward into slower moving fluid, it
has u′ ≊ ℓ(∂u/∂y). If that parcel moves upward into faster fluid, the
sign changes. The vertical velocity fluctuation, v′, is instead positive
for an upward moving parcel and negative for a downward motion. On
average, u′ and v′ for the eddies should be about the same size. Hence,
we expect that

ρεm
∂u
∂y

= −ρv′u′ = −ρ(constant)

(︄
±ℓ
⃓⃓⃓⃓
⃓∂u∂y

⃓⃓⃓⃓
⃓
)︄(︄
∓ℓ∂u
∂y

)︄
(6.86a)

= ρ(constant)ℓ2

⃓⃓⃓⃓
⃓∂u∂y

⃓⃓⃓⃓
⃓ ∂u∂y (6.86b)

where the absolute value is needed to get the right sign for the fluctuating
stress when ∂u/∂y < 0. Both ∂u/∂y and v′u′ can be measured, so we
may arbitrarily make the constant in eqns. (6.86) equal to one, to obtain a
measurable definition of the mixing length. We also obtain an expression
for the eddy diffusivity in terms of the mixing length:

εm = ℓ2

⃓⃓⃓⃓
⃓∂u∂y

⃓⃓⃓⃓
⃓ (6.87)

Turbulence near walls

Convective heat transfer is the cooling or heating of solid surfaces by
flowing fluids. Thus, we are principally interested in how turbulence
behaves near those surfaces. The gradients in a turbulent boundary layer
are very steep near the wall and weaker farther from the wall, where the
eddies are larger and turbulent mixing is more efficient. This situation
is in contrast to the gradual variation of velocity and temperature in a
laminar boundary layer, where heat and momentum are transferred by
molecular diffusion rather than the vertical motion of vortices. In fact,
the most important transport processes in turbulent convection occur in
the steep gradients very close to walls. The outer part of the b.l. is less
significant.

Let us consider the turbulent flow close to a wall. When the boundary
layer momentum equation, eqn. (6.40), is time-averaged for turbulent
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flow, the result is

ρ
(︄
u
∂u
∂x

+ v ∂u
∂y

)︄
⏞ ⏟⏟ ⏞
these terms are negligible

close to the wall

= ∂
∂y

(︄
µ
∂u
∂y

− ρv′u′
)︄

(6.88)

= ∂
∂y

τyx (6.89)

= ∂
∂y

[︄
ρ(ν + εm)

∂u
∂y

]︄
(6.90)

where the last two steps follow from eqns. (6.85). In the innermost
region of a turbulent boundary layer—y/δ ❲ 0.2, where δ is the b.l.
thickness—the mean velocities are small enough that the convective
terms in eqn. (6.88) can be neglected. As a result, ∂τyx/∂y ≊ 0. The total
shear stress is thus essentially constant in y and must equal the wall
shear stress:

τw ≊ τyx = ρ(ν + εm)
∂u
∂y

(6.91)

Equation (6.91) shows that the near-wall velocity profile does not
depend directly upon x. In functional form

u = fn
(︁
τw , ρ, ν,y

)︁
(6.92)

Notice that εm does not appear as an explicit variable since it is defined
by the velocity field. The effect of the streamwise position is likewise
carried in τw , which varies slowly with x. As a result, the flow field near
the wall is not very sensitive to upstream conditions, except through their
effect on τw .

Equation (6.92) involves five variables in three dimensions (kg, m, s), so
just two dimensionless groups are needed to describe the velocity profile:

u
u∗

= fn
(︃
u∗y
ν

)︃
(6.93)

The velocity scale u∗ ≡
√︁
τw/ρ is called the friction velocity. The friction

velocity is a speed that is characteristic of the turbulent fluctuations in
the boundary layer.

Equation (6.91) can be integrated to find the near wall velocity profile:∫︂ u
0
du⏞ ⏟⏟ ⏞

=u(y)

= τw
ρ

∫︂ y
0

dy
ν + εm

(6.94)
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To complete the integration, we need an equation for εm(y). Measure-
ments show that the mixing length varies linearly with the distance from
the wall for small y

ℓ = κy for y/δ ❲ 0.2 (6.95)

where κ = 0.41 is called the von Kármán constant. Physically, this says
that the turbulent eddies at a location y must not be bigger than the
distance to the wall. That makes sense, since eddies cannot cross into
the wall.

The viscous sublayer. Very near the wall, eqn. (6.95) shows that the
eddy size ℓ must become tiny. Since εm varies as ℓ2, εm will become
much smaller than ν. In other words, very close to the wall turbulent
shear stress is negligible compared to viscous shear stress. When we
integrate eqn. (6.94) in this region, we find

u(y) ≊ τw
ρ

∫︂ y
0

dy
ν
= τw
ρ
y
ν

= (u
∗)2y
ν

(6.96)

Experimentally, eqn. (6.96) is found to apply for u∗y/ν ❲ 7. We call
this thin region the viscous sublayer. The sublayer is on the order of
tens to hundreds of micrometers thick, depending upon the fluid and the
shear stress. Because turbulent mixing is ineffective in the sublayer, the
sublayer is responsible for a major fraction of the thermal resistance of a
turbulent boundary layer.

Even a small wall roughness can disrupt the thin thermal sublayer
and greatly reduce the thermal resistance. Wall roughness can likewise
greatly increase the wall shear stress in turbulent flow. More on these
matters in Section 7.3.

The log layer. Farther away from the wall, ℓ is larger and turbulent
shear stress is dominant: εm≫ ν . Then, from eqns. (6.91) and (6.87)

τw ≊ ρεm
∂u
∂y

= ρℓ2

⃓⃓⃓⃓
⃓∂u∂y

⃓⃓⃓⃓
⃓ ∂u∂y (6.97)

Assuming the velocity gradient to be positive, we may take the square
root of eqn. (6.97), rearrange, and integrate:∫︂

du =
√︄
τw
ρ

∫︂
dy
ℓ

(6.98)

https://en.wikipedia.org/wiki/Theodore_von_Karman
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u(y) = u∗
∫︂
dy
κy

+ constant (6.99)

= u
∗

κ
lny + constant (6.100)

Experimental data may be used to fix the constant, with the result that

u(y)
u∗

= 1
κ

ln
(︃
u∗y
ν

)︃
+ B (6.101)

where B ≊ 5.5. Equation (6.101) is sometimes called the log law. Experi-
ments show it to apply for u∗y/ν ❳ 30 and y/δ ❲ 0.2.

Other regions of the turbulent b.l. For the range 7 < u∗y/ν < 30, the
so-called buffer layer, more complicated equations for ℓ, εm, or u are
used to connect the viscous sublayer to the log layer [6.18–6.20]. For the
outer part of the turbulent boundary layer (y/δ ❳ 0.2), the mixing length
is approximately constant: ℓ ≊ 0.09δ. Gradients in the outer part are
weak and do not directly affect transport at the wall. This part of the b.l.
is nevertheless an important component of the streamwise momentum
balance; and that balance determines how τw and δ vary along the wall.11

Skin friction coefficient. Various expressions have been proposed for
the skin friction coefficient for a turbulent boundary layer on a flat plate.
White [6.4, 6.21] has derived the following equation, which has 1–2%
accuracy for any Rex :

Cf (x) =
0.455[︁

ln(0.06 Rex)
]︁2 (6.102)

6.8 Heat transfer in turbulent boundary layers

The turbulent thermal boundary layer, like the turbulent momentum
boundary layer, has inner and outer regions. Turbulent mixing becomes
increasingly weak closer to the wall in the inner region. There, heat
transport is controlled by heat conduction in the sublayer. Farther from
the wall, the temperature profile is logarithmic. Turbulent mixing is the
dominant mode of heat transport outside the viscous sublayer.

11A momentum integral analysis of the turbulent boundary layer [6.4] leads to these
expressions: δ(x)

/︁
x = 0.16 Re−1/7

x and Cf (x) = 0.027 Re−1/7
x . They are reasonably

accurate for 106 ⩽ Rex ⩽ 109.
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The thermal and momentum boundary layers end where turbulence
dies out and uniform free-stream conditions prevail. As a result, the
thermal and momentum boundary layers have the same thickness. At first,
this might seem to suggest that Prandtl number does not affect turbulent
heat transfer, but in fact it does. The Prandtl number determines behavior
in the sublayer near the wall, where molecular viscosity and thermal
conductivity still control the transport of heat and momentum.

The Reynolds-Colburn analogy for turbulent flow

Boussinesq introduced the eddy diffusivity for momentum, eqn. (6.85),
in 1877 [6.22]. That, in turn, suggested a version of Fourier’s law for
turbulent flow

q = −k ∂T
∂y

−
(︄

another constant, which
reflects turbulent mixing

)︄
⏞ ⏟⏟ ⏞

≡ ρcp · εh

∂T
∂y

where T is the local time-average temperature and εh is the eddy diffusivity
for heat. Therefore,

q = −ρcp(α+ εh)
∂T
∂y

(6.103)

This result immediately suggests yet another definition:

turbulent Prandtl number, Prt ≡
εm
εh

(6.104)

Equation (6.103) can be written in terms of ν and εm by introducing Pr
and Prt :

q = −ρcp
(︃
ν
Pr
+ εm

Prt

)︃
∂T
∂y

(6.105)

Before we try to build the Reynolds-Colburn analogy for turbulent
flow, we must note the behavior of Pr and Prt :

• Pr is a physical property of the fluid. For gases, Pr is near one and
is very weakly dependent on temperature. For nonmetallic liquids,
Pr may be orders of magnitude greater than one, and it often has a
strong temperature dependence.

• Prt is a property of the flow field more than the fluid. Prt is normally
close to one, and well within a factor of two. The value varies with
location in the b.l., but for nonmetallic fluids, Prt is often near 0.85.
(We do not consider liquid metals in this section.)
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The time-average boundary-layer energy equation is similar to the
time-average momentum equation [eqn. (6.88)]

ρcp

(︄
u
∂T
∂x

+ v ∂T
∂y

)︄
⏞ ⏟⏟ ⏞
negligible close to the wall

= − ∂
∂y
q = ∂

∂y

[︄
ρcp

(︃
ν
Pr
+ εm

Prt

)︃
∂T
∂y

]︄
(6.106)

and, since we can neglect the convective terms, ∂q/∂y ≊ 0 near the wall.
The heat flux close to the wall thus does not vary with y , and so must
equal qw :

q ≊ qw = −ρcp
(︃
ν
Pr
+ εm

Prt

)︃
∂T
∂y

(6.107)

We may integrate this equation as we did eqn. (6.91), with the result that

Tw − T(y)
qw/(ρcpu∗)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pr
(︃
u∗y
ν

)︃
thermal sublayer

1
κ

ln
(︃
u∗y
ν

)︃
+A(Pr) thermal log layer

(6.108)

Measurements show that the thermal sublayer extends to u∗y/ν ❲ 7,
followed by a smooth transition to the thermal log layer, which spans
u∗y/ν ❳ 30 to y/δ ❲ 0.2.

The termA in eqn. (6.108) depends upon the Prandtl number. It reflects
the thermal resistance of the sublayer near the wall. As was done for the
constant B in the velocity profile, eqn. (6.101), we may use experimental
data or numerical simulations to determine A(Pr) [6.9, 6.23, 6.24]. For
Pr ⩾ 0.5, an approximate fit is

A(Pr) ≊ 12.7 Pr2/3 − 7.2 (6.109)

To obtain the Reynolds-Colburn analogy, we subtract the dimension-
less log-law, eqn. (6.101), from its thermal counterpart, eqn. (6.108):

Tw − T(y)
qw/(ρcpu∗)

− u(y)
u∗

= A(Pr)− B (6.110a)

At the outer edge of the log-layer, the temperature and velocity are not far
from the free-stream values. So, we may approximate them as T(y) ≊ T∞
and u(y) ≊ u∞:

Tw − T∞
qw/(ρcpu∗)

− u∞
u∗

= A(Pr)− B (6.110b)
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We eliminate the friction velocity in favor of the skin friction coefficient
by using the definitions of each:

u∗

u∞
=
√︄
τw
ρu2

∞
=
√︄
Cf
2

(6.110c)

Hence,

Tw − T∞
qw/(ρcpu∞)

√︄
Cf
2
−
√︄

2

Cf
= A(Pr)− B (6.110d)

Rearrangement of the last equation gives

qw
(ρcpu∞)(Tw − T∞)

=
Cf
/︁
2

1+ [A(Pr)− B]
√︂
Cf
/︁
2

(6.110e)

The left-hand side is simply the Stanton number, St = h
/︁
(ρcpu∞), from

Section 6.6. Upon substituting B = 5.5 and eqn. (6.109) for A(Pr), we
obtain the Reynolds-Colburn analogy for turbulent flow:

St = Nux
RexPr

=
Cf
/︁
2

1+ 12.7
(︂
Pr2/3 − 1

)︂√︂
Cf
/︁
2

Pr ⩾ 0.5 (6.111)

Equation (6.111) can be used with eqn. (6.102) for Cf , or with data for
Cf , to calculate the local heat transfer coefficient in a turbulent boundary
layer. The result is valid for either uniform Tw or uniform qw . The reason
is that the thin, near-wall part of the boundary layer, which controls most
of the thermal resistance, is not strongly dependent on the upstream
history of the flow.

Equation (6.111) is valid for smooth walls with zero or mild pressure
gradients. The factor 12.7 (Pr2/3−1) in the denominator accounts for the
thermal resistance of the sublayer. If the walls are rough, the sublayer will
be disrupted and that term must be replaced by one that takes account
of the roughness (see Section 7.3).

Experimental data for air—from five independent studies—are plotted
in Fig. 6.19. Equation (6.111) predicts those data with a standard deviation
of ±5.5%. The 95% confidence interval—two sample standard deviations—
is thus ±11% [6.25]. Figure 6.19 includes 328 data points, of which 326
(99.4%) are within ±15% of eqn. (6.111). This equation also displays
excellent agreement with data for water and for high-Pr oils [6.6].
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Figure 6.19 Comparison of eqn. (6.111) to air (data from several
investigators [6.26–6.30]). Both constant Tw and constant qw
data are shown. u′r is the root-mean-square turbulent fluctuation
in the free-stream flow [6.6].

Power-law correlations for local turbulent heat transfer

Although eqn. (6.111) gives an excellent prediction of the local value of h
in a turbulent boundary layer, a number of simpler power-law expressions
have been suggested in the literature. For example, Reynolds et al. [6.27]
made extensive measurements for air flow over a constant-temperature
plate, from which they proposed the following correlation

Nux = 0.0296 Re0.8
x Pr0.6 for gases (6.112)
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We can use this equation for gases other than air because Pr for air is
close to that of most other gases. However, we cannot use eqn. (6.112) for
liquids with higher Prandtl numbers. Equation (6.112) agrees very closely
with eqn. (6.111) for air (see Fig. 6.22 in Section 6.9).

Žukauskas and coworkers performed experiments on water and an oil
at various free-stream temperatures, with Prandtl numbers up to 85 [6.23].
They suggested the following correlation which fit their data for these
liquids to about ±15%:

Nux = 0.032 Re0.8
x Pr0.43 for nonmetallic liquids (6.113)

This equation overpredicts the air data of Fig. 6.19 by 15–25% [6.6].
Equations (6.112) and (6.113) both apply for either constant Tw or

constant qw .

Variable properties. For liquids, when the wall temperature and the free-
stream temperature are not close, the viscosity may change significantly
across the boundary layer. In this case, the Nusselt number may be
adjusted by multiplying the right-hand side of eqn. (6.111) or eqn. (6.113)
by the factor (Pr∞/Prw)1/4, where Pr∞ is the Prandtl number at the free-
stream temperature, T∞, and Prw is that at the wall temperature, Tw , with
other physical properties evaluated at T∞ [6.23, 6.31].

For gases, variable properties may be accommodated by multiplying
the right-hand side of eqn. (6.111) or eqn. (6.112) by (T∞/Tw)0.4 [6.27].

Example 6.7

The prow of a destroyer has a sharp ‘V’ shape. It sails out of a river
port, where the water temperature is 24◦C, into 10◦C ocean water. If
the ship travels at 5 knots, find Cf and h at a distance of 1 m from the
forward edge of the hull. Turbulent transition is expected to occur
somewhere between Rex = 5 × 104 and 1.5 × 105. Assume that the
local free-stream pressure gradient is mild.

Solution. If we assume that the metal hull’s heat capacity holds it at
the river temperature for a time, we can take the properties of water at
Tf = (10+ 24)/2 = 17◦C: ν = 1.085× 10−6 m2/s, k = 0.5927 W/m·K,
ρ = 998.8 kg/m3, cp = 4187 J/kg·K, and Pr = 7.66.

One knot is 0.5144 m/s, so u∞ = 5(0.5144) = 2.572 m/s. Then,
Rex = (2.572)(1)/(1.085 × 10−6) = 2.371 × 106, indicating that the
flow is fully turbulent.
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From eqn. (6.102):

Cf (x) =
0.455[︁

ln(0.06 Rex)
]︁2

= 0.455{︁
ln[0.06(2.371× 106)]

}︁2 = 0.003232

For h, we can use the more accurate eqn. (6.111)

h(x) = ρcpu∞ ·
Cf
/︁
2

1+ 12.7
(︂
Pr2/3 − 1

)︂√︂
Cf
/︁
2

= 998.8(4187)(2.572)(0.003232/2)
1+ 12.7

[︁
(7.66)2/3 − 1

]︁√︁
0.003232/2

= 7,028 W/m2K

or the approximate power law, eqn. (6.113):

h(x) = k
x
· 0.032 Re0.8

x Pr0.43

= (0.5927)(0.032)(2.371× 106)0.8(7.66)0.43

(1.0)
= 5,729 W/m2K

The two values of h differ by about 22%, which is consistent with the
uncertainty of the power law, eqn. (6.113).

6.9 Turbulent transition and overall heat transfer

We now know how to calculate h for the laminar region and the fully
turbulent region of the b.l. However, these regions are separated by a
lengthy transition region (Fig. 6.4). To assess the overall heat transfer, we
must deal with transition.

Figures 6.20 and 6.21 show data for water and air boundary layers
undergoing turbulent transition. Our equations for laminar and fully
turbulent flow are also plotted. The data show that Nux rises steeply in
the transition region and that it varies approximately as a straight line on
log-log coordinates. That means that the Nusselt number in the transition
region, Nutrans, varies as a power of Reynolds number:

Nutrans ≊ aRecx (6.114a)
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Ž&Š, Tab. 22, Run 7
Ž&Š, Tab. 22, Run 8

Figure 6.20 Nusselt number across the transition region for
water flowing over a constant heat flux plate (data of Žukauskas
and Šlančiauskas [6.23]). Adapted from [6.6].

The value of c is simply the slope of eqn. (6.114a) on a log-log plot. That
slope is c = 1.75 in Fig. 6.20.

Equation (6.114a) intersects the laminar curve at Rel. For example, in
Fig. 6.20, the intersection is at Rel ≊ 68,000. Thus, a can be written in
terms of the laminar Nusselt number at Rel:

Nutrans = Nulam
(︁
Rel,Pr

)︁(︃Rex
Rel

)︃c
(6.114b)

The values of c and Rel can be estimated for any particular set of data by
plotting it. The legends of Figs. 6.20 and 6.21 state the values of c and
Rel that fit each data set.
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Figure 6.21 Nusselt numbers measured across the transition
region for air flowing over constant temperature plates (data
from [6.27–6.29, 6.32]). Adapted from [6.6].

The value of Rel is very much dependent on details of the flow con-
figuration that are often hard to predict. The amount of turbulence in
the stream above the plate has a strong effect, as do surface roughness,
system vibrations, and similar factors.

Lienhard examined many experimental data sets and found that the
slope c gradually increases as the Reynolds number at the start of transi-
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tion, Rel, increases [6.6]. Measured values of c range from 1.4 to 2.6 for
30,000 ⩽ Rel ⩽ 500,000. A correlation for c, to ±8%, is:

c = 0.9922 log10 Rel − 3.013 Rel ⩽ 500,000 (6.115)

For higher values of Rel, fewer data are available, but the values of c are
clearly much higher (up to 6 for the right-most curve in Fig. 6.22).

Effect of free-stream turbulence and of unheated starting length

Blair [6.30] measured h for constant wall heat flux in a carefully controlled
wind-tunnel experiment. His heater had a short unheated starting length,
which raisedh in the laminar region relative to the prediction of eqn. (6.71),
as seen in Fig. 6.22. He varied the free-stream turbulence by placing
different grids upstream of the plate. This allowed him to change the
location of transition to turbulence.

The figure shows three different ranges of turbulent transition, with
transition occurring at lower Reynolds number for higher levels of free-
stream turbulence. The later transition begins, the more rapidly it pro-
gresses: notice the steepness of the transition for the lowest turbulence
level, 0.25% (c = 6). Great care is required to achieve such a low level
of turbulence in a laboratory system, and most real systems undergo
transition at a much lower Reynolds number.

Blair’s results are in excellent agreement with both eqns. (6.111) and
(6.112) for low turbulence levels. For Blair’s highest turbulence level, h
just after transition is about 5% above the equations, a difference that is
hardly discernible on this log-log plot. (Blair’s other experiments showed
increases of up to 18% when u′r/u∞ rose to 6%.)

The heat transfer for a laminar, constant heat flux boundary with an
unheated starting length can be predicted using eqn. (6.64) if the constant
0.332 is replaced by 0.4587 [6.6]:

Nux =
0.4587 Re1/2

x Pr1/3[︂
1− (x0/x)3/4

]︂1/3

⎧⎨⎩qw = const. for x > x0

laminar flow, Pr > 0.6
(6.116)

For Blair’s experiment, x0 = 4.3 cm. Equation 6.116 is in excellent agree-
ment with Blair’s laminar flow data.12

12In reality, many of the experimental reports of turbulent b.l. heat transfer have
involved an unheated starting length, but authors have often used laminar theory to
remove the effect from the data. Blair presented his data without such adjustments.
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Figure 6.22 Comparison of eqn. (6.111) to the constant wall
heat flux data of Blair [6.30] for three nominal levels of free-
stream turbulence in air, where u′r is the root-mean-square
velocity fluctuation. The laminar equation, (6.71), and a power-
law, eqn. (6.112), are also shown. Blair’s unheated starting length
raises h in the laminar region, as predicted by eqn. (6.116) [6.6].
u∞ = 30.3 m/s, T∞ = 22◦C.

In practical situations with significant disturbances (u′r/u∞ ❳ 3%),
transition is likely to begin in the range 4× 104 ❲ Rel ❲ 105. Only with
extremely low levels of turbulence (u′r/u∞ ❲ 0.5%) can Rel exceed 106;
Schubauer and Skramstad [6.5] reported limiting values of Rel ≃ 2.8×106

for u′r/u∞ < 0.1%.13

13Mayle [6.33] and Blair [6.34] discuss estimation of Rel when u′r/u∞ is known. How-
ever, u′r usually decays in the flow direction, so local values are rarely available. Mayle
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A correlation for laminar, transitional, and turbulent flow

Churchill [6.15] suggested that a single formula could smoothly blend
the expressions for the laminar, transitional, and fully turbulent Nus-
selt numbers. Lienhard reviewed the available measurements of Nux in
transitional flow, which led him to simplify Churchill’s formula to [6.6]:

Nux(Rex,Pr) =
[︃

Nu5
x,lam +

(︂
Nu−10

x,trans +Nu−10
x,turb

)︂−1/2
]︃1/5

(6.117)

This equation is continuous over the three regions, as seen in Fig. 6.20
where it follows the data between the laminar and transitional regions.

In eqn. (6.117), the laminar Nusselt number is calculated with eqn. (6.58)
if the wall temperature is uniform or eqn. (6.71) if the wall heat flux is
uniform. The transitional Nusselt number is calculated with eqn. (6.114b).
The turbulent Nusselt number may be evaluated using eqn. (6.111) or an
appropriate power law. All three terms should be used at each Reynolds
number because the exponents in the formula diminish the influence of
each term outside its proper region.

Example 6.8

How well does eqn. (6.117) fit the transitional data in Fig. 6.21?

Solution. These data are for uniform wall temperature, so the
laminar Nusselt number can be calculated using eqn. (6.58):

Nulam = 0.332 Re1/2
x Pr1/3 (6.58)

The turbulent Nusselt number, Nuturb can be calculated from eqn.
(6.111) (or, because these are air data, eqn. (6.112) could be used).

The values of c and Rel must be estimated for each data set. This is
easy to do by trial and error if the curves are being created numerically.
If working by hand, printing Fig. 6.21 and using a straight-edge to
draw a line through the transition range allows the values to be read
from the plot. For instance, a line through the transitional data shown
as open triangles has a slope of about 1.75; and that line intersects
the laminar curve at a Reynolds number of about 61,000, where the
laminar Nusselt number is about 73. Thus, with eqn. (6.114b),

Nutrans = 73
(︃

Rex
61,000

)︃1.75

(6.118)

suggested an empirical equation, which we can write as Rel = (3.6×105)(100u′r/u∞)−5/4

for a laminar b.l. starting at the leading edge. This equation has fairly limited accuracy
in most cases (e.g., it predicts Blair’s Rel to within only a factor of two or so).
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A similar process generates Nutrans for the other three data sets.
For each data set, we substitute Nulam, Nutrans, and Nuturb into

eqn. (6.117). The curves calculated are shown in Fig. 6.21, with the
corresponding values of c and Rel. Equation (6.117) fits the data well.

Average Nusselt number for the entire plate

The average heat transfer coefficient—including the laminar, transitional,
and turbulent regions—may be found by integrating h with eqn. (6.117).
Depending on the wall boundary condition, either eqn. (6.65) or eqn. (6.66)
applies. The computation can be done with common software packages.

An algebraic formula can be obtained by noticing that the transition
region starts and ends rather sharply. We may approximate the integral
in three distinct pieces, without using eqn. (6.117). For uniform Tw ,

h = 1
L∆T

∫︂ L
0
qw dx

= 1
L

[︄∫︂ xl
0
hlaminar dx +

∫︂ xu
xl
htrans dx +

∫︂ L
xu
hturbulent dx

]︄
(6.119)

where xl = (ν/u∞)Rel is the start of transition and xu = (ν/u∞)Reu
is the end. The first two integrals can be evaluated by hand. The third
integral is less simple analytically, unless a power law is adopted for the
turbulent region. For gas flows, we may use eqn. (6.112) for the turbulent
region. After integration, we have:

NuL ≡
hL
k
= 0.037 Pr0.6

(︂
Re0.8

L − Re0.8
u

)︂
+ 0.664 Re1/2

l Pr1/3

+ 1
c

(︂
0.0296 Re0.8

u Pr0.6 − 0.332 Re1/2
l Pr1/3

)︂
⏞ ⏟⏟ ⏞

contribution of transition region

for gases (6.120)

A similar equation may be developed for liquids by using eqn. (6.113) for
the turbulent region.

Example 6.9

In a wind tunnel experiment, an aluminum plate 2.0 m in length
and 1.0 m wide is held at a temperature of 310 K and is cooled on
one surface by air flowing at 10 m/s. The air in the wind tunnel
has a temperature of 290 K and is at 1 atm pressure. The Reynolds
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numbers at the beginning and end of the turbulent transition regime
are observed to be 400,000 and 870,000. What is the heat loss from
the plate?

Solution. We evaluate properties at the film temperature of 300 K:
ν = 1.575 × 10−5 m2/s, k = 0.0264 W/m·K, and Pr = 0.708. At
10 m/s, the plate Reynolds number is ReL = (10)(2)/(1.575×10−5) =
1.270× 106.

First, we must compute c from eqn. (6.115):

c = 0.9922 log10(400,000)− 3.013 = 2.55

Now we may use eqn. (6.120):

NuL = 0.037(0.708)0.6
[︂
(1.270× 106)0.8 − (8.70× 105)0.8

]︂
+ 0.664 (4.00× 105)1/2(0.708)1/3

+ 1
2.55

[︂
0.0296(8.70× 105)0.8(0.708)0.6

− 0.332 (4.00× 105)1/2(0.708)1/3
]︂

Evaluating, we see that the contributions of the turbulent, laminar,
and transition regions are of similar size:

NuL = 599.9⏞ ⏟⏟ ⏞
turb.

+374.3⏞ ⏟⏟ ⏞
lam.

+459.2⏞ ⏟⏟ ⏞
trans.

= 1,433

In fact, the transition region contributes 35% of the total. The average
heat transfer coefficient is

h = 1433(0.0264)
2.0

= 18.92 W/m2K

and the convective heat loss from the plate is

Q = (2.0)(1.0)(18.92)(310− 290) = 756.0 W

If thermal radiation were included using eqn. (2.31) with εAl = 0.09,
then hrad = 0.55 W/m2K and the additional heat removal is 22 W.

Example 6.10

Suppose that Reu had not been given in Example 6.9. How could we
find its value?
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Solution. The transition curve, eqn. (6.114b), intersects the turbulent
curve for gases, eqn. (6.112), at Reu. We may set them equal at Reu:(︂

0.332 Re1/2
l Pr1/3

)︂(︃Reu
Rel

)︃c
= 0.0296 Re0.8

u Pr0.6

Substituting Rel, Pr, and c from Example 6.9 and rearranging:

Re2.55−0.8
u = 0.0296(0.708)0.6(400,000)2.55

0.332(400,000)1/2(0.708)1/3

Solving gives us Reu = 870,300.

Example 6.11

Suppose that the transition region were omitted in Example 6.9, as if
the flow abruptly changed from laminar to turbulent at some value
Retrans. How much error would result from that calculation?

Solution. Without the transition region, eqn. (6.120) reduces to

NuL ≡
hL
k
= 0.037 Pr0.6

(︂
Re0.8

L − Re0.8
trans

)︂
+ 0.664 Re1/2

transPr1/3

If we take Retrans = Rel = 400,000, we find NuL = 1760 (high by+23%).
If instead Retrans = Reu = 870,000, then NuL = 1152 (low by −20%).
Neither value is very accurate.

A word about the analysis of turbulent boundary layers

The preceding discussion has avoided in-depth theoretical analysis of
heat transfer in turbulent boundary layers. During the first part of the
twentieth century, sophisticated integral methods were used to analyze
boundary layer heat transfer in many flows, both with and without pres-
sure gradients (dp/dx). In subsequent decades, computational methods
largely replaced integral analyses, particularly methods based on turbu-
lent kinetic energy and viscous dissipation (so-called k-ε models). These
methods are described in the technical literature and in monographs
on turbulence [6.35, 6.36], and they have been widely implemented in
commercial and industrial fluid-dynamics codes.

We have found our way around detailed analysis by presenting some
correlations for the simple plane surface. In the next chapter, we deal
with more complicated configurations. A few of these configurations will
be amenable to elementary analyses, but for others we shall only be able
to present the best data correlations available.
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Problems

6.1 Verify that eqn. (6.13) follows from eqns. (6.11a) and (6.12).

6.2 The student with some analytical ability (or some assistance from
the instructor) should complete the algebra between eqns. (6.16)
and (6.20).

6.3 Use a computer to solve eqn. (6.18) subject to b.c.’s (6.20). To do
this you need all three b.c.’s at η = 0, but one is presently at η = ∞.
There are three ways to get around this:

• Start out by guessing a value ofdf ′
/︁
dη atη = 0—say, df ′

/︁
dη =

1. When η is large—say, 6 or 10—df ′
/︁
dη will asymptotically

approach a constant. If the constant > 1, go back and guess
a lower value of df ′

/︁
dη, or vice versa, until the constant

converges on one. (One might invent a number of means to
automate the successive guesses.)

• The correct value of df ′
/︁
dη is approximately 0.33206 at η = 0.

You might cheat and begin with it, but where is the fun in
that?

• There exists a clever way to map df
/︁
dη = 1 at η = ∞ back

into the origin. (Consult your instructor.)

6.4 Verify that the Blasius solution (Table 6.1) satisfies eqn. (6.25). To do
this, carry out the required numerical and/or graphical integration.
Hint: At any given x, y/δ = η/4.92.

6.5 Verify eqn. (6.30).

6.6 Use the velocity profile given by the integral method to calculate
τw and compare the result to eqn. (6.32).

6.7 Approximate the laminar b.l. velocity profile with the very simple
equationu/u∞ = y/δ and calculate δ andCf , using the momentum
integral method. How accurate is each? [Cf is about 13% low.]

6.8 In a certain flow of water at 40◦C over a flat plate, δ = 0.005
√
x for

δ and x measured in meters. Plot to scale on a single graph (with
an appropriately expanded y-scale):

• δ and δt for the water flow

• δ and δt for an air flow at the same temperature and velocity
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6.9 A thin film of liquid with a constant thickness, δ0, falls down a
vertical plate. The liquid has reached its terminal velocity so that
the flow is steady with viscous shear stress and weight in balance.
The b.l. equation for such a flow is the same as eqn. (6.13), except
that the gravity force must also be included. Thus,

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ g + ν ∂
2u
∂y2

where x increases in the downward direction and y is normal to
the wall. Assume that the hydrostatic pressure gradient in the
surrounding air is negligible. Then:

• Simplify the equation to describe this situation.

• Write the b.c.’s for the equation, neglecting any air drag on the
film.

• Solve for the velocity distribution in the film, assuming that
you know δ0 (cf. Chapter 8).

This solution is the starting point in the study of many heat and
mass transfer processes.

6.10 Beginning with eqn. (6.63), show that NuL for a laminar b.l. over a
flat, isothermal surface is given over the entire range of Pr by this
equation:

NuL =
0.677 Re1/2

L Pr1/3[︂
1+ (0.0468/Pr)2/3

]︂1/4 (6.121)

6.11 Use an integral method to predict Nux for a laminar b.l. over a
uniform heat flux plate that will be valid for all fluids other than
liquid metals. Compare your result to eqn. (6.71). What temperature
difference does your result give at the leading edge of the plate?

6.12 (a) Verify that eqn. (6.120) follows from eqn. (6.119). (b) Derive an
equation for liquids that is analogous to eqn. (6.120).

6.13 Fluid at a uniform speedU flows into a channel between two parallel
plates a distance d apart. A laminar boundary layer grows on each
plate. (a) At approximately what distance from the inlet will the
two boundary layers first touch? (b) If the flow remains laminar,
qualitatively sketch the velocity distribution between the plates a
long distance after the boundary layers meet, noting that the mass
flow rate is constant along the channel. [(a) x/d ≊ 0.01(Ud/ν).]
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6.14 Execute the differentiation in eqn. (6.24) with the help of Leibnitz’s
rule for the differentiation of an integral and show that the equation
before it is the result.

6.15 Liquid at 23◦C flows at 2 m/s over a smooth, sharp-edged, flat
surface 12 cm in length which is kept at 57◦C. Calculate h at the
trailing edge: (a) if the fluid is water; and (b) if the fluid is glycerin.
(c) Compare the drag forces in the two cases. [(b) h = 346 W/m2K.
(c) The glycerin produces 23.4 times as much drag.]

6.16 Air at −10◦C flows over a smooth, sharp-edged, almost-flat, aero-
dynamic surface at 240 km/hr. The surface is at 10◦C. Turbulent
transition begins at Rel = 140,000 and ends at Reu = 315,000.
Find: (a) the x-coordinates within which laminar-to-turbulent tran-
sition occurs; (b) h for a 2 m long surface; (c) h at the trailing edge
for a 2 m surface; and (d) δ and h at xl. [δxl ≃ 0.4 mm]

6.17 Find h in Example 6.9 using eqn. (6.120) with Rel = 80,000. Com-
pare with the value in the example and discuss the implication of
your result. Hint: See Example 6.10

6.18 For system described in Example 6.9, plot the local value of h over
the whole length of the plate using eqn. (6.117). On the same graph,
plot h from eqn. (6.58) for Rex < 800,000 and from eqn. (6.112)
for Rex > 400,000. Discuss the results.

6.19 Mercury at 25◦C flows at 0.7 m/s over a 4 cm-long flat heater
at 60◦C. The flow is laminar. Find h, τw , h(x = 0.04 m), and
δ(x = 0.04 m).

6.20 A large plate is at rest in water at 15◦C. The plate suddenly begins
moving parallel to itself, at 1.5 m/s. The resulting fluid movement
is not exactly like that in the b.l. that we have studied in this chapter
because the velocity profile builds up uniformly, all along the plate,
instead of beginning at an edge. The transient momentum equation
takes the form

1
ν
∂u
∂t

= ∂2u
∂y2

Determineu at 0.015 m above the plate for t = 1, 10, and 1000 s. Do
this by first posing the problem with boundary and initial conditions
and then comparing to the semi-infinite body heat conduction
solution in Section 5.6. [u ≊ 0.003 m/s after 10 s.]
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6.21 When Pr is large, the velocity b.l. thickness on an isothermal, flat
heater is much larger than δt . The velocity profile inside the ther-
mal b.l. is approximately u/u∞ ≊ 3

2y/δ =
3
2φ(y/δt). Use the

integral energy equation to derive Nux for this case based on this
velocity profile.

6.22 For air flowing above an isothermal plate, plot the ratio ofh(x)laminar

to h(x)turbulent as a function of Rex in the range of Rex that might
be either laminar or turbulent. What does the plot suggest about
designing for effective heat transfer?

6.23 Water at 7◦C flows at 0.38 m/s across the top of a 0.207 m-long,
thin copper plate. Methanol at 87◦C flows across the bottom of the
same plate, at the same speed but in the opposite direction. Make
the obvious first guess as to the plate temperature to use when
evaluating physical properties. Then plot the plate temperature as a
function of position. (Do not bother to make additional corrections
to the physical properties. That is done in Problem 6.24.) With
everything that varies along the plate, determine where the local
heat flux would be least.

6.24 Work Problem 6.23 taking full account of property variations.

6.25 Example 6.6 had a uniform wall heat flux of qw = 420 W/m2. If
instead the wall temperature were fixed at its average value of 76◦C,
what would be the average wall heat flux?

6.26 In Sect. 6.4, we noted that the kinetic theory of gases predicts
values of Pr ranging from 2/3 for monatomic ideal gases and 1 for
complex molecules. Show how this is borne out for gases at 400 K,
using Table A.6 in Appendix A.

6.27 A 2 ft-square slab of mild steel leaves a forging operation with a
thickness of 0.25 in. at 1000◦C. It is laid flat on an insulating bed
and 27◦C air is blown over the top side at 30 m/s. How long will it
take to cool to 200◦C? Assume that the flow is laminar and state
your assumptions about property evaluation. [25.3 min.]

6.28 Solve Problem 6.27 numerically, recalculating properties at succes-
sive times. If you worked Problem 6.27, compare the results.

6.29 Plot qw against x for the situation described in Example 6.9. (If you
have already worked Problem 6.18, this calculation will be short.)
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6.30 Consider the plate in Example 6.9. Suppose that instead of specify-
ing Tw = 310 K, we specified qw = 500 W/m2. Plot Tw against x
for this case.

6.31 A thin metal sheet separates air at 44◦C, flowing at 48 m/s, from
water at 4◦C, flowing at 0.2 m/s. Both fluids start at a leading edge
and move in the same direction. Plot qw as a function of x up to
x = 0.1 m. How does Tplate vary?

6.32 A mixture of 60% glycerin and 40% water flows over a 1-m-long
flat plate. The glycerin is at 20◦C and the plate is at 40◦C. A small
temperature sensor 1 mm above the trailing edge records 35◦C.
What is u∞, and what is u at the sensor position?

6.33 Approximately what maximum value of h can be achieved in a
laminar flow over a 5 m plate, based on data from Table A.3? What
sort of physical circumstances would be required to achieve such
a value?

6.34 A 17◦C sheet of water, initially ∆1 m, thick flows next to a hori-
zontal plate starting at the leading edge. The sheet has a uniform
initial speed of u∞ m/s. Develop a dimensionless equation for the
thickness ∆2 at a distance L from the leading edge. Assume that
δ ≪ ∆2. Evaluate the result for u∞ = 1 m/s, ∆1 = 0.01 m, and
L = 0.1 m, in water at 27◦C.

6.35 A good approximation to the temperature dependence of µ in gases
is given by the Sutherland formula:

µ
µref

=
(︃
T
Tref

)︃1.5(︃Tref + S
T + S

)︃
(6.122)

The reference state can be chosen anywhere, and T and Tref are
expressed in kelvin. Use data for air at two points to evaluate S for
air. Use this value to predict a third point and compare to data.

6.36 We derived a steady-state continuity equation in Section 6.2. Now
derive the time-dependent, compressible, three-dimensional ver-
sion of the equation:

∂ρ
∂t
+∇ · (ρu⃗) = 0 (6.123)

To do this, paraphrase the development of equation (2.10), requiring
that mass be conserved instead of energy. Show that this equation
reduces to eqn. (6.11b) for steady, constant density flow.
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6.37 The very smallest-scale motions in a fully turbulent flow are re-
sponsible for most of the viscous dissipation of kinetic energy. The
dissipation rate, ε (W/kg), is imposed on the small eddies by the
larger-scale motion of the flow. Further, the small eddies have no
preferred spatial orientation. Thus, ε and ν are the independent
variables that define the small-scale motion.

a. Use dimensional analysis to find the characteristic length and
velocity scales of the small-scale motion, η and uη. These are
called the Kolmogorov scales of the flow.

b. Compute the Reynolds number for the small-scale motion and
interpret the result.

c. The Kolmogorov length scale characterizes the smallest mo-
tions found in a turbulent flow. If ε is 10 W/kg and the mean
free path of an air molecule at 1 bar and 20◦C is 67 nm, show
that turbulent motion is a continuum phenomenon and thus
is properly governed by the equations of this chapter.

6.38 The temperature outside is 35◦F, but with the wind chill it’s 24◦F.
And you forgot your hat. If you go outdoors for long, are you in
danger of freezing your ears? Why or why not?

6.39 To heat the airflow in a wind tunnel, an experimenter uses an array
of electrically heated, Nichrome V strips. Each strip is 20 cm by
2.5 cm and very thin. They are stretched across the flow with the
thin edge facing into the wind. The air flows along both sides. The
strips are spaced vertically, each 1 cm above the next. Air at 1 atm
and 20◦C enters the array of strips at 10 m/s.

a. How much power must each strip deliver to raise the mean
temperature of the airstream to 30◦C?

b. What is the heat flux if the electrical dissipation in the strips
is uniform?

c. What are the average and maximum temperatures of the strips?

6.40 An airflow sensor consists of a 5 cm long, heated copper slug
that is smoothly embedded 10 cm from the leading edge of a flat
plate. The overall length of the plate is 15 cm, and the width of the
plate and the slug are both 10 cm. The slug is electrically heated
by an internal heating element, but, owing to its high thermal
conductivity, the slug has a nearly uniform temperature along its

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
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airside surface. The heater’s controller adjusts its power to keep
the slug surface at a fixed temperature. The air velocity is calculated
from measurements of the slug temperature, the air temperature,
and the heating power.

a. If the air is at 280 K, the slug is at 300 K, and the heater power
is 5.0 W, find the airspeed assuming the flow is laminar. Hint:
For x1/x0 = 1.5, integration shows that∫︂ x1

x0

x−1/2
[︂
1− (x0/x)3/4

]︂−1/3
dx = 1.0035

√
x0

b. Suppose that a disturbance trips the boundary layer near the
leading edge, causing it to become turbulent over the whole
plate. The air speed, air temperature, and the slug’s set-point
temperature remain the same. Make a very rough estimate
of the heater power that the controller now delivers, without
doing a lot of analysis.

6.41 Equation (6.64) gives Nux for a flat plate with an unheated starting
length. This equation may be derived using the integral energy equa-
tion (6.47), the velocity and temperature profiles from eqns. (6.29)
and (6.50), and δ(x) from eqn. (6.31a). Equation (6.52) is again ob-
tained; however, in this case,φ = δt/δ is a function of x for x > x0.
Derive eqn. (6.64) by starting with eqn. (6.52), neglecting the term
3φ3/280, and replacing δt by φδ. After some manipulation, you
will obtain

x
4
3
d
dx
φ3 +φ3 = 13

14 Pr

Show that the solution of this o.d.e. is

φ3 = Cx−3/4 + 13
14 Pr

for an unknown constant C. Then apply an appropriate initial
condition and the definition of qw and Nux to obtain eqn. (6.64).

6.42 Make a spreadsheet to compare eqn. (6.111) to eqn. (6.112) and
eqn. (6.113) for Prandtl numbers of 0.7, 6, 50, and 80 over the range
2× 105 ⩽ Rex ⩽ 107, keeping in mind the ranges of validity of the
various equations. What conclusions do you draw?
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6.43 Liquid metal flows past a flat plate. Axial heat conduction is neg-
ligible, and the momentum b.l. has negligible thickness. (a) If the
plate is isothermal, use eqn. (5.54) to derive eqn. (6.62). (b) Derive
the corresponding expression for the local Nusselt number if the
plate has a constant wall heat flux. (c) Find the average Nusselt
number in both cases.

6.44 Beginning with eqn. (6.73) show that NuL is given over the entire
range of Pr for a laminar b.l. on a flat, constant flux surface by:

NuL =
0.696 Re1/2

L Pr1/3[︂
1+ (0.0205/Pr)2/3

]︂1/4 (6.124)

6.45 For laminar flow over a flat plate flow with Pr > 0.6, how does h for
Tw constant compare to h for qw constant? At what location on a
plate with qw constant is the local plate temperature the same as
the average plate temperature? At what location on a plate with Tw
constant is the local heat flux the same as the average heat flux?

6.46 Two power laws are available for the skin friction coefficient in
turbulent flow: Cf (x) = 0.027 Re−1/7

x and Cf (x) = 0.059 Re−1/5
x .

The former is due to White and the latter to Prandtl [6.4]. Equa-
tion (6.102) is more accurate and wide ranging than either. Plot
all three expressions on semi-log coordinates for 105 ⩽ Rex ⩽ 109.
Over what range are the power laws in reasonable agreement with
eqn. (6.102)? Also plot the laminar equation (6.33) on same graph
for Rex ⩽ 106. Comment on all your results.

6.47 Reynolds et al. [6.27] provide the following measurements for air
flowing over a flat plate at 127 ft/s with T∞ = 86◦F and Tw = 63◦F.
Plot these data on log-log coordinates as Nux vs. Rex , and fit a
power law to them. How does your fit compare to eqn. (6.112)?

Rex×10−6 St×103 Rex×10−6 St×103 Rex×10−6 St×103

0.255 2.73 1.353 2.01 2.44 1.74
0.423 2.41 1.507 1.85 2.60 1.75
0.580 2.13 1.661 1.79 2.75 1.72
0.736 2.11 1.823 1.84 2.90 1.68
0.889 2.06 1.970 1.78 3.05 1.73
1.045 2.02 2.13 1.79 3.18 1.67
1.196 1.97 2.28 1.73 3.36 1.54
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6.48 Blair and Werle [6.37] reported the b.l. data below. Their experiment
had a uniform wall heat flux with a 4.29 cm unheated starting length,
u∞ = 30.2 m/s, and T∞ = 20.5◦C.

a. Plot these data as Nux versus Rex on log-log coordinates.
Identify the regions likely to be laminar, transitional, and
turbulent flow.

b. Plot the appropriate theoretical equation for Nux in laminar
flow on this graph. Does the equation agree with the data?

c. Plot eqn. (6.112) for Nux in turbulent flow on this graph. How
well do the data and the equation agree?

d. At what Rex does transition begin? Find values of c and Rel
that fit eqn. (6.114b) to these data, and plot the fit on this
graph.

e. Plot eqn. (6.117) through the entire range of Rex .

Rex×10−6 St×103 Rex×10−6 St×103 Rex×10−6 St×103

0.112 2.94 0.362 1.07 1.27 2.09
0.137 2.23 0.411 1.05 1.46 2.02
0.162 1.96 0.460 1.01 1.67 1.96
0.183 1.68 0.505 1.05 2.06 1.84
0.212 1.56 0.561 1.07 2.32 1.86
0.237 1.45 0.665 1.34 2.97 1.74
0.262 1.33 0.767 1.74 3.54 1.66
0.289 1.23 0.865 1.99 4.23 1.65
0.312 1.17 0.961 2.15 4.60 1.62
0.338 1.14 1.06 2.24 4.83 1.62

6.49 Figure 6.21 shows a fit to the following air data from Kestin et
al. [6.29] using eqn. (6.117). The plate temperature was 100◦C (over
its entire length) and the free-stream temperature varied between
20 and 30◦C. Follow the steps used in Problem 6.48 to reproduce
that fit and plot it with these data.

Rex×10−3 Nux Rex×10−3 Nux Rex×10−3 Nux

60.4 42.9 445.3 208.0 336.5 153.0
76.6 66.3 580.7 289.0 403.2 203.0

133.4 85.3 105.2 71.1 509.4 256.0
187.8 105.0 154.2 95.1 907.5 522.0
284.5 134.0 242.9 123.0
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6.50 A study of the kinetic theory of gases shows that the mean free
path of a molecule in air at one atmosphere and 20◦C is 67 nm and
that its mean speed is 467 m/s. Use eqns. (6.45) obtain C1 and C2

from the known physical properties of air. We have asserted that
these constants should be on the order of 1. Are they?

6.51 The two most important fluids for thermal engineering are air and
water. Using data from Appendix A, plot the Prandtl number of
air and of saturated liquid water from 280 K to 650 K (for water,
stop plotting at 644 K, which is very close to the critical point
temperature of 647.1 K). Comment on the trends in this chart.
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7. Forced convection in a variety of
configurations

The bed was soft enough to suit me. . .But I soon found that there came such
a draught of cold air over me from the sill of the window that this plan
would never do at all, especially as another current from the rickety door
met the one from the window and both together formed a series of small
whirlwinds in the immediate vicinity of the spot where I had thought to
spend the night. Moby Dick, H. Melville, 1851

7.1 Introduction

Consider for a moment the fluid flow pattern within a shell-and-tube heat
exchanger, such as shown in Fig. 3.5. The shell-pass flow moves up and
down across the tube bundle from one baffle to the next. The flow around
each pipe is determined by the complexities of the one before it, and the
direction of the mean flow relative to each pipe can vary. Yet the problem
of determining the heat transfer in this situation, however difficult it
appears to be, is a task that must be undertaken.

The flow within the tubes of the exchanger is somewhat more tractable,
but it, too, brings with it several problems that do not arise in the flow of
fluids over a flat surface. Heat exchangers thus present a kind of micro-
cosm of internal and external forced convection problems. Other such
problems arise everywhere that energy is delivered, controlled, utilized,
or produced. They arise in the complex flow of water through nuclear
heating elements or in the liquid heating tubes of a solar collector—in
the flow of a cryogenic liquid coolant in certain digital computers or in
the circulation of refrigerant in the spacesuit of a lunar astronaut.
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We dealt with the simple configuration of flow over a flat surface in
Chapter 6. This situation has considerable importance in its own right,
and it also reveals a number of analytical methods that apply to other
configurations. Now we wish to undertake several of these more complex
flow configurations.

Incompressible forced convection heat transfer problems normally
admit an extremely important simplification: the fluid flow problem can
be solved without reference to the temperature distribution in the fluid.
Thus, we can find the velocity distribution first. Then, we can put the
velocity into the energy equation as known information and solve for the
temperature distribution. Two complications can impede this procedure,
however:

• If the fluid properties (especially µ and ρ) vary significantly with
temperature, we cannot predict the velocity without knowing the
temperature, and vice versa. The problems of predicting velocity and
temperature become intertwined and harder to solve. We encounter
such a situation later in the study of natural convection, where the
fluid is driven by thermally induced density changes.

• Either the fluid flow solution or the temperature solution itself can
become prohibitively hard to find. When that happens, we resort to
the correlation of experimental data with the help of dimensional
analysis.

Our aim in this chapter is to present the analysis of a few simple
problems and to show the progression toward increasingly empirical
solutions as the problems become progressively more unwieldy. We begin
this undertaking with one of the simplest problems: that of predicting
laminar heat convection in a pipe.

7.2 Heat transfer to or from laminar flows in pipes

Not many industrial pipe flows are laminar, but laminar heating and
cooling does occur in an increasing variety of modern instruments and
equipment: micro-electro-mechanical systems (MEMS), laser coolant lines,
and many compact heat exchangers, for example. As in any forced con-
vection problem, we first describe the flow field. This description will
include a number of ideas that apply to turbulent as well as laminar flow.
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Figure 7.1 The development of a laminar velocity profile in a pipe.

Development of a laminar flow

Figure 7.1 shows the evolution of a steady laminar velocity profile begin-
ning at the entrance to a pipe. Throughout the length of the pipe, the
mass flow rate, ṁ (kg/s), is constant, of course, and the average (or bulk)
velocity uav over the cross-sectional area Ac of the pipe is also constant:

ṁ =
∫︂
Ac
ρudAc = ρuavAc (7.1)

The velocity profile, on the other hand, changes greatly near the inlet
to the pipe. A b.l. builds up from the front, generally accelerating the
otherwise undisturbed core. The b.l. eventually occupies the entire flow
area and defines a velocity profile that changes very little thereafter.
We call such a flow fully developed. A flow is fully developed from the
hydrodynamic standpoint when

∂u
∂x

= 0 or v = 0 (7.2)

at each radial location in the cross section (see Problem 7.25). An attribute
of a hydrodynamically fully developed flow is that the streamlines are all
parallel to one another.

The concept of a fully developed flow, from the thermal standpoint,
is a little more complicated. We must first understand the notion of the
mixing-cup, or bulk, enthalpy and temperature, ĥb and Tb. The enthalpy is
of interest because we use it in writing the First Law of Thermodynamics.
This requires specifying both the net flow of thermal energy, and of flow
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work, into open control volumes. The bulk enthalpy is an average enthalpy
for the fluid flowing through a cross section of the pipe:

ṁ ĥb ≡
∫︂
Ac
ρuĥdAc (7.3)

If we assume that fluid pressure variations in the pipe are too small to
affect the thermodynamic state much (see Section 6.3). We can assume a
constant value of cp if the temperature variations are not too great. Then

ĥ = cp(T − Tref), and

ṁ cp(Tb − Tref) =
∫︂
Ac
ρcpu(T − Tref)dAc (7.4)

from which we obtain the mixing-cup temperature

Tb =

∫︂
Ac
ρcpuT dAc

ṁcp
(7.5)

In words, then,

Tb ≡
rate of flow of enthalpy through a cross section

rate of flow of heat capacity through a cross section

Thus, if the pipe were broken at any x-station and allowed to discharge
into a cup, the enthalpy of the mixed fluid in the cup would equal the
average enthalpy of the fluid flowing through the cross section, and the
temperature of the fluid in the mixing cup would be Tb. This definition
of Tb is perfectly general and applies to either laminar or turbulent flow.
For a circular pipe, with dAc = 2πr dr , eqn. (7.5) becomes

Tb =

∫︂ R
0
ρcpuT 2πr dr∫︂ R

0
ρcpu2πr dr

(7.6)

A fully developed flow, from the thermal standpoint, is one for which
the relative shape of the temperature profile does not change with x. We
state this mathematically as

∂
∂x

(︃
Tw − T
Tw − Tb

)︃
= 0 (7.7)

where T generally depends on x and r . This equation means that the
profile is scaled up or down with the temperature difference Tw − Tb,
which might vary. Of course, a flow must be hydrodynamically developed
if it is to be thermally developed.
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Figure 7.2 The thermal development of flows in tubes with a
uniform wall heat flux and with a uniform wall temperature (the
entrance region).

Figure 7.2 shows the response of a fully developed hydrodynamic
profile to the imposition of a uniform heat flux or to an altered wall tem-
perature. Figure 7.3 shows the same situations, but further downstream—
after the entrance behavior has fully evolved. Figure 7.2 extends to the
where the shape of the temperature profile remains the same except or
being further displaced or stretched. Figure 7.3 shows the subsequent
temperature profile being shifted but otherwise unchanged in the constant
qw case. In the constant Tw case, the temperature profile is stretched
uniformly.

If we consider a small section of pipe, dx long with perimeter P , then
its surface area is P dx (e.g., 2πRdx for a circular pipe) and an energy
balance on the section is1

dQ = qw Pdx = ṁdĥb (7.8)

= ṁcp dTb (7.9)

1Here we make the same approximations as were made in deriving the energy equation
in Section 6.3.
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Figure 7.3 The thermal behavior of flows in tubes with a uni-
form wall heat flux and with a uniform temperature (the ther-
mally developed region).

so that
dTb
dx

= qwP
ṁcp

(7.10)

This result is valid whether or not qw is constant, and it is also valid for
the bulk temperature in a turbulent flow.

Once the flow is fully developed (Fig. 7.3), the boundary layers stop
changing, so h becomes constant. When qw is constant, Tw − Tb will also
be constant in fully developed flow, so that the temperature profile will
retain the same shape while the temperature rises at a constant rate at all
values of r . Thus, at any radial position,

∂T
∂x

= dTb
dx

= qwP
ṁcp

= constant (7.11)

In the uniform wall temperature case, the temperature profile keeps
the same shape, but its amplitude decreases with x, as does qw . The lower
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right-hand corner of Fig. 7.3 is drawn to conform with this requirement,
as expressed in eqn. (7.7).

The velocity profile in laminar tube flows

The hydrodynamic entry length, xe, within which the velocity profile
becomes fully developed, depends onuav, µ, ρ, andD—five variables in the
three dimensions kg, m and s. Thus, we can express their interdependency
in two pi-groups:

xe
D
= fn (ReD)

where ReD ≡ ρuavD/µ. The matter of entry length is discussed by White
[7.1, Chap. 4], who quotes

xe
D
≃ 0.03 ReD (7.12)

The constant, 0.03, guarantees that the local shear stress (drag) on the
pipe wall will be within 5% of the value for fully developed flow when
x > xe. The number 0.05 can be used, instead, if a deviation of just 1.4%
is desired. The thermal entry length, xet , turns out to be different from
xe. We deal with it shortly.

The hydrodynamic entry length for a pipe carrying fluid at speeds near
the minimum transitional Reynolds number (2100) will extend beyond
100 diameters. Since heat transfer in pipes shorter than this is very often
important, we will eventually have to address the hydrodynamic entry
region, as well.

The velocity profile for a fully developed laminar incompressible pipe
flow can be derived from the momentum equation for an axisymmetric
flow. It turns out that the b.l. approximations all happen to be valid for a
fully developed pipe flow:

• The pressure is constant across any section.

• ∂2u
/︁
∂x2 is exactly zero.

• The radial velocity v is not just small, it is zero.

• The term ∂u
/︁
∂x is not just small, it is zero.

The boundary layer equation for cylindrically symmetrical flows is quite
similar to that for a flat surface, eqn. (6.13):

u
∂u
∂x

+ v ∂u
∂r

= −1
ρ
dp
dx

+ ν
r
∂
∂r

(︃
r
∂u
∂r

)︃
(7.13)
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For fully developed flows, we may go beyond the b.l. assumptions and
set v and ∂u/∂x equal to zero, so eqn. (7.13) becomes

1
r
d
dr

(︃
r
du
dr

)︃
= 1
µ
dp
dx

We integrate this twice and get

u(r) =
(︄

1
4µ
dp
dx

)︄
r2 + C1 ln r + C2

The velocity should be finite as r → 0 (where ln r → −∞), so C1

must be zero. The no-slip b.c. at the tube wall, u(R) = 0, gives C2 =
(−dp/dx)R2/4µ, so

u(r) = R2

4µ

(︃
−dp
dx

)︃[︄
1−

(︃
r
R

)︃2
]︄

(7.14)

Equation (7.14) is the famous Hagen-Poiseuille2 parabolic velocity profile.
We can identify the lead constant (−dp/dx)R2

/︁
4µ as the maximum cen-

terline velocity, umax, found at r = 0. In accordance with the conservation
of mass (see Problem 7.1), umax = 2uav, so

u
uav

= 2

[︄
1−

(︃
r
R

)︃2
]︄

(7.15)

Thermal behavior of a flow with a uniform heat flux at the wall

The b.l. energy equation for a fully developed laminar incompressible
flow, eqn. (6.40), takes the following simple form in a pipe flow where the
radial velocity is equal to zero:

u
∂T
∂x

= α1
r
∂
∂r

(︃
r
∂T
∂r

)︃
(7.16)

For a fully developed flow with qw = constant, Tw and Tb increase linearly
with x. In particular, by integrating eqn. (7.10), we find

Tb(x)− Tbin =
∫︂ x

0

qwP
ṁcp

dx = qwPx
ṁcp

(7.17)

2The German scientist G. Hagen showed experimentally how u varied with r , dp/dx,
µ, and R, in 1839. J. Poiseuille (pronounced pwah-ZAY, or, somewhat more accurately,
pwah-ZAY-uh) did the same thing, almost simultaneously (1840), in France. Poiseuille
was a physician interested in blood flow, and we find, today, that any medical student
is familiar with “Poiseuille’s law.”
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Then, from eqns. (7.11) and (7.1), we get

∂T
∂x

= dTb
dx

= qwP
ṁcp

= qw(2πR)
ρcpuav(πR2)

= 2qwα
uavRk

Using this result and eqn. (7.15) in eqn. (7.16), we obtain

4

[︄
1−

(︃
r
R

)︃2
]︄
qw
Rk

= 1
r
d
dr

(︃
r
dT
dr

)︃
(7.18)

This ordinary d.e. in r can be integrated twice to obtain

T = 4qw
Rk

(︄
r2

4
− r4

16R2

)︄
+ C1 ln r + C2 (7.19)

The temperature must be finite3 as r ⎯→ 0, so C1 = 0. The second
constraint on the temperature profile is that it should yield the local value
of the bulk temperature, eqn. (7.6). Substituting eqn. (7.19) with C1 = 0
into eqn. (7.6) and carrying out the indicated integrations, we get

C2 = Tb −
7
24
qwR
k

so

T − Tb =
qwR
k

[︄(︃
r
R

)︃2

− 1
4

(︃
r
R

)︃4

− 7
24

]︄
(7.20)

and at r = R, eqn. (7.20) gives

Tw − Tb =
11
24
qwR
k

= 11
48
qwD
k

(7.21)

so the local NuD for fully developed flow, based on h(x) = qw
/︁
[Tw(x)−

Tb(x)], is

NuD ≡
qwD

(Tw − Tb)k
= 48

11
= 4.364 (qw = constant) (7.22)

Equation (7.22) is surprisingly simple. Indeed, the fact that there is
only one dimensionless group is predictable by dimensional analysis. In
this case, the dimensional functional equation is merely

h = fn(D, k)
3With C1 = 0 in our equations for the velocity or temperature profiles, ∂u/∂r = 0 or

∂T/∂r = 0 at r = 0. That is consistent with zero shear stress or zero heat flux across
the centerline—the result of having a symmetrical velocity or temperature profile.
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We exclude ∆T , because h should be independent of ∆T in forced convec-
tion; µ, because the flow is parallel regardless of the viscosity; and ρu2

av,
because there is no influence of momentum in a fully developed, laminar
incompressible flow that never changes direction. The three remaining
variables effectively have only two dimensions, W/K and m, resulting in
just one dimensionless group, NuD, which must therefore be a constant.

Example 7.1

Water at 20◦C flows through a small-bore tube 1 mm in diameter at
a uniform speed of 0.2 m/s. The flow is fully developed at a point
beyond which a constant heat flux of 6000 W/m2 is imposed. How
much farther down the tube will the water reach 74◦C at its hottest
point?

Solution. We shall evaluate properties at (74 + 20)/2 = 47◦C:
k = 0.6396 W/m·K, α = 1.546 × 10−7, and ν = 5.832 × 10−7 m2/s.
Therefore, ReD = (0.001 m)(0.2 m/s)/5.832× 10−7 m2/s = 343, and
the flow is laminar. We note that T is greatest at the wall and we call
x = L the point where Twall = 74◦C. Then eqn. (7.17) gives:

Tb(x = L) = 20+ qwP
ṁcp

L = 20+ 4qwα
uavDk

L

And eqn. (7.21) gives

74 = Tb(x = L)+
11
48

qwD
k

= 20+ 4qwα
uavDk

L+ 11
48

qwD
k

so
L
D
=
(︃

54− 11
48

qwD
k

)︃
uavk
4qwα

or

L
D
=
[︃

54− 11
48

6000(0.001)
0.6396

]︃
0.2(0.6396)

4(6000)1.546(10)−7
= 1788

so the wall temperature reaches the limiting temperature of 74◦C at

L = 1788(0.001 m) = 1.788 m

While we did not evaluate the thermal entry length, it may be shown
to be much, much less than 1788 diameters.
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We can calculate the heat transfer coefficient in the preceding example
with the help of eqn. (7.22). The result turns out to be rather large:

h = NuD
k
D
= 4.364

0.6396
0.001

= 2,791 W/m2K

The high h is a direct result of the small tube diameter, which keeps the
thermal boundary layer thin and the thermal resistance low. The effect of
small size leads directly to the notion of a microchannel heat exchanger.
Small scale fabrication technologies, such as have been developed in the
semiconductor industry, allow us to create channels whose characteristic
diameter is in the range of 100 µm. These tiny channels yield heat transfer
coefficients in the range of 104 W/m2K for water [7.2]. If, instead, we
could use liquid sodium (k ≈ 80 W/m·K) as the working fluid, the laminar
flow heat transfer coefficient would be on the order of 106 W/m2K—a
range usually associated with boiling processes!

Thermal behavior of the flow in an isothermal pipe

The dimensional analysis that showed NuD = constant for flow with a
uniform heat flux at the wall is unchanged when the pipe wall is isothermal.
Thus, NuD should still be constant. But for this b.c. (see, e.g., [7.3, Chap. 8])
the constant changes to

NuD = 3.657 for Tw = constant (7.23)

for fully developed flow. We show how the bulk temperature, Tb, varies
in Section 7.4.

The thermal entrance region

The thermal entrance region is of great importance in laminar flow because
the thermally undeveloped region becomes extremely long for higher-Pr
fluids. The entry-length equation, (7.12), takes the following form for the
thermal entry region, where the velocity profile is assumed to be fully
developed before heat transfer starts at x = 0 [7.4, 7.5]4:

xet
D
≃

⎧⎨⎩0.034 ReDPr for Tw = constant

0.043 ReDPr for qw = constant
(7.24)

4The Nusselt number will be within 5% of the fully developed value beyond xet . When
the velocity and temperature profiles develop simultaneously, the coefficient next to
ReDPr ranges between about 0.028 and 0.053 depending upon the Prandtl number and
the wall boundary condition.
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Entry lengths can become very long in certain cases. For the flow of
cold water (Pr ≃ 10), the entry length can reach more than 600 diameters
as we approach the transition Reynolds number. For Pr on the order of 104

(oil flows, for example), a fully developed profile is virtually unobtainable.
A complete analysis of the heat transfer rate in the thermal entry region

becomes quite complicated. The reader interested in details should look
at [7.3, Chap. 8]. Dimensional analysis of the entry problem shows that
the local value of h depends on uav, µ, ρ, D, cp, k, and x—eight variables
in m, s, kg, and J

/︁
K. This means that we should anticipate four pi-groups:

NuD = fn (ReD,Pr, x/D) (7.25)

In other words, we add to the already familiar NuD, ReD, and Pr a new
length parameter, x/D. The solution of the constant wall temperature
problem, originally formulated by Graetz in 1885 [7.6] and solved in
a convenient form by Sellars, Tribus, and Klein in 1956 [7.7], includes
an arrangement of the dimensionless groups ReD, Pr, and x/D. Their
analysis showed that, in this instance, these groups combine into a simple
product, which we call the Graetz number :

Graetz number, Gz ≡ ReDPrD
x

(7.26)

Figure 7.4 shows values of NuD ≡ hD/k for both the uniform wall
temperature and uniform wall heat flux cases. The independent variable
in the figure is a dimensionless length equal to 2/Gz = x/(RReDPr). The
figure also presents an average Nusselt number, NuD, for the isothermal
wall case:

NuD ≡
hD
k
= D
k

(︄
1
L

∫︂ L
0
hdx

)︄
= 1
L

∫︂ L
0

NuD dx (7.27)

Here, since h = q(x)
/︁
[Tw − Tb(x)], we cannot simply average only q or

∆T . We show how to find the change in Tb using h for an isothermal
wall in Section 7.4. For a fixed heat flux, the change in Tb is given by
eqn. (7.17), and a value of h is not needed.

For an isothermal wall, the exact solutions for the Nusselt number
in thermally developing flow have been curve-fitted to the following
expressions [7.4, 7.8]5 with errors of less than 1%:

NuD =

⎧⎨⎩3.657+ 0.2362 Gz0.488 e−57.2/Gz for Gz ⩽ 1000

1.077 Gz1/3 − 0.7 for Gz > 1000
(7.28)

NuD =
3.657

tanh
(︁
2.264Gz−1/3 + 1.7Gz−2/3)︁ + 0.0499 Gz tanh

(︁
Gz−1)︁ (7.29)

5The value 1000 after eqn. (7.28) corrects an apparent misprint in [7.4] and [7.5].

https://en.wikipedia.org/wiki/Leo_Graetz
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Figure 7.4 Local and average Nusselt numbers for the thermal
entry region in a hydrodynamically developed laminar pipe flow.

For fixed qw , a slightly more complicated formula reproduces the
exact result for the local Nusselt number to within 1%:

NuD =

⎧⎪⎪⎨⎪⎪⎩
4.364+ 0.263 Gz0.506 e−41/Gz for Gz ⩽ 667

1.302 Gz1/3 − 0.5 for 667 ⩽ Gz ⩽ 2× 104

1.302 Gz1/3 − 1 for 2× 104 ⩽ Gz

(7.30)

Example 7.2

A fully developed flow of air at 27◦C moves at 2 m/s in a 1 cm I.D. pipe.
An electric resistance heater surrounds the last 20 cm of the pipe and
supplies a constant heat flux to bring the air out at Tb = 40◦C. What
power input is needed to do this? What will be the wall temperature
at the exit?

Solution. This is a case in which the wall heat flux is uniform along
the pipe. We first must compute Gz20 cm, evaluating properties at
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(27+ 40)
/︁
2 ≃ 34◦C:

Gz20 cm =
ReDPrD

x

=

(2 m/s)(0.01 m)
(1.63× 10−5 m2/s)

(0.710)(0.01 m)

0.2 m
= 43.56

From eqn. (7.30), we compute NuD = 5.06, so

Twexit − Tb =
qwD
5.06k

Notice that we still have two unknowns, qw and Tw . The bulk
temperature is specified as 40◦C, and qw is obtained from this number
by a simple energy balance:

qw(2πRx) = ρcpuav(Tb − Tentry)πR2

so

qw = 1.150
kg
m3

· 1007
J

kg·K · 2
m
s
· (40− 27)◦C · R

2x⏞⏟⏟⏞
1/80

= 376 W/m2

Then

Twexit = 40◦C+ (376 W/m2)(0.01 m)
5.06(0.0267 W/m·K) = 67.9◦C

7.3 Turbulent pipe flow

Turbulent entry length

The entry lengths xe and xet are generally shorter in turbulent flow than
in laminar flow. Table 7.1 gives the thermal entry length for various values
of Pr and ReD. Positions farther down the pipe than these will have NuD
within 5% of the fully developed values. These results are for a uniform
wall heat flux imposed on a hydrodynamically fully developed flow. Very
similar results are obtained for a uniform wall temperature.

For Prandtl numbers typical of gases and nonmetallic liquids, the entry
length is not strongly sensitive to the Reynolds number. For Pr > 1 in
particular, the entry length is just a few diameters. This rapid response is
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Table 7.1 Thermal entry lengths, xet/D, for turbulent pipe
flow, beyond which NuD will be no more than 5% above its fully
developed value [7.9]

Pr
ReD

20,000 100,000 500,000

0.01 7 22 32

0.7 10 12 14

3.0 4 3 3

because the heat transfer rate is controlled by the thin thermal sublayer
on the wall, and it develops very quickly.

Only liquid metals give fairly long thermal entrance lengths, and, for
these fluids, xet depends on both Re and Pr in a complicated way. Since
liquid metals have very high thermal conductivities, the heat transfer rate
is also more strongly affected by the temperature distribution away from
the wall, toward the center of the pipe. We discuss liquid metals in more
detail at the end of this section.

When heat transfer begins at the pipe inlet, the velocity and tem-
perature profiles develop simultaneously. The entry length is then very
strongly affected by the shape of the inlet. For example, an inlet that
induces vortices in the pipe—a sharp bend or contraction—can create a
much longer entry length than occurs for a thermally developing flow.
These vortices may require 20 to 40 diameters to die out. For various
types of inlets, Bhatti and Shah [7.9] provide the following correlation for
NuD with L/D > 3 for air (or other fluids with Pr ≈ 0.7)

NuD
Nu∞

= 1+ C
(L/D)n

for Pr = 0.7 (7.31)

where Nu∞ is the fully developed value of the Nusselt number, and C and
n depend on the inlet configuration as shown in Table 7.2.

Whereas the entry effect on the local Nusselt number is confined to
a few ten’s of diameters, the effect on the average Nusselt number may
persist for a hundred diameters. This is because much additional length
is needed to average out the higher heat transfer rates near the entry.
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Table 7.2 Constants for the gas-flow simultaneous entry length
correlation, eqn. (7.31), for various inlet configurations

Inlet configuration C n

Long, straight pipe 0.9756 0.760

Square-edged inlet 2.4254 0.676

180◦ circular bend 0.9759 0.700

90◦ circular bend 1.0517 0.629

90◦ sharp elbow 2.0152 0.614

Illustrative experiment

Figure 7.5 shows average heat transfer data given by Kreith [7.10, Chap. 8]
for air flowing in a 1 in. I.D. isothermal pipe 60 in. in length (2.54 cm I.D.,
152 cm long). Let us see how these data compare with what we know
about pipe flows thus far.

The data are plotted for a single Prandtl number on NuD vs. ReD coor-
dinates. This format is consistent with eqn. (7.25) in the fully developed
range, but the actual pipe includes a significant entry region. Therefore,
the data in the lower left portion of the graph reflect entry behavior.

For laminar flow at ReD = 750, the data show NuD ≃ 3.66. This value
is as expected for fully developed flow in an isothermal pipe. However,
the pipe is too short for the flow to be fully developed over much, if
any, of its length. As a result, NuD is not constant for the data in the
laminar range. The rate of rise of NuD with ReD becomes very great in
the transitional range, which lies between ReD = 2100 and about 5000 in
this case. Above ReD ≃ 5000, the flow is turbulent and it turns out that
NuD ≃ Re0.8

D .

The Reynolds-Colburn analogy and heat transfer

As we saw in Section 6.8, heat transfer in a turbulent b.l. is closely re-
lated to shear stress on the wall through the Reynolds-Colburn analogy
eqn. (6.111):

Stx =
h

ρcpu∞
=

Cf (x)
/︁
2

1+ 12.7
(︂
Pr2/3 − 1

)︂√︂
Cf (x)

/︁
2

(6.111)

For a pipe flow, h is defined as qw/(Tw − Tb), and we can merely replace
u∞ with uav and Cf (x) with the friction coefficient for fully developed
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Figure 7.5 Heat transfer to air
flowing in a 1 in. I.D., 60 in. long
pipe, after Kreith [7.10].

pipe flow, Cf (which is constant) to get

St = h
ρcpuav

=
Cf
/︁
2

1+ 12.7
(︂
Pr2/3 − 1

)︂√︂
Cf
/︁
2

(7.32)

This equation applies for Pr ❳ 0.7 and for either uniform qw or uniform
Tw situations. This form, however, is limited to smooth walls.

The frictional resistance to flow in a pipe is normally expressed in
terms of the Darcy-Weisbach friction factor, f :

f ≡ head loss(︄
pipe length

D
u2

av

2

)︄ = ∆p(︄
L
D
ρu2

av

2

)︄ (7.33)

where∆p is the pressure drop in a pipe of length L. However, the pressure
drop is determined by the wall shear stress

τw =
frictional force on liquid

surface area of pipe
= ∆p

[︁
(π/4)D2

]︁
πDL

= ∆pD
4L

which leads to the relationship between τw and Cf :

f = τw
ρu2

av/8
= 4Cf (7.34)

Substituting eqn. (7.34) in eqn. (7.32) and rearranging the result, we
obtain, for fully developed flow in a smooth pipe,

NuD =
(︁
f
/︁
8
)︁
ReD Pr

1+ 12.7
(︂
Pr2/3 − 1

)︂√︂
f
/︁
8

(7.35)
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The friction factor is given graphically in Fig. 7.6 on pg. 370 as a
function of ReD and the relative roughness, ε/D, where ε is the surface
roughness of the pipe wall. Equation (7.35) can be used directly along
with Fig. 7.6 to calculate the Nusselt number for smooth-walled pipes
(ε/D = 0).

Historical formulations based on power laws. A number of the ear-
liest correlations for the Nusselt number in turbulent pipe flow, although
still widely quoted, have been largely superseded. These power-law cor-
relations were based on other forms of Reynolds-Colburn analogy. In
particular, in 1933 Colburn himself suggested [7.11]

St =
Cf
2

Pr−2/3 = f
8

Pr−2/3 (7.36)

or

NuD = ReD Pr1/3(︁f/8)︁ (7.37)

For smooth pipes, the curve ε/D = 0 in Fig. 7.6 is approximately given by

f
4
= Cf =

0.046

Re0.2
D

(7.38)

for ReD ⩾ 10,000 [7.12], so eqn. (7.37) becomes

NuD = 0.023 Re0.8
D Pr1/3 (7.39a)

This equation is called the Colburn equation. Actually, Colburn’s equation
is quite similar to an earlier result developed by Dittus and Boelter in 1930
for heating pipes (see [7.13, pg. 552]):

NuD = 0.0243 Re0.8
D Pr0.4 (7.39b)

And, Colburn noted that his result was similar to a contemporaneous
correlation from McAdams [7.14]:

NuD = 0.0225 Re0.8
D Pr0.4 (7.39c)

These equations are intended for smooth pipes at reasonably low temper-
ature differences for which properties do not vary much over the cross-
section of the pipe.

In 1936, a study by Sieder and Tate [7.15] showed that when |Tw − Tb|
is large enough to cause significant changes of µ, the Colburn equation
can be modified in the following way for liquids:

NuD = 0.023 Re0.8
D Pr1/3

(︄
µb
µw

)︄0.14

(7.40)

http://www.uh.edu/engines/epi1582.htm
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where all properties are evaluated at the local bulk temperature except µw ,
which is the viscosity evaluated at the wall temperature.

These early relations proved to be fair approximations. They gave
maximum errors of +25% and −40% in the range 0.67 ⩽ Pr ⩽ 100 and
usually were considerably more accurate than this.

The Colburn, Dittus-Boelter, and McAdams equations together had a
profound impact on 20th century work in heat transfer. However, subse-
quent research provided far more data and a much improved theoretical
understanding of how to represent the data accurately. A key problem
with power law correlations is that the exponents on ReD and Pr are not
truly independent of the value of Pr [7.16].

Modern formulations. Research on turbulent pipe flow was continued
for many decades after the studies of the 1930’s, notably by B. S. Petukhov
and his co-workers at the Moscow Institute for High Temperature during
the 1950’s and 1960’s. This later work combined experimental data with
the theoretical description of boundary layer structure summarized in
Section 6.7. Much of this research is described in a 1970 survey article by
Petukhov [7.17].

Petukhov recommended several variations on eqn. (7.35), and the most
precise of these could represent the data of several careful studies of fully
turbulent flow to an accuracy of ±6% to ±10%. Gnielinski [7.16] extended
Petukhov’s approach to a far larger set of experimental data and to a
wider range of Prandtl and Reynolds number, right down to turbulent
transition. Gnielinski proposed the following modification of eqn. (7.35)

NuD =
(f/8) (ReD − 1000)Pr

1+ 12.7
√︂
f/8

(︂
Pr2/3 − 1

)︂ (7.41)

for 2300 ⩽ ReD ⩽ 5× 106 and for 0.6 ⩽ Pr ⩽ 105. In using this equation,
the friction factor for smooth pipes may be computed from Filonenko’s
equation [7.18]:

f = 1(︁
1.82 log10 ReD − 1.64

)︁2 (7.42)

Gnielinski’s result reproduces more than 90% of the liquid data examined
to within ±20% and is even more accurate for gases. The equation may
be used for either uniform wall temperature or uniform heat flux.
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In the spirit earlier researchers, Gnielinski also proposed two power-
law approximations for smooth pipes each valid within only a limited
range of Pr:

NuD = 0.0214
(︁
Re0.8

d − 100
)︁
Pr0.4 0.6 ⩽ Pr ⩽ 1.5 (7.43a)

NuD = 0.012
(︁
Re0.87

d − 280
)︁
Pr0.4 1.5 ⩽ Pr ⩽ 500 (7.43b)

Both fits are in good agreement with eqn. (7.41) for 2300 ⩽ ReD ⩽ 5×106.

Variations in physical properties. Sieder and Tate’s work on property
variations was also refined in later years [7.17]. The effect of variable
physical properties is dealt with differently for liquids and gases. In both
cases, the Nusselt number is first calculated with all properties evaluated
at Tb using eqn. (7.41). For liquids, one then corrects by multiplying with
a viscosity ratio. Over the interval 0.025 ⩽ (µb/µw) ⩽ 12.5,

NuD = NuD
⃓⃓⃓
Tb

(︄
µb
µw

)︄n
where n =

⎧⎨⎩0.11 for Tw > Tb
0.25 for Tw < Tb

(7.44)

For gases and a temperatures ratio in kelvin within 0.27 ⩽ (Tb/Tw) ⩽ 2.7,

NuD = NuD
⃓⃓⃓
Tb

(︃
Tb
Tw

)︃n
where n =

⎧⎨⎩0.47 for Tw > Tb
0 for Tw < Tb

(7.45)

After eqn. (7.42) is used in calculating NuD, f should also be corrected
for the effect of variable properties. For liquids, with 0.5 ⩽ (µb/µw) ⩽ 3

f = f
⃓⃓⃓
Tb
×K where K =

⎧⎪⎨⎪⎩
(7− µb/µw)/6 for Tw > Tb

(µb/µw)−0.24 for Tw < Tb
(7.46)

For gases, the data are much weaker [7.21, 7.22]. For 0.14 ⩽ (Tb/Tw) ⩽ 3.3
the exponents are about the same for both heating and cooling

f = f
⃓⃓⃓
Tb

(︃
Tb
Tw

)︃m
where m ≈

⎧⎨⎩0.23 for Tw > Tb
0.23 for Tw < Tb

(7.47)

Example 7.3

A 21.5 kg/s flow of water is dynamically and thermally developed in a
12 cm I.D. pipe. The pipe is held at 90◦C and ε/D = 0. Find h and f
where the bulk temperature of the fluid has reached 50◦C.
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Solution. We evaluate the bulk properties at 50◦C

uav =
ṁ
ρAc

= 21.5
988π(0.06)2

= 1.924 m/s

so

ReD =
uavD
ν

= 1.924(0.12)
5.60× 10−7

= 412,300

and

Pr = 3.61,
µb
µw

= 5.54× 10−4

3.16× 10−4
= 1.75

From eqn. (7.42), f = 0.0136 at Tb, and since Tw > Tb, n = 0.11 in
eqn. (7.44). Thus, with eqn. (7.41) we have

NuD =
(0.0136/8)(4.12× 105 − 1000)(3.61)

1+ 12.7
√︁

0.0136/8
(︁
3.612/3 − 1

)︁ (1.75)0.11 = 1,570

or

h = NuD
k
D
= 1570

0.642
0.12

= 8,400 W/m2K

This result is based upon correcting a correlation for the Nusselt
number that uses the friction factor at the bulk temperature. To
calculate the pressure drop, one must use f corrected according to
eqn. (7.46):

f = (0.0136)(7− 1.74)/6 = 0.0119

Rough-walled pipes

Sufficiently large roughness on a pipe wall will disrupt the viscous and
thermal sublayers at the base of the boundary layer (see Section 6.7).
Figure 7.6 shows the effect of roughness height ε on the friction factor, f .
As the Reynolds number increases, the viscous sublayer becomes thinner
and smaller levels of roughness influence f . Once the Reynolds number is
high enough, roughness completely overwhelms the viscous sublayer, and
ε/D alone determines the friction factor. Some typical pipe roughnesses
are given in Table 7.3.

We can determine whether roughness will affect friction and heat
transfer by comparing ε to the viscous sublayer thickness. We saw in
Section 6.7 that the thickness of the sublayer is around 30 times ν/u∗,
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Table 7.3 Representative wall roughness of commercially avail-
able pipes when new.

Pipe ε (µm) Pipe ε (µm)

Glass 0.31 Asphalted cast iron 120.
Drawn tubing 1.5 Galvanized iron 150.

Steel or wrought iron 46. Cast iron 260.

where u∗ =
√︁
τw/ρ is the friction velocity. We define the ratio of ε and

ν/u∗ as the roughness Reynolds number, Reε

Reε ≡
u∗ε
ν

= ReD
ε
D

√︄
f
8

(7.48a)

where the second equality follows from the definitions of u∗ and f (and
a little algebra). Experimental data show that the smooth and rough
regions of friction factor seen in Fig. 7.6 correspond approximately to the
following ranges of Reε:

Reε < 5 hydraulically smooth (7.48b)

5 ⩽ Reε ⩽ 70 transitionally rough (7.48c)

70 < Reε fully rough (7.48d)

(We note that the dashed curve through the rough walled regime in Fig. 7.6
marks friction factors within 1% of the limiting value [7.19] and lies a bit
farther right than eqn. (7.48d) would, had it been plotted.)

In the fully rough regime, Bhatti and Shah [7.9] provide the following
correlation for the local Nusselt number

NuD =
(︁
f/8

)︁
ReD Pr

1+
√︂
f/8

(︂
4.5 Re0.2

ε Pr0.5 − 8.48
)︂ (7.49)

which applies for the ranges

104 ⩽ ReD, 0.5 ⩽ Pr ⩽ 10, and 0.002 ⩽
ε
D
⩽ 0.05

The friction factor may be read from Fig. 7.6 or computed from Haaland’s
equation [7.23], valid for 0 ⩽ ε/D ⩽ 0.05 and 4000 ⩽ ReD ⩽ 108:

f = 1{︄
1.8 log10

[︄
6.9
ReD

+
(︃
ε/D
3.7

)︃1.11
]︄}︄2 (7.50)



374 Forced convection in a variety of configurations §7.3

The heat transfer coefficient on a rough wall can be several times that
for a smooth wall at the same Reynolds number. The friction factor, and
thus the pressure drop and pumping power, will also be higher. Neverthe-
less, designers sometimes deliberately roughen tube walls so as to raise h
and reduce the surface area needed for heat transfer. Several manufactur-
ers offer tubing that has had some pattern of roughness impressed upon
its interior surface. Periodic ribs are one common configuration. Spe-
cialized correlations have been developed for a number these “enhanced
tubes” [7.24, 7.25].

Example 7.4

Repeat Example 7.3, now assuming the pipe to have a wall roughness
of ε = 360 µm.

Solution. The Reynolds number and physical properties are un-
changed. From eqn. (7.50)

f =

⎧⎨⎩1.8 log10

⎡⎣ 6.9
412,300

+
(︄

360× 10−6
/︁
0.12

3.7

)︄1.11
⎤⎦⎫⎬⎭

−2

=0.02651

The roughness Reynolds number is then

Reε = (412,300)
360× 10−6

0.12

√︄
0.02651

8
= 71.2

This corresponds to fully rough flow. With eqn. (7.49) we have

NuD =
(0.02651/8)(4.123× 105)(3.61)

1+
√︁

0.02651/8
[︁
4.5(71.2)0.2(3.61)0.5 − 8.48

]︁
= 2,959

so

h = 2959
0.642
0.12

= 15.8 kW/m2K

In this case, wall roughness causes a factor of 1.9 increase in h and a
factor of 2.2 increase in f and the pumping power. We have omitted
the variable properties corrections used in Example 7.3 because they
apply only to smooth-walled pipes.
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Heat transfer to fully developed liquid-metal flows in tubes

All our convection equations have, so far, been for Prandtl numbers of 2/3
(monatomic gases) or higher. The exception is eqn. (6.62) which applies
to the uncommon situation of liquid metal flow over a flat plate. Now we
turn our attention to tubular convection by liquid metals, which is far
more widely used but also more complex.

Liquid metal thermal conductivities are much higher than for other
liquids, and their Pr’s are generally on the order of 10−2 to 10−3. Their
high thermal conductivity yields much greater heat transfer coefficients.
Liquid metal coolants thus need less surface area for a given heat load.
That is why they have sometimes been used to cool the nuclear reactors
that power ships, where space and weight must be limited.

Liquid metals may also have low vapor pressures. That means they can
used be at high temperatures with less, or no, pressurization. Higher tem-
perature operation generally improves a power plant’s energy efficiency.

The liquid metal coolants that have been widely used, and widely
studied, include mercury, sodium, lead, sodium-potassium eutectic alloy,
or NaK, and lead-bismuth eutectic. NaK is of particular interest because
it stays liquid at room temperature; and it can be used up to 785◦C with
no pressurization.

Materials with very low Pr’s continue to emerge as useful: liquid tin
has been studied for use in concentrating solar power [7.26]; liquid silicon
is a potential medium of energy storage [7.27]; and so on. These low Pr
materials offer a high payoff in effective heat transfer and thermodynamic
efficiency, but at the cost of serious engineering challenges. They can be
toxic, corrosive, and sometimes flammable; and containing them involves
significant material selection and design problems.

Theory and experiments. We have already done the dimensional anal-
ysis of forced convention by liquid metal heat flowing over a flat plate,
in Section 6.5. There we found that

Nux = fn(Pex) for Pex = u∞x/α (7.51)

(recall eqn. 6.60 et seq.). For low Pr liquids, viscous effects are confined to
a region very close to the wall. Thus, the thermal b.l. extends far beyond
δ, and it is hardly influenced by the momentum b.l. or by viscosity.

Heat transfer to liquid metals in pipes shows similar behavior (see
Fig. 7.7). When Pr ≪ 1, the region of thermal influence extends far beyond
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Figure 7.7 Velocity and temperature profiles during fully de-
veloped turbulent flow in a pipe.

the momentum b.l., and the temperature profile is not much influenced
by the slow fluid close to the wall. (Conversely, if Pr ≫ 1, the temperature
profile is largely shaped within the viscous sublayer. At high or even
moderate Pr, ν is therefore very important; but at low Pr, ν should drop
out of the functional equation.) Thus, we expect NuD for liquid metals in
pipes also to depend primarily on the Péclet number, PeD = uavD/α.

In 1956, Lubarsky and Kaufman [7.28] collected measured values of
NuD for liquid metals flowing in pipes with a constant wall heat flux, qw ,
as shown in Fig. 7.8. Fourteen separate data sets are included, for Prandtl
numbers in the approximate range 0.005 to 0.04. Although most of the
data correlate fairly well on NuD vs. PeD coordinates, certain sets of data
are badly scattered.

The scatter occurs in part because liquid metal experiments are hard to
carry out. Because the heat transfer coefficients are very high, temperature
differences are small, and they must often be measured at high absolute
temperatures for which heat losses are significant. Some of the very low
data may result from added thermal resistance caused by a failure of
the metals to wet the inner surface of the pipe. Or they might result
from corrosion of the pipe. It is also hard to keep liquid metals pure.
Impurities can also lead to lower values of h, for example, by forming
poorly conducting oxide deposits on the pipe wall. In addition to these
thermophysical issues, some the data shown in Fig. 7.8 are for lower
Reynolds number conditions that are not fully turbulent, particularly
those with Ped < 200. And for the very dense liquid metals, buoyancy-
driven circulation, from temperature gradients in the liquid, might have
contributed to convection.

Lubarsky and Kaufman discussed each of the data sets in detail and
flagged cases for which problems seemed apparent. The data they ques-
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Figure 7.8 Historical comparison of measured and predicted
Nusselt numbers for liquid metals heated in long tubes with
uniform wall heat flux, qw . (See Lubarsky and Kaufman [7.28]
for details and data source references.)

tioned included the entire cloud of points in the lower middle of the
figure, which are almost entirely from a single study. After excluding
problematic data sets, they put the following empirical curve through the
bulk of the remaining data, as shown in Fig. 7.8:

NuD = 0.625 Pe0.4
D (7.52)

for PeD = uavD/α > 200.
A body of theory for turbulent liquid metal heat transfer, however,

yields a prediction of the form

NuD = C1 + C2 PenD (7.53)

for PeD = uavD/α. The original suggestion of this type, due to Lyon [7.29]
and shown in Fig. 7.8, does not track the data very well. Seban and
Shimazaki [7.30] suggested different theoretical values for a uniform wall
temperature, based on a simplified turbulence model:

NuD = 5.0+ 0.025 Pe0.8
D (7.54)

https://www.nap.edu/read/4779/chapter/42#211
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Figure 7.9 Liquid metal data from several investigators for
uniform wall heat flux: Skupinski et al., NaK, Pr = 0.0153 [7.31];
Subbotin et al., Na, Pr = 0.0065 [7.32]; Johnson et al., PbBi,
Pr ≃ 0.042 [7.33]; Subbotin et al., Hg, Pr ≃ 0.025 [7.34].

During the 1960’s additional measurements were published, showing
greater consistency and lower scatter. Some of those data are shown
in Fig. 7.9, together with eqns. (7.52) and (7.54) and one data set from
Fig. 7.8 [7.33]. Skupinski et al. [7.31], in one of these later studies, corre-
lated their data as follows:

NuD = 4.82+ 0.0185 Pe0.827
D (7.55)

This correlation is also shown in Fig. 7.9, and it lies in middle of most of
the measurements. In this equation, properties may be evaluated at the
average of the inlet and outlet bulk temperatures, and the flow should be
fully developed (L/D ❳ 30).

Pacio et al. comprehensively reviewed existing measurements and cor-
relations in 2015 [7.35]. Equation (7.55) provided the best prediction, with
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68% of all accepted data lying within ±20% of the equation. Taler [7.36],
using modern numerical turbulence models and considering many data
sets, reached similar conclusions for PeD > 100. These findings are all for
uniform wall heat flux. The data for uniform wall temperature are sparse.

In the thermally developing region, Lee [7.37] showed numerically
that the Reynolds and Prandtl numbers must be treated as independent
variables. Lee also found that heat conduction in the liquid metal along
the axis of the pipe could become significant in the thermally developing
region, but that it is negligible in the fully developed turbulent region for
all values of PeD.

Example 7.5

Johnson et al. [7.33] measured heat transfer coefficients for lead-
bismuth eutectic flowing in a 16.6 mm ID pipe at 1.75 m/s with a heat
flux of 50.4 kW/m2 and a bulk temperature of 441.5 K. What was the
temperature of the pipe wall?

Solution. The thermal diffusivity is approximately 6.5× 10−6 m2/s
at this temperature [7.38], so:

PeD =
(1.75)(16.6× 10−3)

6.5× 10−6
= 4470

With eqn. (7.55), we compute

NuD = 4.82+ 0.0185(4470)0.827 = 24.2

With k = 10.9 W/m·K,

h = (24.2)(10.9)
16.6× 10−3

= 15.9× 103 W/m2K

which is a value comparable to the very high values we would expect
in nucleate boiling of water (see Chapter 9). The wall temperature is

Tw = Tb +
qw
h
= 441.5+ 50.4× 103

15.9× 103
= 441.5+ 3.2 = 444.7 K

The experimental value reported by Johnson et al. was 446.0 K
with h = 11.1×103 W/m2K, about 30% below subsequent experiments.
The temperature discrepancy, however, is very small—4.5 K measured
versus 3.2 K calculated. This highlights one of the great difficulties of
high heat flux experimentation: accurately measuring a small ∆T .
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7.4 Heat transfer surface viewed as a heat exchanger

Let us reconsider the problem of a fluid flowing through a pipe with a
uniform wall temperature, Tw . By now we can predict h for a pretty wide
range of conditions. Suppose that we need to know the net heat transfer
to a pipe of known length once h is known. This problem is complicated
by the fact that the bulk temperature, Tb, is varying along its length.

However, we need only recognize that this section of pipe is a heat
exchanger whose overall heat transfer coefficient, U , is just h, between Tw
and Tb. Thus, if we wish to know how much pipe surface area is needed
to raise the bulk temperature from Tbin to Tbout , we can calculate it using
eqns. (3.12) and (3.13):

Q = (ṁcp)b
(︁
Tbout − Tbin

)︁
= hA(LMTD)

or

A = (ṁcp)b
(︁
Tbout − Tbin

)︁
h

ln

(︄
Tbout − Tw
Tbin − Tw

)︄
(︁
Tbout − Tw

)︁
−
(︁
Tbin − Tw

)︁ (7.56)

By the same token, heat transfer in a duct can be analyzed with the
effectiveness method (Section 3.3) if the exiting fluid temperature is
unknown. Suppose that we do not know Tbout in the example above. Then
we can write an energy balance at any cross section, as we did in eqn. (7.9):

dQ = qwP dx = hP(Tw − Tb)dx = ṁcp dTb

Integration can be done from Tb(0) = Tbin to Tb(L) = Tbout :∫︂ L
0

hP
ṁcp

dx = −
∫︂ Tbout

Tbin

d(Tw − Tb)
(Tw − Tb)

P
ṁcp

∫︂ L
0
hdx = − ln

(︄
Tw − Tbout

Tw − Tbin

)︄

We recognize in this the definition of h from eqn. (7.27). Hence,

hPL
ṁcp

= − ln

(︄
Tw − Tbout

Tw − Tbin

)︄

which can be rearranged as

Tbout − Tbin

Tw − Tbin

= 1− exp

(︄
−hPL
ṁcp

)︄
(7.57)
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This equation applies to either laminar or turbulent flow. The same
equation will give the variation of bulk temperature if Tbout is replaced by
Tb(x), L is replaced by x, and h is calculated as the average value over
the length 0 to x.

When the heat capacity rate of one stream in a heat exchanger is
much higher than the other (Cmax ≫ Cmin), the high capacity stream’s
temperature will hardly change. A heat exchanger for which one stream is
isothermal is called a single-stream heat exchanger (recall Section 3.3). In
the present case, a wall with a uniform temperature, Tw , can be regarded
as a stream with a very large heat capacity rate. Thus, the left-hand side
of eqn. (7.57) is the heat exchanger effectiveness. And we can form the
NTU on the right-hand side with a few substitutions: write Cmin = ṁcp;
replace U with h; and note that PL = A, the heat exchanger surface area.
Under these substitutions, hPL/ṁcp = UA/Cmin = NTU, and eqn. (7.57)
becomes

ε = 1− exp (−NTU) (7.58)

which is the same as eqn. (3.22).
Equation (7.57) applies to ducts of any cross-sectional shape. We may

cast it in terms of the hydraulic diameter, Dh ≡ 4Ac/P , by substituting
ṁ = ρuavAc :

Tbout − Tbin

Tw − Tbin

= 1− exp

(︄
− hPL
ρcpuavAc

)︄
(7.59a)

= 1− exp

(︄
− h
ρcpuav

4L
Dh

)︄
(7.59b)

For a circular tube, with Ac = πD2/4 and P = πD, Dh = 4(πD2/4)
/︁
(πD)

= D. To use eqn. (7.59b) for a noncircular duct, of course, we will need
the value of h for the that duct’s shape. We discuss noncircular ducts the
next section (Section 7.5).

Example 7.6

Air at 20◦C is hydrodynamically fully developed as it flows in a 1 cm I.D.
pipe. The average velocity is 0.7 m/s. If the flow enters a section where
the pipe wall is at 60◦C, what is the bulk temperature 0.25 m farther
downstream?

Solution. We evaluate properties at (20+60)/2 = 40◦C:

ReD =
uavD
ν

= (0.7)(0.01)
1.69× 10−5

= 417
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The flow is therefore laminar. To account for the thermal entry region,
we compute the Graetz number from eqn. (7.26)

Gz = ReDPrD
x

= (421)(0.709)(0.01)
0.25

= 11.8

Substituting this value into eqn. (7.29), we find NuD = 4.27. Thus,

h = 4.27(0.0270)
0.01

= 11.5 W/m2K

Then, using eqn. (7.59b),

Tbout − Tbin

Tw − Tbin

= 1− exp
[︃
− 11.5

1.13(1007)(0.7)
4(0.25)

0.01

]︃
so that

Tb − 20
60− 20

= 0.764 or Tb = 50.6◦C

7.5 Heat transfer coefficients for noncircular ducts

So far, we have focused on flows within circular tubes, which are by
far the most common configuration. Nevertheless, other cross-sectional
shapes often occur. For example, the fins of a heat exchanger may form
a rectangular passage through which air flows. Sometimes, the passage
cross-section is very irregular, as might happen when fluid passes through
a clearance between other objects. In situations like these, all the qual-
itative ideas that we developed in Sections 7.1–7.3 still apply, but the
Nusselt numbers for circular tubes cannot be used in calculating heat
transfer rates.

The hydraulic diameter, which was introduced in connection with
eqn. (7.59b), provides a basis for approximating heat transfer coefficients
in noncircular ducts. Recall that the hydraulic diameter is defined as

Dh ≡
4Ac
P

(7.60)

where Ac is the cross-sectional area and P is the passage’s wetted perime-
ter (Fig. 7.10). The hydraulic diameter measures the fluid cross-sectional
area per unit length of wall perimeter. In turbulent flow, where most of the
convection resistance is in the sublayer on the wall, this ratio determines
the heat transfer coefficient to within about ±20% across a broad range
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Figure 7.10 Flow in a noncircular duct.

of duct shapes, by using a simple replacement of D by Dh in circular
tube equations. In contrast, for fully-developed laminar flow, where the
thermal resistance extends into the core of the duct, the heat transfer
coefficient depends on the details of the duct shape, and Dh alone cannot
define the heat transfer coefficient. Nevertheless, the hydraulic diame-
ter provides an appropriate characteristic length for cataloging laminar
Nusselt numbers.

The factor of four in the definition of Dh ensures that it gives the
actual diameter of a circular tube, D, as noted in the preceding section.
Some other important cases include:

a rectangular duct of
width a and height b

Dh =
4ab

2a+ 2b
= 2ab
a+ b (7.61a)

an annular duct of
inner diameter Di and

outer diameter Do

Dh =
4
(︁
πD2

o
/︁
4−πD2

i
/︁
4
)︁

π (Do +Di)
= (Do −Di) (7.61b)

and, for very wide parallel plates, eqn. (7.61a) with a≫ b gives

two parallel plates
a distance b apart

Dh = 2b (7.61c)

Turbulent flow in noncircular ducts

With some caution, we may use Dh directly in place of the circular tube
diameter when calculating turbulent heat transfer coefficients and bulk
temperature changes. Specifically, Dh replaces D in the Reynolds number,
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which is then used to calculate f and NuDh from the circular tube formulæ.
The mass flow rate and the bulk velocity must be based on the true cross-
sectional area, which does not usually equal πD2

h/4 (see Problem 7.48).
The following example illustrates the procedure.

Example 7.7

An air duct carries chilled air at an inlet bulk temperature of Tbin =
17◦C and uav = 1 m/s. The duct is made of very smooth and thin
galvanized steel, has a square cross-section of 0.3 m by 0.3 m, and is
not insulated. A 15 m length of the duct runs outdoors through warm,
dry air at T∞ = 37◦C. The heat transfer coefficient on the outside
surface, due to natural convection and thermal radiation, is 5 W/m2K.
Find the bulk temperature change of the air over this length.

Solution. From eqn. (7.61a) with a = b

Dh = a = 0.3 m

Using properties of air at the inlet temperature (290 K)

ReDh =
uavDh
ν

= (1)(0.3)
(1.578× 10−5)

= 19,011

The Reynolds number for turbulent transition in a noncircular duct is
typically approximated by the circular tube value of about 2300, so
this flow is turbulent. The friction factor is obtained from eqn. (7.42)

f =
[︁
1.82 log10(19,011)− 1.64

]︁−2 = 0.02646

and the Nusselt number is found with Gnielinski’s equation, (7.41)

NuDh =
(0.02646/8)(19,011− 1,000)(0.713)
1+ 12.7

√︁
0.02646/8

[︁
(0.713)2/3 − 1

]︁ = 49.82

The heat transfer coefficient is

h = NuDh
k
Dh

= (49.82)(0.02623)
0.3

= 4.371 W/m2K

The remaining problem is to find the bulk temperature change.
The thin metal duct wall offers little thermal resistance, but convection
resistance outside the duct must be considered. Heat travels first from
the air at T∞ through the outside heat transfer coefficient to the duct
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wall, through the duct wall, and then through the inside heat transfer
coefficient to the flowing air—effectively through three resistances in
series from the fixed temperature T∞ to the rising temperature Tb. We
have seen in Section 2.4 that an overall heat transfer coefficient may be
used to describe such series resistances. Here, with Ainside ≃ Aoutside,
we find U based on inside area to be

U = 1
Ainside

[︄
1

(hA)inside
+ Rtwall⏞ ⏟⏟ ⏞

neglect

+ 1
(hA)outside

]︄−1

=
(︃

1
4.371

+ 1
5

)︃−1

= 2.332 W/m2K

We then adapt eqn. (7.59b) by replacing h by U and Tw by T∞:

Tbout − Tbin

T∞ − Tbin

= 1− exp

(︄
− U
ρuavcp

4L
Dh

)︄

= 1− exp
[︃
− 2.332
(1.217)(1)(1007)

4(15)
0.3

]︃
= 0.3165

The outlet bulk temperature is therefore

Tbout = [17+ (37− 17)(0.3165)] ◦C = 23.3 ◦C

The results obtained by substituting Dh for D in turbulent circular
tube equations are generally accurate to within ±20% and are often within
±10%. Worse results are obtained for duct cross-sections having sharp
corners, such as an acute triangle. Specialized equations for “effective”
hydraulic diameters have been developed for specific geometries and can
improve the accuracy to 5 or 10% [7.9].

When only a portion of the duct cross-section is heated—one wall of
a rectangle, for example—the procedure for finding h is the same. The
hydraulic diameter is based upon the entire wetted perimeter, not simply
the heated part. However, in eqn. (7.59a), P is the heated perimeter:
eqn. (7.59b) does not apply for nonuniform heating.

One situation in which one-sided or unequal heating often occurs
is an annular duct, with the inner tube serving as a heating element.
The hydraulic diameter procedure will typically predict the heat transfer
coefficient on the outer tube to within ±10%, irrespective of the heating
configuration. The heat transfer coefficient on the inner surface, however,
is sensitive to both the diameter ratio and the heating configuration.
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For that surface, the hydraulic diameter approach is not very accurate,
especially if Di≪ Do; other methods have been developed to accurately
predict heat transfer in annular ducts (see [7.3] or [7.9]).

Laminar flow in noncircular ducts

Laminar velocity profiles in noncircular ducts develop in essentially the
same way as for circular tubes, and the fully developed velocity profiles
are generally paraboloidal in shape. For example, for fully developed flow
between parallel plates located at y = b/2 and y = −b/2,

u
uav

= 3
2

[︄
1− 4

(︃
y
b

)︃2
]︄

(7.62)

for uav the bulk velocity. This should be compared to eqn. (7.15) for a
circular tube. The constants and coordinates differ, but the equations
are otherwise identical. Likewise, analysis of the temperature profiles
between parallel plates leads to constant Nusselt numbers, which may
be expressed in terms of the hydraulic diameter for various boundary
conditions:

NuDh =
hDh
k

=

⎧⎪⎪⎨⎪⎪⎩
7.541 for fixed plate temperatures

8.235 for fixed flux at both plates

5.385 one plate fixed flux, one adiabatic

(7.63)

Some other cases are summarized in Table 7.4, and many more have
been considered in the literature (see, especially, Shah and London [7.5]).
The latter have covered different wall boundary conditions and a wide
variety cross-sectional shapes, both practical and ridiculous: triangles,
circular sectors, trapezoids, rhomboids, hexagons, limaçons, and even
crescent moons!

The boundary conditions should be considered carefully when the
duct is small because h can become large: If the conduction resistance of
the tube wall is comparable to the convective resistance within the duct,
then temperature or heat flux variations around the tube perimeter must
be expected. Such variations can significantly affect the laminar Nusselt
number. The rectangular duct values in Table 7.4 for fixed wall flux, for
example, are based on a uniform temperature around the perimeter of
the tube, as if the wall has no conduction resistance around its perimeter.
That might be the case for a copper duct heated at a fixed rate in watts
per meter of duct length.
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Table 7.4 Additional, laminar, fully developed Nusselt numbers
based on the hydraulic diameters given in eqn. (7.61)

Cross-section Tw fixed qw fixed

Circular 3.657 4.364

Square 2.976 3.608

Rectangular
a = 2b 3.391 4.123

a = 4b 4.439 5.331

a = 8b 5.597 6.490

Parallel plates 7.541 8.235

Laminar entry length equations for noncircular ducts are also given
by Shah and London [7.5].

7.6 Heat transfer during cross flow over cylinders

Fluid flow pattern

Predicting the heat transfer from any object in a cross flow can be very
difficult. Let us consider one of the more common cross-flow cases,
fluid flow perpendicular to a simple cylinder. Figure 7.11 shows how
the flow develops as ReD ≡ u∞D/ν is increased from below 5 to nearly
107. An interesting feature of this evolving flow pattern is the fairly
continuous way in which one flow transition follows another. The flow
field degenerates into greater and greater degrees of disorder with each
successive transition until, rather strangely, it regains order at the highest
values of ReD.

The flow field behind a cylinder goes through a large variety of changing
forms as ReD increases. Most of these forms are accompanied by a vortex
shedding frequency, fv , so let us first look at that. Dimensional analysis
shows that a dimensionless frequency called the Strouhal number, Str,
depends on the Reynolds number of the flow:

Str ≡ fvD
u∞

= fn(ReD) (7.64)

Figure 7.12 defines this relationship experimentally on the basis of about
550 data points [7.39]. The Strouhal numbers stay a little over 0.2 over



Figure 7.11 Regimes of fluid flow across circular cylinders [7.39].
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Figure 7.12 The Strouhal–Reynolds number relationship for
circular cylinders, as defined by the data [7.39].

most of the range of ReD. This means that behind a given object, the
vortex-shedding frequency rises almost linearly with velocity.

Experiment 7.1

When there is a gentle breeze blowing outdoors, go out and locate a
large tree with a straight trunk or, say, a telephone pole. Wet your
finger and place it in the wake a couple of diameters downstream and
about one radius off center. Estimate the vortex-shedding frequency
and use Str ≃ 0.21 to estimate u∞. Is your value of u∞ reasonable?♦

Heat transfer

The action of vortex shedding greatly complicates the heat removal pro-
cess. Giedt’s data [7.40] in Fig. 7.13 show how the heat removal changes as
the constantly fluctuating fluid motion to the rear of the cylinder changes
with ReD. Direct prediction by the sort of b.l. methods that we discussed
in Chapter 6 is out of the question. However, a great deal can be done
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Figure 7.13 Giedt’s local measurements
of heat transfer around a cylinder in a
normal cross flow of air.

with the data using relations of the form

NuD = fn(ReD,Pr)

The broad study of Churchill and Bernstein [7.41] probably brings
the correlation of heat transfer data from cylinders about as far as it is
possible. For the entire range of the available data, they offer

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[︁

1+ (0.4/Pr)2/3
]︁1/4

[︄
1+

(︃
ReD

282,000

)︃5/8
]︄4/5

(7.65)

http://www.seas.upenn.edu/media/in-memoriam-churchill.php
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This expression underpredicts most of the data by about 20% in the range
40,000 < ReD < 400,000 but is quite good at other Reynolds numbers
above PeD ≡ ReDPr = 0.2. This agreement is evident in Fig. 7.14, where
eqn. (7.65) is compared with data.

Greater accuracy and, in most cases, greater convenience results from
breaking the correlation into component equations:

• Below ReD = 4000, the bracketed term
[︁
1+ (ReD/282,000)5/8

]︁4/5
is ≃ 1, so

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[︁

1+ (0.4/Pr)2/3
]︁1/4 (7.66)

• For Pe ⩽ 0.2, the Nakai-Okazaki [7.42] relation should be used

NuD =
1

0.8237− ln
(︁
Pe1/2)︁ (7.67)

• In the range 40,000 < ReD < 400,000, somewhat better results are
given by

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[︁

1+ (0.4/Pr)2/3
]︁1/4

[︄
1+

(︃
ReD

282,000

)︃1/2
]︄

(7.68)

than by eqn. (7.65).

All properties in eqns. (7.65) to (7.68) are to be evaluated at a film tem-
perature Tf = (Tw + T∞)

/︁
2.

Example 7.8

An electric resistance wire heater 0.1 mm in diameter is placed perpen-
dicular to an air flow. It holds a temperature of 40◦C in a 20◦C air flow
while it dissipates 17.8 W/m to the flow. How fast is the air flowing?

Solution. h = (17.8 W/m)
/︁
[π(0.0001 m)(40 − 20) K] = 2833

W/m2K. Therefore, NuD = 2833(0.0001)/0.0265 = 10.69, where we
have evaluated k = 0.0265 W/m·K at T = 30◦C.

We now want to find the value of ReD for which NuD is 10.69. From
Fig. 7.14 we see that ReD is around 300 when the ordinate is on the
order of 10. This means that we can solve eqn. (7.66) to get an accurate
value of ReD

ReD =

⎧⎨⎩(NuD − 0.3)
[︄

1+
(︃

0.4
Pr

)︃2/3
]︄1/4/︄

0.62 Pr1/3

⎫⎬⎭
2
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Figure 7.14 Comparison of Churchill and Bernstein’s correla-
tion with data by many workers from several countries for heat
transfer during cross flow over a cylinder. (See [7.41] for data
sources.) Fluids include air, water, and sodium, with both qw
and Tw constant.

and Pr = 0.712, so

ReD =

⎧⎨⎩(10.69− 0.3)
[︄

1+
(︃

0.40
0.712

)︃2/3
]︄1/4/︄

0.62(0.712)1/3
⎫⎬⎭

2

= 457

Then

u∞ =
ν
D

ReD =
(︄

1.602× 10−5

10−4

)︄
457 = 73.2 m/s

The scatter of the data in this range is quite small—less than 10%,
it would appear—in Fig. 7.14. Therefore, this method can be used to
measure local velocities with good accuracy. If the device is calibrated,
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its accuracy is improved further. Such an air speed indicator is called
a hot-wire anemometer, as discussed further in Problem 7.45.

Heat transfer during flow across tube bundles

A rod or tube bundle is an arrangement of parallel cylinders that heat, or
are being heated by, a fluid that might flow normal to them, parallel with
them, or at some other angle to them. The flow through conventional
water-cooled nuclear reactors, for example, is parallel to the fuel rods.
However, the flow on the shell side of most shell-and-tube heat exchangers
is essentially normal to the tube bundles.

Figure 7.15 shows the two basic configurations of a tube bundle in
a cross flow. In one, the tubes are in a line with the flow; in the other,
the tubes are staggered in alternating rows. For either of these configura-
tions, heat transfer data can be correlated reasonably well with power-law
relations of the form

NuD = C RenD Pr1/3 (7.69)

but with the Reynolds number based on the maximum mean velocity,
which occurs in the minimum transverse area of the passages between the
tubes. With reference to Fig. 7.15, if u∞ is the bulk velocity approaching
the tube bundle

umax = u∞
ST

ST −D
= u∞

1−D/ST
(7.70)

Thus, the Nusselt number based on the average heat transfer coefficient
over any particular isothermal tube is

NuD =
hD
k

and ReD =
umaxD
ν

(7.71)

Žukauskas at the Lithuanian Academy of Sciences Institute in Vil-
nius wrote two comprehensive review articles on tube-bundle heat trans-
fer [7.43, 7.44]. In these he summarized his work and that of other
then-Soviet workers, together with earlier work from the West. He was
able to correlate data over very large ranges of Pr, ReD, ST/D, and SL/D
(see Fig. 7.15) with an expression of the form

NuD = Pr0.36(Pr/Prw)n fn(ReD) with n =

⎧⎨⎩0 for gases
1
4 for liquids

(7.72)

where properties are to be evaluated at the local fluid bulk temperature, ex-
cept for Prw , which is evaluated at the uniform tube wall temperature, Tw .



Figure 7.15 Aligned and staggered tube rows in tube bundles.
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The function fn(ReD) takes the following form for the various circum-
stances of flow and tube configuration:

100 ⩽ ReD ⩽ 103 :

aligned rows: fn(ReD) = 0.52 Re0.5
D (7.73a)

staggered rows: fn(ReD) = 0.71 Re0.5
D (7.73b)

103 ⩽ ReD ⩽ 2× 105 :

aligned rows: fn(ReD) = 0.27 Re0.63
D , ST/SL ⩾ 0.7 (7.73c)

For ST/SL < 0.7, heat exchange is much less effective.
Therefore, aligned tube bundles are not designed in this
range and no correlation is given.

staggered rows: fn(ReD) = 0.35(ST/SL)0.2 Re0.6
D ,

ST/SL ⩽ 2 (7.73d)

fn(ReD) = 0.40 Re0.6
D , ST/SL > 2 (7.73e)

ReD > 2× 105 :

aligned rows: fn(ReD) = 0.033 Re0.8
D (7.73f)

staggered rows: fn(ReD) = 0.031(ST/SL)0.2 Re0.8
D ,

Pr > 1 (7.73g)

NuD = 0.027(ST/SL)0.2 Re0.8
D ,

Pr = 0.7 (7.73h)

All of the preceding relations apply to the inner rows of tube bundles.
The heat transfer coefficient is smaller in the rows at the front of a bundle,
facing the oncoming flow. The heat transfer coefficient can be corrected
so that it will apply to any of the front rows using Fig. 7.16.

Early in this chapter we alluded to the problem of predicting the
heat transfer coefficient during the flow of a fluid at an angle other than
90◦ to the axes of the tubes in a bundle. Žukauskas provides empirical
corrections in Fig. 7.17 to account for this problem.

The work of Žukauskas does not extend to liquid metals. However,
Kalish and Dwyer [7.45] present the results of an experimental study of
heat transfer to sodium-potassium eutectic (NaK), which sometimes used
as a nuclear reactor coolant. For tubes all at a uniform heat flux in an
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Figure 7.16 Correction for the heat
transfer coefficients in the front rows
of a tube bundle [7.43].

equilateral triangular array, as shown in Fig. 7.18, Kalish and Dwyer give

NuD =
(︂
4.60+ 0.193 Pe0.614

D

)︂ ⌜⃓⃓⎷C P −D
P

(︄
sinφ+ sin2φ

1+ sin2φ

)︄
(7.74)

where

• PeD is the Péclet number based on the mean flow velocity through
the narrowest opening between the tubes.

• C is the constant given in Fig. 7.18.

• P is the “pitch” of the tube array, as shown in Fig. 7.18, and D is the
tube diameter.

• the angle between the flow and the rod axis is 30◦ ⩽ φ ⩽ 90◦

For nuclear reactors, flow of liquid metals parallel to the fuel rods
is more common than cross flow over the rods. Data and correlations

Figure 7.17 Correction for the heat
transfer coefficient in flows that are not
perfectly perpendicular to heat exchanger
tubes [7.43].
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Figure 7.18 Geometric correction for
the Kalish-Dwyer equation (7.74).

for parallel flow have been reviewed by El-Genk and Schriener [7.46].
Further information on designing tube-bundle heat exchangers, including
pressure drop calculations, can be found the comprehensive handbook
by Hewitt [7.47].

7.7 Finding and assessing correlations for other
configurations

We said at the outset that this chapter would progressively treat heat
convection problems that lie further and further beyond the reach of
analysis. However, we must not forget that even the most completely
empirical relations in Section 7.6 were devised by people who were keenly
aware of the theoretical framework into which these relations had to
fit. Notice, for example, that eqn. (7.66) reduces to NuD ∝

√︁
PeD as Pr

becomes small. That sort of theoretical requirement did not just pop
out of a data plot. Instead, it was a consideration that led the authors to
design an empirical equation that agreed with theory at low Pr. In other
words, theoretical considerations such discussed in Chapter 6 guide the
correlation of limited data for situations that cannot be analyzed fully.

We often need to know the behavior of an unfamiliar convection sit-
uation. The first thing we should do is look for an existing correlation.
Information already exists for many known configurations. Some exam-
ples include: axial flow through tube or rod bundles; flow over such bluff
bodies as spheres, cubes, or cones; the flow through heat sinks used to
cool electronics (Fig. 4.10); or the flow inside such enhanced channels as
we saw in Fig. 4.6b.

Places where we might begin our search for such correlations include:
the Handbook of Single-Phase Convective Heat Transfer [7.48], specialized
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textbooks on the topics of interest (e.g., for enhanced tubes, the book
by Webb and Kim [7.49]), or review articles on the subject from either
heat transfer journals or the series Advances in Heat Transfer. For a
more wide ranging search, various high-quality scientific databases, such
as Scopus, Web of Science, and Compendex allow one to search for peer-
reviewed papers using keywords, to find more recent papers that have
cited an older paper or review, or to find the papers that were the source
of the data that became the basis of a correlation. If you have access to a
university library, asking the reference librarian for advice is an excellent
first step. In addition, the manufacturers of heat transfer components
will sometimes provide simple correlations for their equipment within its
range of use.

It is very important that we think critically once we have found a
correlation. Questions you should ask yourself include:

• Does my case fall within the range of dimensionless parameters
upon which the correlation is based, or must I extrapolate to reach
my case? It is generally never safe to make such extrapolations.

• What geometric differences exist between the situation represented
in the correlation and the one with which I am dealing? Such ele-
ments include inlet flow conditions, bends or bumps in channels,
aspect ratios that do not match, and hardware that interferes with
the flow. One must be alert to all kinds of deviations from the
intended situation, many of which might be unexpected.

• Are the boundary conditions of the correlation the same as my
boundary conditions? Laminar flows are especially sensitive to
b.c.’s, while turbulent flows are less sensitive.

• To what extent do the data scatter around the correlating equation?
Is the correlation accompanied by discussion of uncertainty, either
in terms of the data used to create it or in terms of the ability of the
correlation to predict the measured data?

• Does the correlating equation have any basis in theory? If it is only,
say, a least-squares fit to the existing data in dimensional form, one
might be unjustified in using it for more than interpolation of those
data.

• Is the correlation based on a single lab’s work, or did it aggregate data
from multiple, independent studies? Was it based on an examination
of hundreds of data points or only a handful?
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• Are the ranges of physical variables large enough to guarantee that
I can rely on the correlation for the full range of the dimensionless
groups that it claims to embrace? For example, if the data were
based on measurements with a single fluid (only, say, for air), how
was the Prandtl number dependence assigned? Even a correlation
with a strong footing in theory should not be extrapolated into
very different ranges of Pr (e.g., from air to a liquid metal or an
oil) because the Prandtl number dependence (and Reynolds number
dependence) can change with the range considered.

• Can I actually see the data points? In this regard, you must notice
whether you are looking at a correlation on linear or logarithmic
coordinates. Errors usually appear smaller than they really are on
logarithmic coordinates. Compare, for example, the data of Figs. 8.3
and 8.10.

• Am I looking at a primary or secondary source (i.e., is this the
author’s original presentation or someone’s report of the original)?
If it is a secondary source, have I been given enough information
to question the result given? This matter is particularly important
when using the Internet for information.

• Has the correlation been signed by the persons who formulated it?
Has it been subjected to critical review by independent experts in
the field?

• What nuisance variables might make our systems different? Con-
sider, for example, surface roughness, fluid purity, problems of
surface wetting, or strong vibrations and pressure fluctuations.

Problems

7.1 Prove that in fully developed laminar flow in a circular pipe, the
quantity (−dp/dx)R2

/︁
4µ is twice the average velocity. To do this,

set the mass flow rate through the pipe equal to (ρuav)(area).

7.2 A flow of air at 27◦C and 1 atm is hydrodynamically fully developed
in a 1 cm I.D. pipe with uav = 2 m/s. Plot (to scale) Tw , qw , and
Tb as a function of the distance x after the point where: (a) Tw is
changed to 68.4◦C; or (b) qw is set to 378 W/m2. Indicate xet on
your graphs.
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7.3 Prove that Cf = 16/ReD in fully developed laminar flow in a circular
pipe.

7.4 Air at 200◦C flows at 4 m/s perpendicular to a 3 cm O.D. pipe
that is kept at 240◦C. (a) Find h. (b) If the air were replaced with
pressurized water at 200◦C, what velocities would give the same
NuD or the same ReD? (c) If someone wanted to model the water
flow with an air experiment, would you see any problem in doing
so? [u∞ = 0.0156 m/s for same NuD.]

7.5 Compare the h value calculated in Example 7.3 with those calcu-
lated from the Dittus-Boelter, Colburn, McAdams, and Sieder-Tate
equations. Comment on the comparison.

7.6 Water at Tblocal = 10◦C flows in a 3 cm I.D. pipe at 10 m/s. The pipe
walls are kept at 70◦C and the flow is fully developed. Evaluate h
and the local value of dTb/dx at the point of interest. The relative
roughness, ε/D, is 0.006.

7.7 Water at 10◦C flows perpendicular to a 3 cm O.D. cylinder at 70◦C.
The velocity is 1 m/s. Evaluate h. [6 kW/m2K]

7.8 Consider the hot wire anemometer in Example 7.8. Suppose that
the heat input is constant at 17.8 W/m and plot u∞ vs. Twire for
flow speeds that can be considered incompressible (Mach number
below 0.3).

7.9 Water at 20◦C flows at 2 m/s over a 2 m length of 35 mm O.D. pipe.
Water at 60◦C flows inside the pipe at the same speed. Compare
h for flow normal to the pipe with that for flow inside the pipe,
assuming fully developed flow. If the pipe is copper with a wall
thickness of 1.4 mm, what is the overall heat transfer coefficient?
Which is the largest of the three thermal resistances?

7.10 A thermally fully developed flow of NaK in a 5 cm I.D. pipe moves
at uav = 8 m/s. Is the flow laminar or turbulent? At a location
where Tb = 395◦C and Tw = 403◦C, what are the local heat transfer
coefficient and heat flux?

7.11 Water enters a smooth walled, 7 cm I.D. pipe at 5◦C at a bulk
velocity of 0.86 m/s. The pipe wall is kept at 73◦C by low pressure
steam condensing outside. Plot Tb against the position in the pipe
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until (Tw − Tb)/68 = 0.01. Neglect the entry length, but consider
property variations. Hint: Use a spreadsheet.

7.12 Air at 20◦C flows over a very large bank of 2 cm O.D. tubes that
are kept at 100◦C. The air approaches at an angle 15◦ off normal
to the tubes. The tube array is staggered, with SL = 3.5 cm and
ST = 2.8 cm. Find h on the first tubes and on the tubes deep in
the array if the air velocity is 4.3 m/s before it enters the array.[︁
hdeep = 136 W/m2K

]︁
7.13 Rework Problem 7.11 using a single value of h evaluated at 5 +

¾(73 − 5) = 56◦C and treating the pipe as a heat exchanger. At
what length would you judge that the pipe is no longer efficient as
an exchanger? Explain.

7.14 Find a heat transfer journal and look up any correlation of heat
transfer data. Evaluate the applicability of that correlation accord-
ing to the criteria outlined in Section 7.7.

7.15 Water at 24◦C flows at 0.8 m/s in a smooth, 1.5 cm I.D. tube that
is kept at 30◦C. The system is extremely clean and quiet, and the
flow stays laminar until a noisy air compressor is turned on in
the laboratory. Vibrations cause the flow to abruptly go turbulent.
Calculate the ratio of the turbulent h to the laminar h. [hturb =
4430 W/m2K]

7.16 In a laboratory experiment, air flows at 27◦C over a bluff body,
12 cm wide, held at 77◦C. The measured heat flux is 646 W/m2

when the air moves at 2 m/s and 3590 W/m2 at 18 m/s. In a second
test, everything else is the same, but now 17◦C water at 0.4 m/s is
used, giving qw = 131,000 W/m2. The correlations in Chapter 7
suggest that, with such limited data, we can probably create a
correlation in the form: NuL = CReaPrb. Estimate the constants C ,
a, and b. One easy way to do this is by cross-plotting the data on
log-log coordinates.

7.17 Air at 1.38 MPa (200 psia) flows at 12 m/s in an 11 cm I.D. duct. At
one location, the bulk temperature is 40◦C and the pipe wall is at
268◦C. Evaluate h if ε/D = 0.002. [h = 397 W/m2K]

7.18 How does h during cross flow over a cylindrical heater vary with
the diameter when ReD is very large?
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7.19 Air enters a 0.8 cm I.D. tube at 20◦C with an average velocity of
0.8 m/s. The tube wall is kept at 40◦C. Plot Tb(x) until it reaches
39◦C. Use properties evaluated at [(20+ 40)/2]◦C for the whole
problem, but report the local error in h at the end to get a sense of
the error incurred using constant properties.

7.20 Write ReD in terms of ṁ in pipe flow and explain why this repre-
sentation could be particularly useful in dealing with compressible
pipe flows. How will ReD vary in an isothermal gas flow as the
pressure drops?

7.21 NaK at 394◦C flows at 0.57 m/s normal to a 1.82 m length of
0.036 m O.D. tube. The tube is kept at 404◦C. Find h and the heat
removal rate from the tube. [25.3 kW]

7.22 Verify the value of h specified in Problem 3.22.

7.23 Compare the value of h given in Example 7.3 the value obtained
using the Reynolds-Colburn analogy in the form of eqn. (7.37). By
what percentage do these values differ?

7.24 A homemade heat exchanger consists of a copper plate, 0.5 m
square, with twenty 1.5 cm I.D. copper tubes soldered to it. The
ten tubes on top are evenly spaced across the top and parallel
with two sides. The ten on the bottom are also evenly spaced,
but they run at 90◦ to the top tubes. The exchanger is used to
cool methanol flowing through the top tubes at 0.48 m/s from an
initial temperature of 73◦C, using water in the bottom tubes flowing
at 0.91 m/s and entering at 7◦C. What is the temperature of the
methanol when it is mixed in a header on the outlet side? Do you
think that this heat exchanger is designed well? [Tmeth,out ≃ 65◦C]

7.25 Use the continuity equation to show that ∂u/∂x = 0 in a circular
pipe implies that the radial velocity v = 0. Also show that v =
0 implies that ∂u/∂x = 0. Hint : You will need to look up the
divergence operator in cylindrical coordinates.

7.26 Report the maximum percentage scatter of the data in Fig. 7.14.
What is happening in the fluid flow in the range for which the
scatter is worst?

7.27 Water at 27◦C flows at 2.2 m/s in a 0.04 m I.D. thin-walled copper
pipe. Air at 227◦C flows across it at 7.6 m/s. Find the pipe wall
temperature. [Tpipe = 28◦C]
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7.28 Freshly painted aluminum rods, 0.02 m in diameter, are withdrawn
from a drying oven at 150◦C and cooled in a 3 m/s cross flow of
air at 23◦C. How long will it take to cool them to 40◦C so they can
be handled? [10.4 min.]

7.29 At what speed, u∞, must 20◦C air flow across the following insu-
lated tube before the insulation on it will do any good? The tube
is at 60◦C and is 6 mm in diameter. The insulation is 12 mm in
diameter, with k = 0.08 W/m·K. (Notice that we do not ask for the
u∞ for which the insulation will do the most harm, as discussed in
Example 2.6) [5 cm/s]

7.30 Water at 37◦C flows at 3 m/s across at 6 cm O.D. tube that is held
at 97◦C. In a second configuration, 37◦C water flows at an average
velocity of 3 m/s through a bundle of 6 cm O.D. tubes that are held
at 97◦C. The bundle is staggered, with ST/SL = 2. Compare the
heat transfer coefficients for the two situations.

7.31 A very old air cooler was designed to chill 64◦C air flowing at
uav = 30 m/s, fully developed, in a 1 m length of 8 cm I.D. smooth,
highly conducting tubing. The refrigerant was the now-banned
Freon 12 flowing in the opposite direction at uav = 0.5 m/s, within
eight smooth 1 cm I.D. tubes equally spaced around the outside
of the large tube. The Freon entered at −15◦C and was fully de-
veloped over almost the entire length. Determine the exiting air
temperature, assuming that solder provides perfect thermal contact
between the small tubes and the large tube and ignoring conduc-
tion resistance in the tube walls. Criticize the heat exchanger and
propose a better design.

7.32 Calculate NuD directly from Giedt’s data in Fig. 7.13 for air flowing
over a cylinder at ReD = 140,000. Compare your result with the
appropriate correlation and with Fig. 7.14.

7.33 A 25 mph wind blows across a 0.25 in. (6.35 mm) telephone wire.
What is the musical note for the pitch of the hum that it emits?
Hint: The note could comfortably be sung by many adult men.

7.34 A large Nichrome V slab, 0.2 m thick, has two parallel 1 cm I.D.
holes drilled through it. Their centers are 8 cm apart. One carries
liquid CO2 at 1.2 m/s from a −13◦C reservoir below. The other
carries methanol at 1.9 m/s from a 47◦C reservoir above. Take
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account of the intervening Nichrome and compute the heat transfer
rate. Will the CO2 be significantly warmed by the methanol? Hint:
Recall Table 5.4.

7.35 Consider the situation described in Problem 4.37 but suppose that
we do not know h. Suppose, instead, that we know there is a 10 m/s
cross flow of 27◦C air over the rod. Rework the problem under
these conditions. [The temperature is about 11◦C lower]

7.36 A liquid whose properties are not known flows across a 40 cm O.D.
tube at 20 m/s. The measured heat transfer coefficient is 8000
W/m2K. We can be confident that ReD is very large indeed. What
would h be if D were 53 cm? What would h be if u∞ were 28 m/s?
Hint: Work Problem 7.18. [11.2 kW/m2]

7.37 Water flows at 4 m/s, at a temperature of 100◦C, in a 6 cm I.D. thin-
walled tube with a 2 cm layer of 85% magnesia insulation on it. The
outside heat transfer coefficient is 6 W/m2K, and the outside tem-
perature is 20◦C. Find: (a) U based on the inside area; (b) Q W/m;
and (c) the temperature on either side of the insulation. How signifi-
cant is the thermal resistance of forced convection? [Q = 47.3 W/m]

7.38 Glycerin is added to water in a mixing tank at 20◦C. The mixture
discharges through a 4 m length of 0.04 m I.D. tubing under a
constant 3 m head. Plot the discharge rate in m3/hr as a function
of the percentage of glycerin in the mixture (see Table A.3). Hint:
Remember to include the velocity head of the jet leaving the tube.

7.39 Plot h as a function of the percentage of glycerin for the discharge
pipe in Problem 7.38. Assume a small temperature difference.

7.40 Rework Problem 5.40 without assuming Bi to be very large.

7.41 Water enters a 0.5 cm I.D. pipe at 24◦C. The pipe walls are held
at 30◦C. Plot Tb against distance from entry if uav is 0.27 m/s,
neglecting entry behavior in your calculation. Indicate the entry
region on your graph, however.

7.42 Devise a numerical method to find the velocity distribution and
friction factor for laminar flow in a square duct of side length a.
Set up a square grid of size N by N and solve the finite difference
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equations by hand for N = 2, 3, and 4. Hint : First show that the
velocity distribution is given by the solution to the equation

∂2u
∂x2 +

∂2u
∂y2 = 1

where u = 0 on the sides of the square and we define x = (x/a),
y = (y/a), and u = u

/︁
[(a2/µ)(dp/dz)]. Then show that the

friction factor, f [eqn. (7.34)], is given by

f =
− 2

ρuava
µ

∫︂∫︂
udxdy

Note that the double integral can be evaluated as
∑︁N
i,j=1

(︁
ui,j

/︁
N2
)︁
.

7.43 Chilled air at 15◦C and 1 m/s enters a horizontal duct. The duct is
made of thin galvanized steel and is not insulated. A 30 m section
of the duct runs outdoors through humid air at 30◦C. Condensation
on the outside of the duct is undesirable, but will occur if the duct
wall is at or below the dew point temperature of 20◦C.

a. Suppose that the duct’s square cross-section is 0.3 m by 0.3 m
and the effective outside heat transfer coefficient is 5 W/m2K
in still air. Determine whether condensation occurs.

b. The single duct is replaced by four circular horizontal ducts,
each 0.17 m in diameter. The ducts are parallel to one another
in a vertical plane with a center-to-center separation of 0.5 m.
Each duct is wrapped with a layer of fiberglass insulation
6 cm thick (ki = 0.04 W/m·K) and carries air at the same inlet
temperature and speed as before. If a 15 m/s wind blows
perpendicular to the plane of the circular ducts, find the bulk
temperature of the air exiting the ducts.

7.44 An x-ray monochrometer is a mirror that reflects only a single
wavelength from a broadband beam of x-rays. Over 99% of the
beam’s energy arrives on other wavelengths and is absorbed, cre-
ating a high heat flux on the monochrometer’s surface. Consider a
monochrometer made from a silicon block 10 mm long and 3 mm
by 3 mm in cross-section which absorbs 12.5 W/mm2 over an elon-
gated elliptical area of 6 mm2 (a heat load of 75 W). To control
the temperature, it is proposed to pump liquid nitrogen through
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a circular channel bored down the center of the silicon block. The
channel is 10 mm long and 1 mm in diameter. LN2 enters the chan-
nel at 80 K and a pressure of 1.6 MPa (Tsat = 111.5 K). The entry
to this channel is a long, straight passage of the same diameter.

a. For what range of mass flow rates will the LN2 have a bulk tem-
perature rise of less than 1.5 K over the length of the channel?

b. At your minimum flow rate, estimate the maximum wall tem-
perature in the channel. As a first approximation, assume that
the silicon conducts heat well enough to distribute the 75 W
heat load uniformly over the channel surface. Could boiling
occur in the channel? Discuss the influence of entry length
and variable property effects.

7.45 Fluctuating turbulent fluid velocities can be measured with a con-
stant temperature hot-wire anemometer, in which a long, fine wire
(typically platinum, 4 µm in diameter and 1.25 mm long) supported
between two much larger needles. The needles are connected to
an electronic bridge circuit which electrically heats the wire while
rapidly adjusting the heating voltage, Vw , so that the wire’s electri-
cal resistance Rw—and thus its temperature—stays constant. The
electrical power dissipated in the wire, V2

w/Rw , is convected away at
the surface of the wire. Analyze the heat loss from the wire to show

V2
w = (Twire − Tflow)

(︂
A+ Bu1/2

)︂
where u is the instantaneous flow speed perpendicular to the wire.
Assume that u is between 2 and 100 m/s and that the fluid is
an isothermal gas. The constants A and B depend on properties,
dimensions, and resistance; they are usually found through an
experimental calibration. This result is called King’s law.

7.46 Olive oil is pumped into a helical coil at 20◦C and 0.3 kg/s. The coil
is made of 1 cm I.D. copper tubing with a 1 mm wall thickness, and
consists of ten turns with a diameter of 50 cm. The total length
of tubing is 17 m. The coil is surrounded by a bath of water at
50◦C, stirred so as to give an external heat transfer coefficient of
3000 W/m2K. (a) Determine the bulk temperature of the oil leaving
the coil. (b) An engineer suggests raising the outlet temperature
by adding fins to the coil. Is his suggestion a good one? Explain.
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7.47 A film manufacturing process involves spraying an emulsion onto
the surface of a polymer film and then curing the coating by raising
its temperature. A proposed design will pass a continuous strip of
coated film through an air tunnel. The film enters the right-hand
side of the tunnel at 20◦C and warm air enters the left-hand side
at 60◦C. The film surface needs to reach 40◦C to cure properly, but
must not exceed 55◦C.

The film is 70 mm wide. The film has a thickness of 150 µm and
moves at a speed of 40 mm/s. The coating may be taken to have
the same properties as the film. The 0.5 m long air tunnel has the
same width as the film and a height of 10 mm both above and below
the film, for a total height of 20 mm. The tunnel walls are adiabatic
and have a surface of bright aluminum (ε ≈ 0.15). The coated film
has the following properties: k = 0.2 W/m·K, cp = 1300 J/kg·K,
ρ = 1380 kg/m3, and ε ≈ 0.9.

a. Suppose that the air enters at a bulk velocity of 0.5 m/s. Cal-
culate the heat capacity rates of the air flow and of the film.
Use this information to help you make a qualitative sketch
of the bulk temperature distributions of the air and the film
from one end of the tunnel to the other.

b. Compare the speed of the film to the bulk velocity of the air.
Does this suggest a reasonable simplification to use in estimat-
ing the heat transfer coefficient between the film and the air?

c. What is the Biot number of the film based on its thickness?
What does this tell you?

d. Now calculate the outlet temperature of the film.

e. How will raising the air speed to 4 m/s affect the performance?
Estimate the resulting outlet temperature of the film.

7.48 (a) Show that the Reynolds number for a circular tube may be writ-
ten in terms of the mass flow rate as ReD = 4ṁ

/︁
πµD. (b) Show

that this result does not apply to a noncircular tube, specifically
ReDh ≠ 4ṁ

/︁
πµDh.

7.49 Go to Figs. 7.14, 8.3, 8.6, 9.7, and 9.13. In each case, pick out what
seems to be the data point that differs most from the corresponding
correlation. Scale the distances between the point and the curve
and report the percentage by which the correlation differs from
each of your selected data points.
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7.50 Air flows in a 10 mm I.D. tube at 2 m/s and 57◦C. At a location
where the flow is fully developed, the wall temperature drops to
27◦C. (a) What is the bulk temperature 200 mm downstream of the
drop? (b) Plot the heat transfer coefficient along the 200 mm tube
length. On the same graph, plot the h for the same velocity and
temperatures over a 200 mm long flat plate. [Tb = 44.3◦C]

7.51 Consider the water-cooled annular resistor of Problem 2.49 (Fig.
2.24). The resistor is 1 m long and dissipates 9.4 kW. Water enters
the inner pipe at 47 °C with a mass flow rate of 0.39 kg/s. The water
passes through the inner pipe, then reverses direction and flows
through the outer annular passage, counter to the inside stream.

a. Determine the bulk temperature of water leaving the outer
passage. [52.8◦C]

b. Solve Problem 2.49 if you have not already done so. Compare
the thermal resistances between the resistor and each water
stream, Ri and Ro.

c. Use the thermal resistances to form differential equations
for the streamwise (x-direction) variation of the inside and
outside bulk temperatures (Tb,o and Tb,i) and an equation the
local resistor temperature. Use your equations to obtain an
equation for Tb,o − Tb,i as a function of x.

d. Sketch qualitatively the distributions of bulk temperature for
both passages and for the resistor. Discuss the size of: the
difference between the resistor and the bulk temperatures;
and overall temperature rise of each stream. Does the resistor
temperature change much from one end to the other?

e. Your boss suggests roughening the inside surface of the pipe
to an equivalent sand-grain roughness of 500 µm. Would this
change lower the resistor temperature significantly?

f. If the outlet water pressure is 1 bar, will the water boil? Hint:
See Problem 2.48.

g. Solve your equations from part (c) to find Tb,i(x) and Tr (x).
Arrange your results in terms of NTUo ≡ 1/(ṁcpRo) and
NTUi ≡ 1/(ṁcpRi). Considering the size of these parameters,
assess the approximation that Tr is constant in x.
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8. Natural convection in single-
phase fluids and during film
condensation

There is a natural place for everything to seek, as:
Heavy things go downward, fire upward, and rivers to the sea.

adapted from The Anatomy of Melancholy, R. Burton, 1621

8.1 Scope

The remaining convection processes that we deal with are largely gravity-
driven. Unlike forced convection, in which the driving force is external to
the fluid, these so-called natural convection processes are driven by body
forces exerted directly within the fluid as the result of heating or cooling.
Two such mechanisms are remarkably similar. They are single-phase
natural convection and film condensation. Because these processes have
so much in common, we deal with both mechanisms in this chapter. We
develop the governing equations side by side in two brief opening sections.
Then we treat each mechanism independently: convection in Sections 8.3
and 8.4, and condensation in Section 8.5.

Chapter 9 deals with other natural and forced convection heat transfer
processes that involve phase change (beyond that which occurs in film
condensation.) These include:

• Nucleate boiling. This heat transfer process is highly disordered as
opposed to the processes described in this chapter.

• Film boiling. This process is so similar to film condensation that we
can often just modify film condensation predictions.

• Dropwise condensation. This mode is analogous to nucleate boiling. 413
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Figure 8.1 The convective boundary layers for natural convec-
tion and film condensation. In both sketches, but particularly in
that for film condensation, the y-coordinate has been stretched
making each layer look thicker than it really is.

8.2 The nature of film condensation and of
natural convection

Description

The natural convection problem is sketched in its simplest form on the
left-hand side of Fig. 8.1. Here a vertical isothermal plate cools the fluid
adjacent to it. The cooled fluid becomes denser and sinks downward to
form a b.l. The figure would be inverted if the plate were warmer than
the fluid next to it. Then the fluid would buoy upward.

The corresponding film condensation problem is shown in its simplest
form in Fig. 8.1b. An isothermal vertical plate cools an adjacent vapor,
which condenses and forms a liquid film on the wall.1 The film is normally

1Under certain circumstances, the condensate might instead form individual droplets,
which roll off without forming into a film. This process is dropwise condensation. See
Section 9.10.
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very thin and flows rather like a b.l. as the figure suggests. While natural
convection can carry fluid either upward or downward, condensate can
move only downward. The temperature in the liquid film rises from Tw
at the cool wall to the saturation temperature, Tsat, at the outer edge.

In both problems, but particularly in film condensation, the b.l. and
the film are normally thin enough to accommodate the b.l. assumptions
[recall the discussion following eqn. (6.13)]. A second feature of both
problems is that δ and δt are closely related. In the condensing film they
are equal, since the edge of the condensate film forms the edge of both
b.l.’s. In natural convection, δ and δt are approximately equal when Pr
is on the order of one or less, because all cooled (or heated) fluid must
buoy downward (or upward). When Pr is large, not just the cooled (or
heated) fluid will fall (or rise). Owing to its high viscosity, the buoyant
fluid will also drag unheated fluid with it. In this case, δ can exceed δt .
The analysis that follows below is for cases in which δ ≊ δt .

Governing equations

To describe laminar film condensation and laminar natural convection,
we must add a gravity term to the momentum equation. First we examine
the dimensions of the terms in the momentum equation (6.13):(︄

u
∂u
∂x

+ v ∂u
∂y

)︄
m
s2⏞ ⏟⏟ ⏞

= kg·m
kg·s2 = N

kg

= −1
ρ
dp
dx

m3

kg
N

m2 ·m⏞ ⏟⏟ ⏞
= N

kg

+ ν ∂
2u
∂y2

m2

s
m

s ·m2⏞ ⏟⏟ ⏞
= m

s2 = N
kg

(8.1)
where ∂p/∂x ≃ dp/dx in the b.l. since the pressure does not vary with
y , and where µ ≃ constant. Thus, every term in the equation has units
of acceleration or (equivalently) force per unit mass. The component of
gravity in the x-direction therefore enters the momentum balance as +g:
both x and g point downward in Fig. 8.1. Gravity would enter as −g if it
acted opposite the x-direction.

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ g + ν ∂
2u
∂y2

(8.2)

The pressure gradient for both problems is the hydrostatic gradient
outside the b.l. Thus,

dp
dx

= ρ∞g⏞ ⏟⏟ ⏞
natural

convection

dp
dx

= ρgg⏞ ⏟⏟ ⏞
film

condensation

(8.3)
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where ρ∞ is the density of the undisturbed fluid and ρg (and ρf below)
are the saturated vapor and liquid densities. Equation (8.2) then becomes

u
∂u
∂x

+ v ∂u
∂y

=
(︄

1− ρ∞
ρ

)︄
g + ν ∂

2u
∂y2

for natural convection (8.4)

u
∂u
∂x

+ v ∂u
∂y

=
(︄

1− ρg
ρf

)︄
g + ν ∂

2u
∂y2

for film condensation (8.5)

Two boundary conditions that apply to both problems are

u
(︁
y = 0

)︁
= 0 the no-slip condition

v
(︁
y = 0

)︁
= 0 no flow into the wall

}︄
(8.6a)

The third b.c. is different for the film condensation and natural convection
problems:

∂u
∂y

⃓⃓⃓⃓
⃓
y=δ

= 0
condensation:
negligible shear at edge of film

u
(︁
y = δ

)︁
= 0 natural convection:

undisturbed fluid outside the b.l.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (8.6b)

The energy equation for either of the two cases is eqn. (6.40):

u
∂T
∂x

+ v ∂T
∂y

= α∂
2T
∂y2

(6.40)

We leave the identification of the b.c.’s for temperature until later.
The crucial fact to recognize is that the momentum equation is now

linked to the energy equation. Let us consider how that occurs:

In natural convection: The velocity, u, is driven by buoyancy, which is
reflected in the term (1− ρ∞/ρ)g in the momentum equation. The
density, ρ = ρ(T), varies with T , so it is impossible to solve the
momentum and energy equations independently of one another.

In film condensation: The third boundary condition (8.6b) for the mo-
mentum equation involves the film thickness, δ. But to calculate δ
we must make an energy balance on the film to find out how much
latent heat—and thus how much condensate—it has absorbed. This
will bring (Tsat − Tw) into the solution of the momentum equation.

The boundary layer on a flat surface in forced convection was easy to ana-
lyze because the momentum equation could be solved completely before
the energy equation was approached. We do not have that advantage in
predicting either natural convection or film condensation.
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8.3 Laminar natural convection on a vertical
isothermal surface

Dimensional analysis and experimental data

Before we apply dimensional analysis to the natural convection problem,
let us simplify the buoyancy term, (1− ρ∞/ρ)g, in eqn. (8.4). We derived
the equation for incompressible flow, but we modified it by admitting a
small variation of density with temperature in this term only2. Now we
will eliminate (ρ − ρ∞) in favor of (T − T∞) using the thermal expansion
coefficient, β, where v̂ is the specific volume:

β ≡ 1
v̂
∂v̂
∂T

⃓⃓⃓⃓
p
= −1

ρ
∂ρ
∂T

⃓⃓⃓⃓
p
≃ −1

ρ
ρ − ρ∞
T − T∞

= −
(︁
1− ρ∞

/︁
ρ
)︁

T − T∞
(8.7)

For liquids and saturated vapors, β should be evaluated with data
from Appendix A. If the fluid is an ideal gas, β takes a very simple form

β = 1
v̂
∂
∂T

(︄
RT
p

)︄
p
= 1
T

for an ideal gas

where R is the gas constant and T is the absolute temperature in K.
Figure 8.2 shows natural convection from a vertical surface, hotter

than its surroundings. In this case, or the cold plate shown in Fig. 8.1a,
we replace (1− ρ∞/ρ)g with −gβ(T − T∞). The sign of the substitution
is the same in either case (see Fig. 8.2). However, the direction in which
buoyancy acts will depend upon whether T is greater or less than T∞ and
on whether g acts in the +x direction (g > 0) or the −x direction (g < 0).
Then the momentum equation, (8.4), becomes

u
∂u
∂x

+ v ∂u
∂y

= −gβ(T − T∞)+ ν
∂2u
∂y2

(8.8)

for the plate orientation in Fig. 8.1a, with g in the +x direction. The
density, ρ, has been eliminated, and the coupling of the momentum and
energy equations is now very clear.

Dimensional analysis. The functional equation for the heat transfer
coefficient in natural convection is now (cf. Section 6.4)

h or h = fn
(︁
k,
⃓⃓
Tw − T∞

⃓⃓
, gβ, ν,α,x or L

)︁
2The use of constant properties except for density in the buoyancy term is called the

Boussinesq approximation, after Joseph Valentin Boussinesq (1842–1929).
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Figure 8.2 Natural convection from
a vertical heated plate.

where gβ only appears as a product in eqn. (8.8), and L is a length that
must be specified for a given problem. Notice that, while we could take h
to be independent of ∆T in the forced convection problem (Section 6.4),
the explicit appearance of (T − T∞) in eqn. (8.8) shows that we cannot do
so here. The sign of Tw − T∞ should not matter to h or h.

The functional equation has seven variables in W, m, s, and K (where
we again regard J as a unit independent of N and m, since no conversion
between heat and work takes place). We therefore seek 7−4 = 3 pi-groups.
Considering h, with L a characteristic length and ∆T ≡ |Tw − T∞|, the
groups may be chosen as

NuL ≡
hL
k
, Pr ≡ ν

α
, GrL ≡

gβ∆TL3

ν2
(8.9)

The third group is new to us: the Grashof (pronounced Gráhs-hoff) number,
GrL, where the subscript denotes the length on which it is based.3 We
therefore expect to correlate natural convection data with functional
equations of the form

NuL = fn(GrL,Pr) (8.10)

The Grashof number can be interpreted by noticing that gβ∆T is the
buoyancy force per unit mass on a parcel of fluid. Neglecting drag, if the

3Nu, Pr, and Gr were all suggested by Nusselt in his pioneering paper on convective
heat transfer [8.1]. Grashof was a notable nineteenth-century mechanical engineering
professor who was simply given the honor of having a dimensionless group named
after him posthumously (see, e.g., [8.2]). He did not work on natural convection.
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parcel accelerates under that force for a distance L, elementary dynamics
shows that it will reach a speed u =

√︁
2gβ∆TL. Thus, the Grashof number

is proportional to (uL/ν)2, the square of a Reynolds number. In a laminar
forced convection b.l., NuL ∝ Re1/2

L ; so here, we might anticipate that

NuL ∝ Gr1/4
L .

Another attribute of the dimensionless functional equation is that the
most influential independent variable is usually the product of GrL and
Pr. This product is called the Rayleigh number, RaL:

RaL ≡ GrLPr = gβ∆TL
3

αν
(8.11)

Thus, most (but not all) analyses and correlations of natural convection
take the form:

Nu = fn
(︁
Ra⏞⏟⏟⏞

most important
independent variable

, Pr⏞⏟⏟⏞
secondary parameter

)︁
(8.12)

Comparison to data. Figure 8.3 is a careful selection of high quality
data for natural convection from vertical isothermal surfaces. These data
were organized by Churchill and Chu [8.3], and they span 13 orders of
magnitude of the Rayleigh number. The correlation of these data in the
coordinates of Fig. 8.2 is exactly in the form of eqn. (8.12), and it shows
the dominant influence of RaL, while the influence of Pr is smaller.

The data correlate on these coordinates within a few percent up to
RaL

/︁
[1 + (0.492/Pr9/16)]16/9 ≃ 108. That is about where the b.l. starts

exhibiting turbulent behavior. Beyond that point, measured values of the
overall Nusselt number, NuL, exhibit substantial scatter.

Churchill and Chu offered several equations for various circumstances.
The one that best characterizes laminar natural convection from a vertical
plate for RaL ❲ 109 is:

NuL = 0.68+ 0.670 Ra1/4
L

[︄
1+

(︃
0.492

Pr

)︃9/16
]︄−4/9

(8.13a)

The form of this correlation is not at all accidental. Not only is it consistent
with dimensional analysis, eqn. (8.12), but it also has the basic form of a
classical theoretical prediction done independently by Squire [8.4] and by
Eckert [8.5]. Churchill and Chu fitted the coefficients and Pr dependence

https://en.wikipedia.org/wiki/John_William_Strutt,_3rd_Baron_Rayleigh
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Figure 8.3 The correlation of h data for vertical isothermal
surfaces by Churchill and Chu [8.3], using NuL = fn(RaL,Pr).
(Applies to full range of Pr.)

of the theory to experimental data from 13 independent studies with
many different fluids. The added constant 0.68 accounts for very low
values of RaL at which boundary layer behavior begins to break down.

Equation (8.13a) lies on the low side of the data after the boundary
layer becomes turbulent at Rayleigh numbers4 above 109. Churchill and
Chu recommend the following equation to account for turbulence:

NuL =

⎧⎨⎩0.825+ 0.387 Ra1/6
L[︁

1+ (0.492/Pr)9/16
]︁8/27

⎫⎬⎭
2

(8.13b)

This result can be used for all RaL and Pr, although eqn. (8.13a) is more
accurate for laminar conditions.

Both eqns. (8.13a) and (8.13b) may be used for either uniform wall
temperature or uniform heat flux. The properties should be evaluated at
an average film temperature, Tf = (T∞ + Tw)/2.

4Bejan and Lage [8.6] suggest that turbulent flow is more accurately assumed to
occur for GrL ❳ 109.
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Example 8.1

Verify the first heat transfer coefficient in Table 1.1. It is for air at
20◦C next to a 0.30 m high wall at 50◦C.

Solution. At Tf = 35◦C = 308 K, we find Pr = 0.710, ν = 1.643 ×
10−5 m2/s, α = 2.315 × 10−5 m2/s, k = 0.02672 W/m·K, and β =
1
/︁
(273+ 35) = 0.00325 K−1. Then

RaL =
gβ∆TL3

αν
= 9.8(0.00325)(30)(0.30)3

(1.643)(2.315)10−10
= 6.78× 107

The Churchill-Chu laminar correlation, eqn. (8.13a), gives

NuL = 0.68+ 0.67

(︁
6.78× 107

)︁1/4[︂
1+ (0.492/0.710)9/16

]︂4/9 = 47.33

so

h = 47.33
(︃

0.02672
0.30

)︃
= 4.22 W/m2K

This value matches Table 1.1.

Example 8.2

Thin metal sheets of length L are dipped in an electroplating bath in
the vertical position. Their initial average temperature, Ti, is cooler
than the liquid in the bath. How rapidly will they come up to bath
temperature, Tb?

Solution. Because the metal is thin and conductive, we can probably
take Bi ≪ 1 and use the lumped-capacity response equation (1.20).
We obtain h from eqn. (8.13a), assuming that NuL is large enough to
neglect the small added constant 0.68:

h = 0.67
k
L

[︄
1+

(︃
0.492

Pr

)︃9/16
]︄−4/9(︄

gβL3

αν

)︄1/4

⏞ ⏟⏟ ⏞
call this B

∆T 1/4

Since h∝ ∆T 1/4, with ∆T = Tb − T , eqn. (1.20) becomes

d(Tb − T)
dt

= − BA
ρcV

(Tb − T)5/4
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where V/A = the half-thickness of the plate, w . Integrating from time
0 to t, we get ∫︂ T

Ti

d(Tb − T)
(Tb − T)5/4

= −
∫︂ t

0

B
ρcw

dt

so

Tb − T =
[︄

1

(Tb − Ti)1/4
+ B

4ρcw
t
]︄−4

(Before we use this result, we should check Bi = Bw∆T 1/4/︁k to be
certain that it is, in fact, less than one.) The temperature can be put
in dimensionless form as

Tb − T
Tb − Ti

=
[︄

1+ B (Tb − Ti)
1/4

4ρcw
t
]︄−4

where the coefficient of t is a kind of inverse time constant of the re-
sponse. Thus, the temperature dependence of h in natural convection
leads to a solution quite different from the exponential response that
resulted from a constant h, eqn. (1.22).

Classical Squire-Eckert prediction of h in laminar natural
convection on a vertical wall

The Squire-Eckert formulation, done in the 1930s, begins with the inte-
grated momentum and energy equations. We will consider the case of a
warm, vertical wall (Fig. 8.2) with gravity downward. We assume δ = δt
and integrate eqns. (8.8) and (6.40) to the same value of δ, yielding

d
dx

∫︂ δ
0

(︂
u2 − uu∞⏞ ⏟⏟ ⏞

= 0, since
u∞ = 0

)︂
dy = −ν ∂u

∂y

⃓⃓⃓⃓
⃓
y=0

+ gβ
∫︂ δ

0
(T − T∞)dy (8.14)

for momentum, and, for energy,

d
dx

∫︂ δ
0
u(T − T∞)dy =

qw
ρcp

= −α ∂T
∂y

⃓⃓⃓⃓
⃓
y=0

(6.47)

The integrated momentum equation is the same as eqn. (6.24) except that
it includes the buoyancy term; and the sign of buoyancy term is opposite
that in eqn. (8.8) because gravity acts in the −x direction.

The approximation that the thermal b.l. thickness, δt , should be
roughly equal to the momentum b.l. thickness, δ, would seemingly limit
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the results to Prandtl numbers not too much larger than one. In fact, the
analysis also proves to be accurate for large Pr because the velocity profile
exerts diminishing influence on the temperature profile as Pr increases.

Velocity and temperature profiles. To estimate the temperature and
velocity profiles for use in eqns. (8.14) and (6.47), we proceed as we did
in Sections 6.2 and 6.3 for forced convection. We write a set of known
facts about the profiles, then use these facts to evaluate the constants in
polynomial expressions for u and T .

Since the temperature profile has a fairly simple shape, we choose a
simple quadratic expression:

T − T∞
Tw − T∞

= a+ b
(︃
y
δ

)︃
+ c

(︃
y
δ

)︃2

(8.15)

We require this profile to meet three boundary conditions:

• T
(︁
y = 0

)︁
= Tw from which 1 = a

• T
(︁
y = δ

)︁
= T∞ from which 0 = 1+ b + c

• ∂T
∂y

⃓⃓⃓⃓
⃓
y=δ

= 0 from which 0 = b + 2c

Thus, a = 1, b = −2, and c = 1, giving following temperature profile:

T − T∞
Tw − T∞

= 1− 2
(︃
y
δ

)︃
+
(︃
y
δ

)︃2

=
(︃

1− y
δ

)︃2

(8.16)

The velocity profile has a peak between 0 and δ (Fig. 8.1), so we will
represent it with a cubic function:

u = uc(x)
[︄(︃
y
δ

)︃
+ c

(︃
y
δ

)︃2

+ d
(︃
y
δ

)︃3
]︄

(8.17)

Since we do not know the peak velocity, we write uc as an as-yet-unknown
function of x: uc will have to increase with x, since the flow accelerates
as it rises. We know three boundary conditions for u:

• u(y = 0) = 0
{︃

we have already satisfied this condition by
writing eqn. (8.17) with no lead constant

• u(y = δ) = 0 or 0 = (1+ c + d)

• ∂u
∂y

⃓⃓⃓⃓
⃓
y=δ

= 0 or 0 = uc(1+ 2c + 3d)
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These conditions give c = −2 and d = 1, so

u
uc(x)

= y
δ

(︃
1− y

δ

)︃2

(8.18)

We could also have written the momentum equation (8.8) at the wall,
where u = v = 0, and created a fourth condition:

∂2u
∂y2

⃓⃓⃓⃓
⃓
y=0

= −gβ(Tw − T∞)
ν

Then we could have evaluated uc(x) as gβ(Tw − T∞)δ2
/︁
4ν. A correct

expression for uc will eventually depend upon these variables, but we will
not attempt to make uc fit this particular condition. Doing so would yield
two equations, (8.14) and (6.47), in a single unknown, δ(x). It would be
impossible to satisfy both of them. Instead, we allow the velocity profile
to violate this condition slightly by writing

uc(x) = C1
gβ(Tw − T∞)

ν
δ2(x) (8.19)

Then we solve the two integrated conservation equations for the two
unknowns, C1 (which we expect will be close to ¼) and δ(x).

The dimensionless temperature and velocity profiles are plotted in
Fig. 8.4. With them are included Schmidt and Beckmann’s exact calcula-
tion for air (Pr = 0.7) from [8.4]. Notice that the approximation to the
temperature profile is better than the approximation to the velocity profile.
That is fortunate, since the temperature profile ultimately determines the
heat transfer rate.

Solution of momentum and energy equations. When we substitute
eqns. (8.16) and (8.18) in the momentum equation (8.14), using eqn. (8.19)
for uc(x), we get

C2
1

(︃
gβ(Tw − T∞)

ν

)︃2 d
dx

[︄
δ5
∫︂ 1

0

(︃
y
δ

)︃2(︃
1− y

δ

)︃4

d
(︃
y
δ

)︃
⏞ ⏟⏟ ⏞

=1/105

]︄

= −C1gβ(Tw − T∞)δ
∂

∂
(︁
y
/︁
δ
)︁[︄y
δ

(︃
1− y

δ

)︃2
]︄
y/δ=0⏞ ⏟⏟ ⏞

=1

+ gβ(Tw − T∞)δ
∫︂ 1

0

(︃
1− y

δ

)︃2

d
(︃
y
δ

)︃
⏞ ⏟⏟ ⏞

=1/3

(8.20)
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Figure 8.4 The temperature and velocity profiles for air in a
laminar convection b.l. (Pr = 0.7)

Equation (8.20) then becomes(︃
1

21
C2

1
gβ(Tw − T∞)

ν2

)︃
δ3 dδ
dx

= 1
3
− C1

or
dδ4

dx
= 84

(︃
1
3
− C1

)︃(︃
C2

1
gβ(Tw − T∞)

ν2

)︃−1

Integrating this with the b.c. δ(0) = 0, gives

δ4 = 84
(︃

1
3
− C1

)︃(︃
C2

1
gβ(Tw − T∞)

ν2

)︃−1

x (8.21)

Substituting eqns. (8.16), (8.18), and (8.19) in eqn. (6.47) likewise gives

(Tw − T∞)C1
gβ(Tw − T∞)

ν
d
dx

[︄
δ3
∫︂ 1

0

y
δ

(︃
1− y

δ

)︃4

d
(︃
y
δ

)︃
⏞ ⏟⏟ ⏞

=1/30

]︄

= −α Tw − T∞
δ

d
d(y/δ)

[︄(︃
1− y

δ

)︃2
]︄
y/δ=0⏞ ⏟⏟ ⏞

=−2
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or

3
C1

30
δ3 dδ
dx

= C1

40
dδ4

dx
= 2

(︃
Pr
gβ(Tw − T∞)

ν2

)︃−1

Integrating this with the b.c. δ(0) = 0, we get

δ4 = 80
(︃
C1Pr

gβ(Tw − T∞)
ν2

)︃−1

x (8.22)

By equating eqns. (8.21) and (8.22) for δ4, we may solve for C1:

C1 =
Pr

3
(︃

20
21
+ Pr

)︃ (8.23)

Then, from eqn. (8.22):

δ4 = 240
(︃

20
21
+ Pr

)︃(︃
Pr2gβ(Tw − T∞)

ν2

)︃−1

x

or
δ
x
= 3.936

(︃
0.952+ Pr

Pr2

)︃1/4 1

Gr1/4
x

(8.24)

Equation (8.24) can be combined with the known temperature profile,
eqn. (8.16), and substituted in Fourier’s law to find q:

q = −k ∂T
∂y

⃓⃓⃓⃓
⃓
y=0

= −k(Tw − T∞)
δ

d
(︃
T − T∞
Tw − T∞

)︃
d
(︃
y
δ

)︃
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
y/δ=0⏞ ⏟⏟ ⏞

=−2

= 2
k∆T
δ

(8.25)

so, writing h = q
/︁
(Tw − T∞) ≡ q/∆T , we obtain5

Nux ≡
qx
∆Tk

= 2
x
δ
= 2

3.936
(PrGrx)1/4

(︃
Pr

0.952+ Pr

)︃1/4

or

Nux = 0.508 Ra1/4
x

(︃
Pr

0.952+ Pr

)︃1/4
(8.26)

This result is the Squire-Eckert equation for the local heat transfer from
a vertical isothermal wall during laminar natural convection. The result
holds true for either Tw > T∞ or Tw < T∞.

5Recall that, on page 419, we speculated that Nu would vary as Gr1/4. Indeed, it does!



§8.3 Laminar natural convection on a vertical isothermal surface 427

The average heat transfer coefficient can be obtained from

h =

∫︂ L
0
q(x)dx

L∆T
=

∫︂ L
0
h(x)dx

L
Thus,

NuL =
hL
k
= 1
k

∫︂ L
0

k
x

Nux dx =
4
3

Nux

⃓⃓⃓⃓
x=L

or

NuL = 0.678 Ra1/4
L

(︃
Pr

0.952+ Pr

)︃1/4
(8.27)

The Squire-Eckert equation lies within 1.2% of the Churchill-Chu correla-
tion for large RaL and Pr, and it differs by only 5.5% if the fluid is a gas
with RaL > 105. Typical RaL values are much higher than this, so the
Squire-Eckert prediction is actually quite accurate in most cases of inter-
est. The prediction fails at low Pr; and it is limited to laminar conditions,
RaL ❲ 109. Properties should be evaluated as described on page 420.

Example 8.3

A thin-walled metal tank containing fluid at 40◦C cools in air at 14◦C;
h is very large inside the tank. If the sides are 0.40 m high, compute
h, q, and δ at the top. Use the Squire-Eckert analysis to determine
whether the b.l. assumptions are reasonable. Omit thermal radiation.

Solution. All properties are evaluated at Tf = 27◦C. Thus,

βair = 1
/︁
Tf = 1

/︁
(273+ 27) = 0.00333 K−1

RaL =
gβ∆TL3

να
= 9.8(0.00333)(40− 14)(0.4)3(︁

1.578× 10−5
)︁ (︁

2.213× 10−5
)︁ = 1.555× 108

This corresponds to laminar flow. We may use eqn. (8.27), or eqn. (8.13a),
with Pr = 0.713

NuL = 0.678
(︂
1.555× 108

)︂1/4
(︃

0.713
0.952+ 0.713

)︃1/4
= 61.25

so

h = 61.25(0.02623)
0.40

= 4.02 W/m2K

and
q = h∆T = 4.02(40− 14) = 104 W/m2
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The b.l. thickness at the top of the tank is given by eqn. (8.24) at x = L:

δ
L
= 3.936

(︃
0.952+ 0.713

0.7132

)︃1/4 1(︁
RaL

/︁
Pr
)︁1/4 = 0.0431

Thus, the b.l. thickness at the end of the plate is only 4% of the
height, or 1.7 cm thick. This thickness exceeds typical forced convec-
tion b.l.’s, but it is still quite thin.

Note on the validity of the boundary layer approximations

The boundary layer approximations are sometimes put to a rather se-
vere test in natural convection problems. Thermal b.l. thicknesses are
often fairly large, and the usual analyses that take the b.l. to be thin can
be significantly in error. This is particularly true as Gr becomes small.
Figure 8.5 includes three pictures that illustrate this. These pictures are
interferograms (or in the case of Fig. 8.5c, data deduced from an inter-
ferogram). An interferogram is a photograph made in a kind of lighting
that causes regions of uniform density to appear as alternating light and
dark bands.

Figure 8.5a was made at the University of Kentucky by G.S. Wang and
R. Eichhorn. The Grashof number based on the radius of the leading
edge is 2250 in this case. This is low enough to result in a b.l. that is
larger than the radius near the leading edge. Figure 8.5b and c are from
Kraus’s classic study of natural convection visualization methods [8.7].
Figure 8.5c shows that, at Gr = 585, the b.l. assumptions are quite unrea-
sonable since the cylinder is small in comparison with the large region
of thermal disturbance.

The analysis of free convection becomes a far more complicated prob-
lem at low Gr’s, since the b.l. equations can no longer be used. We shall not
discuss any of the numerical solutions of the full Navier-Stokes equations
that have been carried out in this regime. We shall instead note that
correlations of data using functional equations of the form

Nu = fn(Ra,Pr)

will be the first thing that we resort to in such cases. Indeed, Fig. 8.3 reveals
that Churchill and Chu’s equation (8.13a) already serves this purpose in
the case of the vertical isothermal plate, at low values of Ra ≡ Gr Pr.



a. A 1.34 cm wide flat plate with a rounded leading edge
in air. Tw = 46.5◦C, ∆T = 17.0◦C, Grradius ≃ 2250

b. A square cylinder with a fairly low value
of Gr. (Rendering of an interferogram shown
in [8.7].)

c. Measured isotherms around a cylinder in air
when GrD ≈ 585 (from [8.7]).

Figure 8.5 The thickening of the b.l. during natural convec-
tion at low Gr, as illustrated by interferograms made on
two-dimensional bodies. (The dark lines in the pictures are
isotherms.) 429
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Figure 8.6 The data of many investigators for heat transfer
from isothermal horizontal cylinders during natural convection,
as correlated by Churchill and Chu [8.8].

8.4 Natural convection in other situations

Natural convection from horizontal isothermal cylinders

Churchill and Chu [8.8] provide yet another comprehensive correlation of
existing data for the case of natural convection from horizontal isothermal
cylinders. An equation with the same form as eqn. (8.13a) applies. Data
from a variety of sources, over about 24 orders of magnitude of the
Rayleigh number based on the diameter, RaD, are shown in Fig. 8.6,
together with the fitted result:

NuD = 0.36+ 0.518 Ra1/4
D[︁

1+ (0.559/Pr)9/16
]︁4/9 (8.28)

Churchill and Chu recommend that eqn. (8.28) be used in the range
10−6 ⩽ RaD ⩽ 109.

When RaD is greater than 109, the flow becomes turbulent. The fol-
lowing equation is a little more complex, but it gives comparable accuracy
over a larger range:

NuD =

⎧⎪⎨⎪⎩0.60+ 0.387

⎡⎣ RaD[︁
1+ (0.559/Pr)9/16

]︁16/9

⎤⎦1/6
⎫⎪⎬⎪⎭

2

(8.29)
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The recommended range of applicability of eqn. (8.29) is

10−6 ⩽ RaD

Example 8.4

Space vehicles are subject to a “g-jitter,” or background variation
of acceleration, on the order of 10−6 or 10−5 earth gravities. Brief
periods of gravity up to 10−4 or 10−2 earth gravities can be exerted by
accelerating the whole vehicle. A certain line carrying hot oil through
air is 5 mm in diameter and at 127◦C. How does the heat loss by
natural convection vary with g-level if T∞ = 27◦C in the air around
the tube?

Solution. The film temperature is 350 K. We evaluate properties
at this temperature and write g as ge× (g-level), where ge is g at the
earth’s surface and the g-level is the fraction of ge in the space vehicle.
With β = 1/Tf for an ideal gas

RaD =
gβ∆T D3

να
=

9.8
(︃

127− 27
350

)︃
(0.005)3

(2.073× 10−5)(2.93× 10−5)
(︁
g-level

)︁
= (576.2)

(︁
g-level

)︁
From eqn. (8.29), with Pr = 0.707, we compute

NuD =

⎧⎨⎩0.6+ 0.387

[︄
576.2[︁

1+ (0.559/0.707)9/16
]︁16/9

]︄1/6

⏞ ⏟⏟ ⏞
=0.926

(g-level)1/6
⎫⎬⎭

2

(8.30)
so

g-level NuD h = NuD

(︃
0.0297
0.005

)︃
Q = πDh∆T

10−6 0.480 2.85 W/m2K 4.47 W/m of tube
10−5 0.542 3.22 W/m2K 5.06 W/m of tube
10−4 0.639 3.80 W/m2K 5.97 W/m of tube
10−2 1.061 6.30 W/m2K 9.90 W/m of tube

The numbers in the rightmost column are quite low. Convective
cooling is extremely inefficient at these low gravities.
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Figure 8.7 Corrections for h and h on vertical isothermal plates
to adapt them to vertical isothermal cylinders [8.9].

Natural convection from vertical cylinders

The heat transfer from the wall of a cylinder with its axis running vertically
is the same as that from a vertical plate, as long as the thermal b.l. is
thin. However, if the b.l. is thick, as is indicated in Fig. 8.7, heat transfer
will be enhanced by the curvature of the thermal b.l. This correction was
first considered some years ago by Sparrow and Gregg, and the analysis
was subsequently extended with the help of more powerful numerical
methods by Cebeci [8.9].

Figure 8.7 includes the corrections to the vertical plate results that
were calculated for many Pr’s by Cebeci. The left-hand graph gives a
correction that must be multiplied by the local flat-plate Nusselt number
to get the vertical cylinder result. Notice that the correction increases
when the Grashof number decreases. The right-hand curve gives a similar
correction for the overall Nusselt number on a cylinder of height L. Notice
that in either situation, the correction for all but liquid metals is less than
10% if (x or L)/R < 0.08 Gr1/4

x or L.
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Heat transfer from general submerged bodies

Spheres. The sphere is interesting because the value of NuD as RaD → 0
is clearly defined. We look first at this limit.

Buoyancy forces may approach zero by virtue of small diameter, low
gravity, very high viscosity, or a very low thermal expansion coefficient.
In this situation, heated fluid will no longer be convected away: only
conduction will serve to remove heat. Using shape factor number 4 in
Table 5.4 (S = 4πR), we may compute

lim
RaD→0

NuD =
Q
A∆T

D
k
= S k∆T D
πD2 k∆T

= 4π(D/2)
πD

= 2 (8.31)

Every proper correlation of data for heat transfer from spheres there-
fore has a lead constant of 2.6 A typical example is that of Yuge [8.10]
for spheres immersed in gases:

NuD = 2+ 0.43 Ra1/4
D , RaD < 105 (8.32)

A more complex expression [8.11] encompasses other Prandtl numbers:

NuD = 2+ 0.589 Ra1/4
D[︁

1+ (0.492/Pr)9/16
]︁4/9 RaD < 1012 (8.33)

This result has an estimated uncertainty of 5% in air and an rms error of
about 10% at higher Prandtl numbers.

Rough estimate of Nu for other bodies. In 1973 Lienhard [8.12] noted
that, for laminar convection in which the b.l. does not separate, the
expression

Nuτ ≃ 0.52 Ra1/4
τ (8.34)

would predict heat transfer from any submerged body within about 10%
if Pr is not ≪ 1. The characteristic dimension in eqn. (8.34) is the length
that fluid travels in the unseparated b.l., τ .

6Although NuD for spheres approaches a limiting value at small RaD , no such limit
exists for cylinders or vertical surfaces because steady state conduction is not possible
for infinite cylinders or planes in an infinite medium. The constants in eqns. (8.13a)
and (8.28) are not valid at extremely low values of RaD .
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In the case of spheres without separation, for example, τ = πD/2, the
distance from the bottom to the top around the circumference. Thus, for
spheres, eqn. (8.34) becomes

hπD
2k

= 0.52

[︄
gβ∆T(πD/2)3

να

]︄1/4

or
hD
k
= 0.52

(︃
2
π

)︃(︃
π
2

)︃3/4
[︄
gβ∆TD3

να

]︄1/4

or
NuD = 0.464 Ra1/4

D

This is within 8% of Yuge’s correlation if RaD remains fairly large.

Laminar heat transfer from inclined and horizontal plates

In 1953, Rich [8.13] showed that heat transfer from inclined plates could
be predicted by vertical plate formulas if the component of the gravity
vector along the surface of the plate was used in the calculation of the
Grashof number. Thus, g is replaced by g cosθ, where θ is the angle of
inclination measured from the vertical, as shown in Fig. 8.8. The heat
transfer rate therefore decreases as (cosθ)1/4.

Subsequent studies have shown that Rich’s result is substantially
correct for the lower surface of a heated plate or the upper surface of a
cooled plate. For the upper surface of a heated plate or the lower surface
of a cooled plate, the boundary layer becomes unstable and separates at
a relatively low value of Gr. Experimental observations of such instability
have been reported by many authors [8.14–8.17].

In the limit θ = 90◦—a horizontal plate—the fluid flow above a hot
plate or below a cold plate must form one or more plumes, as shown in
Figs. 8.8c and d. In such cases, the b.l. is unstable for all but small Rayleigh
numbers, and even then a plume must leave the center of the plate. The
unstable cases can only be represented by empirical correlations.

Theoretical considerations, and experiments, show that the Nusselt
number for stable laminar b.l.s on horizontal and slightly inclined plates
varies as Ra1/5 [8.18, 8.19]. For the unstable cases, when the Rayleigh
number exceeds 104 or so, the experimental variation is as Ra1/4 until
the flow becomes fully turbulent for Rayleigh numbers above about 107.
Beyond this range, experiments show a Ra1/3 variation of the Nusselt
number [8.20, 8.21]. In the latter case, both NuL and Ra1/3

L are proportional
to L, so the heat transfer coefficient is independent of L. Moreover, the
flow field in these situations is driven mainly by the component of gravity
normal to the plate.
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Figure 8.8 Natural convection b.l.’s on some inclined and hori-
zontal surfaces. The b.l. separation, shown here for the unstable
cases in (a) and (b), occurs only at sufficiently large values of Gr.

Unstable Cases: For the lower side of cold plates and the upper side
of hot plates, the boundary layer becomes increasingly unstable as Ra is
increased. The prediction of Nu depends on the specific case.

• For plate inclinations θ ❲ 45◦ and 105 ⩽ RaL ⩽ 109, replace g with
g cosθ in eqn. (8.13a).

• For horizontal plates with RaL ⩾ 107, nearly identical results have
been obtained by many investigators. From these results, Raithby
and Hollands propose [8.11]:

NuL = 0.14 Ra1/3
L

(︃
1+ 0.0107 Pr
1+ 0.01 Pr

)︃
, 0.024 ⩽ Pr ⩽ 2000 (8.35)
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This formula is consistent with available data up to RaL = 2× 1011,
and probably goes higher. As noted before, the choice of length scale
L is immaterial. Fujii and Imura’s results support using eqn. (8.35)
for 60◦ ⩽ θ ⩽ 90◦ with g in the Rayleigh number.

For high Ra in gases, temperature differences and variable properties
effects can be large. From experiments on upward facing plates,
Clausing and Berton [8.21] suggest evaluating all gas properties at a
reference temperature, in kelvin, of

Tref = Tw − 0.83 (Tw − T∞) for 1 ⩽ Tw/T∞ ⩽ 3. (8.36)

• For horizontal plates of area A and perimeter P at lower Rayleigh
numbers, Raithby and Hollands suggest [8.11]

NuL∗ =
0.560 Ra1/4

L∗[︁
1+ (0.492/Pr)9/16

]︁4/9 (8.37a)

where, following Lloyd and Moran [8.20], a characteristic length
scale L∗ = A/P , is used in the Rayleigh and Nusselt numbers. If
NuL∗ ❲ 10, the b.l.s will be thick, and the result should be corrected
as follows:

Nucorrected =
1.4

ln
(︁
1+ 1.4

/︁
NuL∗

)︁ (8.37b)

These equations are recommended for 1 < RaL∗ < 107.

• In general, for inclined plates in the unstable cases, Raithby and
Hollands [8.11] recommend that the heat flow be computed first
using the formula for a vertical plate with g cosθ, then computed
using the formula for a horizontal plate with g sinθ (i.e., for the
component of gravity normal to the plate), and that the larger value
of the heat flow be taken.

Stable Cases: For the upper side of cold plates and the lower side of
hot plates, the flow is generally stable. The following results assume that
the flow is not obstructed at the edges of the plate. If edge circulation is
blocked by an adiabatic wall, for example, h will be lower [8.22, 8.23].

• For θ < 88◦ and 105 ⩽ RaL ⩽ 1011, eqn. (8.13a) is still valid for the
upper side of cold plates and the lower side of hot plates when g is
replaced with g cosθ in the Rayleigh number [8.14].
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• For downward-facing hot plates and upward-facing cold plates of
width L with very slight inclinations, Fujii and Imura give:

NuL = 0.58 Ra1/5
L (8.38)

This equation is valid for 106 ⩽ RaL < 109 if 87◦ ⩽ θ ⩽ 90◦ and
continues for 109 ⩽ RaL < 1011 if 89◦ ⩽ θ ⩽ 90◦. Here, RaL is based
on g (not g cosθ). Fujii and Imura’s results are for two-dimensional
plates—ones in which infinite breadth has been approximated by
suppression of end effects.

For circular plates of diameter D in the stable horizontal configura-
tions, the data of Kadambi and Drake [8.24] suggest that

NuD = 0.82 Ra1/5
D Pr0.034 (8.39)

Natural convection with uniform heat flux

When qw is specified instead of∆T ≡ (Tw−T∞),∆T becomes the unknown
dependent variable. Because h ≡ qw/∆T , the dependent variable appears
in the Nusselt number; however, for natural convection, it also appears
in the Rayleigh number. Thus, the situation is more complicated than in
forced convection.

Since Nu often varies as Ra1/4, we may write

Nux =
qw
∆T

x
k
∝ Ra1/4

x ∝ ∆T 1/4x3/4

The relationship between x and ∆T is then

∆T = C x1/5 (8.40)

where the constant of proportionality C involves qw and the relevant
physical properties. The average of ∆T over a heater of length L is

∆T = 1
L

∫︂ L
0
C x1/5 dx = 5

6
C (8.41)

We plot ∆T/C against x/L in Fig. 8.9. Here, ∆T and ∆T(x/L = 0.5) are
within 4% of each other. This observation suggests that, if we are interested
in average values of ∆T , we can use ∆T evaluated at the midpoint of the
plate in RaL and in NuL = qwL/k∆T . Churchill and Chu, for example,
show that their vertical plate correlation, eqn. (8.13a), represents data for
constant qw exceptionally well in the range RaL > 1 when RaL is based
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Figure 8.9 The mean value of ∆T ≡ Tw − T∞ during natural
convection.

on ∆T at the middle of the plate. This approach eliminates the variation
of ∆T with x from the calculation, but the temperature difference at the
middle of the plate must still be found by iteration.

To avoid iterating, we need to eliminate ∆T from the Rayleigh number.
We can do this by introducing a modified Rayleigh number, Ra∗x , defined as

Ra∗x ≡ RaxNux ≡
gβ∆Tx3

να
qwx
∆Tk

= gβqwx
4

kνα
(8.42)

For example, in eqn. (8.13a), we replace RaL with Ra∗L
/︁
NuL. The result is

NuL = 0.68+ 0.67
(︁
Ra∗L

)︁1/4

Nu
1/4
L

[︂
1+ (0.492/Pr)9/16

]︂4/9

which may be rearranged as

Nu
1/4
L
(︁

NuL − 0.68
)︁
= 0.67

(︁
Ra∗L

)︁1/4[︁
1+ (0.492/Pr)9/16

]︁4/9 (8.43a)

When NuL ❳ 5, the term 0.68 may be neglected, with the result

NuL =
0.73

(︁
Ra∗L

)︁1/5[︁
1+ (0.492/Pr)9/16

]︁16/45 (8.43b)
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Raithby and Hollands [8.11] give the following, somewhat simpler corre-
lations for laminar natural convection from vertical plates with a uniform
wall heat flux:

Nux = 0.630

(︄
Ra∗x Pr

4+ 9
√

Pr+ 10 Pr

)︄1/5

(8.44a)

NuL =
6
5

(︄
Ra∗L Pr

4+ 9
√

Pr+ 10 Pr

)︄1/5

(8.44b)

These equations apply for all Pr and for Nu ❳ 5. Equations for lower Nu
or Ra∗ are given in [8.11].

Example 8.5

A horizontal circular disk heater of diameter 0.17 m faces downward
in air at 27◦C. The disk is polished aluminum with ε = 0.05. If it
delivers 15 W, estimate its average surface temperature.

Solution. We have no formula for this specific situation, but we may
improvise by following the lead of Churchill and Chu—we replace RaD
with Ra∗D/NuD in eqn. (8.39) for downward facing isothermal disks:

(︁
NuD

)︁6/5 =
(︃
qwD
∆Tk

)︃6/5
= 0.82

(︁
Ra∗D

)︁1/5 Pr0.034

We start by neglecting radiation, so qw = 15/(πR2) = 661 W/m2, and
evaluating all properties at T∞. Then

∆T = 1.18
(︁
qwD

/︁
k
)︁(︄

gβqwD4

kνα

)︄1/6

Pr0.028

=

(︃
(1.18)(661)(0.17)

0.02623

)︃
[︄

9.8(661)(0.17)4

300(0.02623)(1.578)(2.213)10−10

]︄1/6

(0.713)0.028

= 144 K

The radiation heat transfer coefficient may be calculated at Tm =
(27+ 144/2+ 273) = 372 K, so hrad = 4(0.05)(5.67× 10−8)(372)3 =
0.584 W/m2K. The radiation heat flux is 0.584(144) = 84 W/m2.
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Now we must return the calculation, reevaluating all properties at
Tf = 27+ (144/2) = 99◦C, and reducing qw to 661− 84 = 577 W/m2:

∆T corrected =

(︃
(1.18)(577)(0.17)

0.03136

)︃
[︄

9.8(577)(0.17)4

(372)(0.03136)(2.315)(3.281)10−10

]︄1/6

(0.706)0.028

= 131 K

The surface temperature is 27+ 126 = 158◦C. An additional iteration
changes ∆T by only about 2%.

The disk is rather hot. While we are uncertain as to the exact
temperature, since our formula was improvised, the cooling process
is clearly ineffective in this case.

Some other natural convection problems

We have clearly moved into the realm of handbook information at this
point. And it would be beyond the scope of this book to go much further.
Still, two matters deserve at least qualitative mention. They are:

Natural convection in enclosures. When a natural convection process
occurs within a confined space, the heated fluid buoys up and then follows
the contours of the container, releasing heat and in some way returning
to the hotter surface. This recirculating convection process normally in-
creases heat transfer above that which would occur by conduction through
the stationary fluid. Natural convection like this is common in buildings
(as in rooms, attics, multiply glazed windows, and uninsulated walls), in
hot or cold liquid storage systems, and in crystal growth and solidification
processes. Survey articles on natural convection in enclosures have been
written by Yang [8.25], Raithby and Hollands [8.11], and Catton [8.26].

Combined natural and forced convection. When forced convection
along, say, a vertical wall occurs at a relatively low velocity but at a
relatively high heating rate, the resulting density changes can give rise
to a superimposed natural convection process. We saw on page 419
that Gr1/2

L plays the role of a natural convection Reynolds number. It
follows that we can estimate the relative importance of natural and forced
convection by considering the ratio

GrL
Re2

L
= strength of natural convection flow

strength of forced convection flow
(8.45)
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where ReL is for the forced flow parallel to the wall. If this ratio is small
compared to one, the flow is essentially driven by forced convection,
whereas if it is much larger than one, we have natural convection. When
GrL

/︁
Re2

L is on the order of one, we have a mixed convection process. Both
buoyant and forced flow contribute to heat transfer.

Of course, the relative orientation of the forced flow and the natural
convection flow matters. For example, compare cool air flowing downward
past a hot wall to cool air flowing upward along a hot wall. The former
situation is called opposing flow and the latter is called assisting flow.
Opposing flow may lead to boundary layer separation and degraded heat
transfer. For further information, see [8.27–8.29].

8.5 Film condensation

Dimensional analysis and experimental data

We now return to the problem of film condensation, recalling our discus-
sion in Section 8.2. The dimensional functional equation for h (or h) in
film condensation can be written as7

h or h = fn
[︁
g
(︁
ρf − ρg

)︁
, ν, k, (Tsat − Tw), hfg, ρf , cp, L or x

]︁
(8.46)

Many of these variables appear in the differential equations (8.5) and
(6.40), but others arise through the boundary conditions. The b.c.s carry
the thermal conductivity, k, and the temperature difference. The latent
heat of vaporization, hfg , and liquid density, ρf , strongly affect δ, which
appears in the b.c.’s, eqn. (8.6b). The film thickness, δ, also depends
slightly on the sensible heat, cp∆T , since the liquid film must be cooler
than Tsat. Notice, too, that g(ρf − ρg) is included as a product because
gravity enters the problem only as it acts upon the density difference.

The problem is therefore expressed in nine variables which have the
units J, kg, m, s, and K, since no heat is converted into work, or work into
heat, in this situation. So, we look for 9− 5 = 4 pi-groups. The ones we
choose are

Π1 = NuL ≡
hL
k

Π2 = Pr ≡ ν
α

(8.47)

Π3 = Ja ≡ cp(Tsat − Tw)
hfg

Π4 ≡
g
(︁
ρf − ρg

)︁
hfgL3

νk(Tsat − Tw)
(8.48)

7Note that, throughout this section, k, µ, cp , and Pr refer to properties of the liquid,
rather than the vapor.
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Two of these groups are new to us. The group Π3 is called the Jakob
number, Ja, to honor Max Jakob’s pioneering work on problems of phase
change during the 1930s. The Jakob number compares the maximum
sensible heat absorbed by the liquid to the latent heat absorbed. The
group Π4 does not normally bear anyone’s name, but, if it were multiplied
by Ja, it could be regarded as a Rayleigh number for the condensate film.

Notice that if we condensed water at 1 atm on a wall 10◦C below
Tsat, then Ja would equal 4.21(10/2257) = 0.0183. Although 10◦C is a
fairly large temperature difference in a condensation process, it gives
a maximum sensible heat that is less than 2% of the latent heat. The
Jakob number is accordingly small in most cases of practical interest and
sensible heat can often be neglected. The same is true of the role of the
Prandtl number. Therefore, during film condensation

NuL = fn

⎛⎝ g(︁ρf − ρg)︁hfgL3

νk(Tsat − Tw)⏞ ⏟⏟ ⏞

primary independent variable, Π4

,Pr, Ja⏞ ⏟⏟ ⏞
secondary independent
variables

⎞⎠ (8.49)

Equation (8.49) is not restricted to any geometrical configuration,
since the same variables govern h during film condensation on any body.
Figure 8.10, for example, shows laminar film condensation data given for
spheres by Dhir8 [8.30]. They have been correlated according to eqn. (8.49).
The data are for only one value of Pr but for a range of Π4 and Ja. They
generally correlate well within ±10%, despite a broad variation of the
not-very-influential variable, Ja. The predictive curve shown in Fig. 8.10 is
discussed later in this section.

Laminar film condensation on a vertical plate

Consider the following feature of film condensation. The latent heat of
a liquid is normally a very large number. Therefore, even a high rate
of heat transfer will typically result in only very thin films. These films
move relatively slowly, so it is safe to neglect the inertia terms in the

8Vijay K. Dhir very kindly recalculated his data into the form shown in Fig. 8.10 for
use here.
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Figure 8.10 Correlation of Dhir’s data [8.30] for laminar film
condensation on spheres at one value of Pr and a range of Π4

and Ja, with properties evaluated at (Tsat + Tw)/2. Analytical
prediction is from [8.31].

momentum equation (8.5):

u
∂u
∂x

+ v ∂u
∂y⏞ ⏟⏟ ⏞

≃0

=
(︄

1− ρg
ρf

)︄
g + ν ∂

2u
∂y2⏞ ⏟⏟ ⏞

≃ν d2u
/︁
dy2

This result will give u = u(y,δ) when it is integrated, where δ is the
local b.l. thickness. We recognize that δ = δ(x), so that u is not strictly
dependent on y alone. However, the y-dependence is predominant, so
that the momentum equation can be approximated as an o.d.e.

d2u
dy2

= −
ρf − ρg
ρf

g
ν

(8.50)

This simplification was made by Nusselt in 1916 when he set down
the original analysis of film condensation [8.32]. On the same basis, he
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also eliminated the convective terms from the energy equation (6.40):

u
∂T
∂x

+ v ∂T
∂y⏞ ⏟⏟ ⏞

≃0

= α ∂
2T
∂y2

The integration of eqn. (8.50) subject to the b.c.’s

u
(︁
y = 0

)︁
= 0 and

∂u
∂y

⃓⃓⃓⃓
⃓
y=δ

= 0

gives the parabolic velocity profile:

u =
(︁
ρf − ρg

)︁
gδ2

2ρfν

[︄
2
(︃
y
δ

)︃
−
(︃
y
δ

)︃2
]︄

(8.51)

And integration of the energy equation subject to the b.c.’s

T
(︁
y = 0

)︁
= Tw and T

(︁
y = δ

)︁
= Tsat

gives the linear temperature profile:

T = Tw + (Tsat − Tw)
y
δ

(8.52)

To complete the analysis, we must calculate δ. We can do this in two
steps. First, we express the mass flow rate per unit width of film, ṁ, in
terms of δ, with the help of eqn. (8.51):

ṁ =
∫︂ δ

0
ρfudy =

g
(︁
ρf − ρg

)︁
3ν

δ3 (8.53)

Second, we neglect the sensible heat absorbed in cooling the interior of
the film below Tsat and express the local heat flux in terms of the rate of
change of ṁ (see Fig. 8.11):

⃓⃓
q
⃓⃓
= k ∂T

∂y

⃓⃓⃓⃓
⃓
y=0

= k Tsat − Tw
δ

= hfg
dṁ
dx

(8.54)

Substituting eqn. (8.53) into eqn. (8.54), we obtain a first-order differ-
ential equation for δ:

k
Tsat − Tw

δ
=
hfgg

(︁
ρf − ρg

)︁
ν

δ2 dδ
dx

(8.55)
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Figure 8.11 Heat and mass flow in an element of a condensing film.

This o.d.e. can be integrated directly, subject to the b.c. δ(0) = 0:

δ =
[︄

4νk(Tsat − Tw)x
g
(︁
ρf − ρg

)︁
hfg

]︄1/4

(8.56)

Both Nusselt and, subsequently, Rohsenow [8.33] suggested replacing
hfg with a corrected value, h′fg , which would account for subcooling of the
liquid film through a dependence on Ja. We will give an expression for this
correction below. For the moment, we simply write this yet-to-be-provided
h′fg in place of hfg in the equations that follow.

Finally, we calculate the heat transfer coefficient

h ≡ q
Tsat − Tw

= 1
Tsat − Tw

[︃
k(Tsat − Tw)

δ

]︃
= k
δ

(8.57)

so

Nux =
hx
k
= x
δ

(8.58)

Thus, we substitute eqn. (8.56) into eqn. (8.58) and get

Nux = 0.707

⎡⎣g(︁ρf − ρg)︁h′fgx3

νk(Tsat − Tw)

⎤⎦1/4

(8.59)
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This equation carries the functional dependence that we anticipated
in eqn. (8.49):

Nux = fn
(︂
Π4⏞⏟⏟⏞

this is clearly the dominant variable

, Ja⏞⏟⏟⏞

this is carried implicitly in h′fg

, Pr⏞⏟⏟⏞
eliminated in so far as we
neglected convective terms
in the energy equation

)︂

The liquid properties in Π4, Ja, and Pr (with the exception of hfg) are
to be evaluated at the mean film temperature. However, if Tsat − Tw is
small—and it often is—one might approximate them at Tsat.

At this point we should ask how great are the missing influences of
Pr and Ja and what degree of approximation is involved in representing
the influence of Ja through h′fg. Sparrow and Gregg [8.34] answered
these questions with a complete b.l. analysis of film condensation. They
did not introduce Ja in a corrected latent heat but instead showed its
effect directly.

Figure 8.12 displays two figures from the Sparrow and Gregg paper.
The first shows heat transfer results plotted in the form

Nux
4
√︁
Π4

= fn(Ja,Pr) ⎯→ 1 as Ja ⎯→ 0 (8.60)

Notice that the calculation approaches Nusselt’s simple result for all
Pr as Ja → 0. It also approaches Nusselt’s result, even for fairly large
values of Ja, if Pr is not much smaller than one. The second figure shows
how the temperature deviates from the linear profile that we assumed to
exist in the film in developing eqn. (8.52). Since a Jakob number of 0.02
is about as large as normally occurs in laminar condensation, the linear
temperature profile is a very sound assumption for nonmetallic liquids.

Sadasivan and Lienhard [8.35] have shown that the Sparrow-Gregg
formulation can be expressed with high accuracy, for Pr ⩾ 0.6, by including
Pr in the latent heat correction:

h′fg = hfg
[︁
1+

(︁
0.683− 0.228

/︁
Pr
)︁
Ja
]︁

(8.61)

This equation may be used in eqn. (8.59) and in the relevant equations
below. (For Pr → ∞, eqn. (8.61) matches Rohsenow’s result [8.33].) In
many cases, the difference between hfg and h′fg is quite small.
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Figure 8.12 Results of the exact b.l. analysis of laminar film
condensation on a vertical plate [8.34].

The Sparrow and Gregg analysis proves that Nusselt’s analysis is quite
accurate for all Prandtl numbers above the liquid-metal range. High
Jakob numbers, for which Nusselt’s analysis requires some correction,
generally involve relatively thick films. And thick films are likely to
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become turbulent. Therefore the exact analysis is seldom applicable when
Ja is large.

The average heat transfer coefficient is calculated in the usual way for
Twall = constant:

h = 1
L

∫︂ L
0
h(x)dx = 4

3 h(L) (8.62a)

so

NuL = 0.9428

⎡⎣g(︁ρf − ρg)︁h′fgL3

νk(Tsat − Tw)

⎤⎦1/4

(8.62b)

Example 8.6

Water at atmospheric pressure condenses on a strip 30 cm high that
is held at 90◦C. Calculate the overall heat transfer per meter, the film
thickness at the bottom, and the condensate mass flow rate per meter.

Solution. Take liquid properties at 95◦C, but ρg and hfg at 100◦C.

δ =
⎡⎣4νk(Tsat − Tw)x
g
(︁
ρf − ρg

)︁
h′fg

⎤⎦1/4

where we have replaced hfg with h′fg :

h′fg = 2257
[︃

1+
(︃

0.683− 0.228
1.85

)︃
4.210(10)

2257

]︃
= 2281 kJ/kg

The small latent heat correction, raised to the ¼ power in calculating
δ, is clearly negligible.

δ =
[︄

4(3.091× 10−7)(0.6773)(10)x
(9.806)(961.9− 0.60)(2281× 103)

]︄1/4

= 0.000140x1/4

Then
δ(L) = 0.000104 m = 0.104 mm

Notice how thin the film is. Finally, we use eqns. (8.58) and (8.62a) to
compute

NuL =
4
3
L
δ
= 4(0.3)

3(0.000104)
= 3846

so

q = NuL k∆T
L

= 3846(0.6773)(10)
0.3

= 8.68× 104 W/m2
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(This flux would correspond to a heat flow of 86.8 kW on an area about
half the size of a desk top. Such a high heat removal with such a small
temperature difference is typical of film condensation. It is a very
efficient heat removal process.) Then

Q = (8.68× 104)(0.3) = 26,050 W/m = 26.1 kW/m

The rate of condensate flow, ṁ is

ṁ = Q
h′fg

= 26.1
2281

= 0.0114 kg/m·s

Condensation on other bodies

Nusselt also applied his prediction to bodies other than vertical plates.
However, without modern computers such predictions were limited to
only a few cases. In 1971 Dhir and Lienhard [8.31] showed how Nusselt’s
method could be readily extended to a large class of problems. They
showed that one need only to replace the gravity, g, with an effective
gravity, geff

geff ≡
x
(︁
gR

)︁4/3∫︂ x
0
g1/3R4/3 dx

(8.63)

in eqns. (8.56) and (8.59), to predict δ and Nux for a variety of bodies.
The terms in eqn. (8.63) are as follows (see Fig. 8.13).

• x is the distance along the film measured from the uppermost point.

• g = g(x) is the component of gravity (or other body force) along x;
g can vary from point to point, as it does in Fig. 8.13b and c.

• R(x) is a radius of curvature about the vertical axis. In Fig. 8.13a, R
is a constant that factors out of eqn. (8.63). In Fig. 8.13c, R is infinite.
Since R appears to the same power in both the numerator and the
denominator, it again can be factored out of eqn. (8.63). Only in
axisymmetric bodies, where R varies with x, need R be included.
When R can be factored out,

geff reduces to
xg4/3∫︂ x

0
g1/3 dx

(8.64)



Figure 8.13 Condensation on various bodies. g(x) is the com-
ponent of gravity or other body force in the x-direction.

450
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In subsequent equations, ge is the actual gravity away from the body. On
Earth’s surface, ge is earth-normal gravity. We introduce ge at this point
to distinguish it from g(x).

Example 8.7 Condensation on an inclined plate

Find Nux for laminar film condensation on the top of a flat surface
sloping at angle θ from vertical.

Solution. In this case g = ge cosθ and R = ∞. Therefore, eqn. (8.63)
or (8.64) reduces to

geff =
xg4/3

e (cosθ)4/3

g1/3
e (cosθ)1/3

∫︂ x
0
dx

= ge cosθ (8.65)

as we might expect. Then, for a slanting plate,

Nux = 0.707

⎡⎣(︁ge cosθ
)︁(︁
ρf − ρg

)︁
h′fgx

3

νk(Tsat − Tw)

⎤⎦1/4

(8.66)

Example 8.8 Condensation on a horizontal cylinder

Find the overall Nusselt number for a horizontal cylinder.

Solution. There is an important conceptual hurdle here. The ra-
dius R(x) is infinity, as shown in Fig. 8.13c—it is not the radius of
the cylinder. Using plane geometry, g(x) is easily shown to equal
ge sin(2x/D), where D is the diameter of the cylinder. Then

geff =
xg4/3

e (sin 2x/D)4/3

g1/3
e

∫︂ x
0
(sin 2x/D)1/3 dx

and, with h(x) from eqn. (8.59),

h = 2
πD

⌠⌡
πD/2

0

1√
2

k
x

⎡⎢⎢⎢⎣
(︁
ρf − ρg

)︁
h′fgx

3

νk(Tsat − Tw)
xge(sin 2x/D)4/3∫︂ x
0
(sin 2x/D)1/3 dx

⎤⎥⎥⎥⎦
1/4

dx
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This integral can be evaluated in terms of Gamma functions (see
Problem 8.57). The result, when it is put back in the form of a Nusselt
number, is

NuD = 0.728

⎡⎣ge(︁ρf − ρg)︁h′fgD3

νk (Tsat − Tw)

⎤⎦1/4

(8.67)

for a horizontal cylinder. (Nusselt got 0.725 for the lead constant, but
he approximated the integral using a hand calculation.)

This calculation has been applied to a number of additional cases.

Sphere of diameter D:

NuD = 0.828

⎡⎣ge(︁ρf − ρg)︁h′fgD3

νk(Tsat − Tw)

⎤⎦1/4

(8.68)

This result9 is the one compared to experimental data in Fig. 8.10.
Vertical cone with the apex on top, the bottom insulated, and a cone

angle of α◦:

Nux = 0.874
[︁
cos(α/2)

]︁1/4⎡⎣ge(︁ρf − ρg)︁h′fgx3

νk(Tsat − Tw)

⎤⎦1/4

(8.69)

Rotating horizontal disk10: In this case, g = ω2x, where x is the
distance from the center and ω is the speed of rotation. The Nusselt
number, based on L = (µ/ρfω)1/2, is

Nu = 0.9034

⎡⎣ν(︁ρf − ρg)︁h′fg
k(Tsat − Tw)

⎤⎦1/4

= constant (8.70)

This result might seem strange at first glance. It says that Nu ≠ fn(x or ω).
The reason is that δ just happens to be independent of x in this configu-
ration.

The Nusselt solution can thus be bent to fit many complicated ge-
ometric figures. One of the most complicated ones to have been dealt
with is the reflux condenser shown in Fig. 8.14. In such a configuration,

9There is an error in [8.31]: the constant given there is 0.785. The value of 0.828
given here is correct.

10This problem was originally solved by Sparrow and Gregg [8.36].
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Figure 8.14 Fully developed film condensation heat transfer
on a helical reflux condenser [8.37].

cooling water flows through a helically wound tube and vapor condenses
on the outside, running downward along the tube. As the condensate
flows, centripetal forces sling the liquid outward at a downward angle.
This complicated flow was analyzed by Karimi [8.37], who found that

Nu ≡ hd cosα
k

=
⎡⎣(︁ρf − ρg)︁ρfh′fgg(d cosα)3

µk∆T

⎤⎦1/4

fn
(︃
d
D
,B
)︃

(8.71)

where B is a centripetal parameter:

B ≡
ρf − ρg
ρf

cp∆T
h′fg

tan2α
Pr

and α is the helix angle (see Fig. 8.14). The function on the righthand side
of eqn. (8.71) is a complicated one that must be evaluated numerically.
Karimi’s result is plotted in Fig. 8.14.
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Laminar–turbulent transition

The mass flow rate of condensate per unit width of film, ṁ, is more com-
monly designated as Γc (kg/m · s). Its calculation in eqn. (8.53) involved
substituting eqn. (8.51) into

ṁ or Γc = ρf
∫︂ δ

0
udy

Equation (8.51) gives u(y) independently of any geometric features. The
geometry determines the local values of δ(x). Thus, the resulting equation
for the mass flow rate is still given by eqn. (8.53)

Γc =
(︁
ρf − ρg

)︁
gδ3

3ν
(8.53a)

This expression is valid for any location along any film, regardless of the
shape of the body. The specific configuration will lead to variations of
g(x) and δ(x), but eqn. (8.53a) still applies.

A useful Reynolds number may be defined in terms of Γc . This defini-
tion is easily set because Γc is equal to ρuavδ:

Rec =
ρuavδ
µ

= Γc
µ
=
ρf
(︁
ρf − ρg

)︁
gδ3

3µ2
(8.72)

This Reynolds number dictates the onset of film instability, just as Re
dictates the instability of a b.l. or of a pipe flow.11 When Rec ≊ 7, scallop-
shaped ripples become visible on the condensate film. When Rec reaches
about 400, a full-scale laminar-to-turbulent transition occurs.

Gregorig, Kern, and Turek [8.38] reviewed many data for the film
condensation of water and added their own measurements. Figure 8.15
shows these data in comparison with Nusselt’s theory, eqn. (8.62b). The
comparison is almost perfect up to Rec ≊ 7. The heat transfer rates then
begin to exceed the prediction. That increase is caused by ripples. The
effect is minor at first. But it increases to about 20% just before the full
laminar-to-turbulent transition occurs at Rec ≃ 400.

Above Rec = 400, NuL begins to rise with Rec . The Nusselt number
becomes dependent on the Prandtl number in the turbulent regime. There-
fore, one can use Fig. 8.15 directly, as a data correlation, to predict the
heat transfer coefficient for steam condensing at 1 atm. But for other
fluids with different Prandtl numbers, one should consult [8.39] or [8.40].

11Two Reynolds numbers are in use for film condensation: Γc/µ and 4Γc/µ. The latter
one, which is simply four times as large as the one we use, is more common in the
American literature and is based on the hydraulic diameter of the film (see Problem 8.54).
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Figure 8.15 Film condensation on vertical plates. Data are for
water with Pr = 2.2± 20% [8.38].

Two final issues in natural convection film condensation

• Condensation in tube bundles. Nusselt showed that if n horizontal
tubes are arrayed over one another, and if the condensate leaves each
one and flows directly onto the one below it without splashing, then

NuDfor n tubes =
NuD1 tube

na
(8.73)

Nusselt’s value was a = 1/4. However, a more detailed analysis and
later measurements suggest a = 1/6 [8.40]. (These analyses envision
the films flowing smoothly from one tube to another, which is rather
optimistic.) In addition, the effects of vapor shear stress on the
condensate and of pressure losses on the saturation temperature
are often important in tube bundles. These effects are discussed by
Rose et al. [8.40] and Marto [8.39].

• Condensation in the presence of noncondensable gases. When the
condensing vapor is mixed with noncondensable air, uncondensed
air must constantly diffuse away from the condensing film and vapor
must diffuse inward toward the film. This coupled diffusion process
can considerably slow condensation. The resulting h can easily be
cut by a factor of two if there is as little as 1% by mass of air mixed
into the steam [8.41]. For this reason, flow within condensers is
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designed to help sweep out noncondensable gases. The analysis of
noncondensable gases in condensation is a problem in mass transfer
(see Problem 11.42). The literature is discussed in [8.39, 8.40].

Problems

8.1 Show that Π4 in the film condensation problem can properly be
interpreted as Pr Re2

/︁
Ja. Hint : A characteristic velocity is needed—

use the speed that the liquid would reach in free fall over a dis-
tance L.

8.2 A 20 cm high vertical plate is kept at 34◦C in a 20◦C room. Plot (to
scale) δ and h vs. height and the temperature and velocity vs. y at
the top. What are the maximum values of δ and u? Hint : Use the
Squire-Eckert results.

8.3 Redo the Squire-Eckert analysis, neglecting inertia, to get a high-Pr
approximation to Nux . Compare your result to the Squire-Eckert
formula. Explain the difference.

8.4 Assume a linear temperature profile and a simple triangular velocity
profile, as shown in Fig. 8.16, for natural convection on a vertical
isothermal plate. Derive Nux = fn(Pr,Grx), compare your result
with the Squire-Eckert result, and discuss the comparison. Hint :
This very crude approximation yields results that are in error by
only 15% or so.

y

T

y

u

0 δ/3 δ
0

umax

0 δ
T∞

Tw

Figure 8.16 Profiles for Problem 8.4.

8.5 An uninsulated horizontal cylindrical duct of diamond-shaped
cross section (Fig. 8.17) carries air at 35◦C. Since almost all thermal
resistance is in the natural convection b.l. on the outside, take Tw to
be approximately 35◦C. T∞ = 25◦C. Estimate the natural convection
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heat loss per meter of duct. By how much might the result change
if the b.l. were to separate at the corners? [Q = 24.0 W/m.]

Figure 8.17 Configuration for
Problem 8.5.

8.6 A 3 m high, electrically heated panel in a wall delivers 175 W/m2

to still air an 18◦C room. Radiation from the panel can be approxi-
mated as uniform at 100 W/m2. What is the average temperature
of the panel? What is the temperature at the top? At the bottom?
Hint : The temperature at the bottom of the panel is 18◦C.

8.7 Find pipe diameters and wall temperatures for which the film
condensation heat transfer coefficients given in Table 1.1 are valid.
Assume the vapor to be at 1 atm. Note that you will need to locate
data for benzene, which is not covered in App. A; this kind of hurdle
is common in engineering.

8.8 Consider Example 8.6. What value of wall temperature (if any), or
what height of the plate, would result in a laminar-to-turbulent
transition at the bottom in this example?

8.9 A plate spins, as shown in Fig. 8.18, in a vapor that rotates syn-
chronously with it. Neglect earth-normal gravity and calculate NuL
as a result of film condensation. Hint : Note the aspects of this
problem that are similar to the rotating horizontal disk discussed
on page 452.

8.10 A laminar liquid film at Tsat flows down a vertical wall that is also
at Tsat. Flow is fully developed and the film thickness is δo. Along
a particular horizontal line, the wall temperature drops to a lower
value, Tw , and it is kept at that temperature everywhere below.
Call the line where the wall temperature changes x = 0. If the
region adjacent to the film is saturated vapor of the flowing liquid,
calculate δ(x), Nux , and NuL, where x = L is the bottom edge of
the wall. (Neglect any transition behavior in the neighborhood of
x = 0.) Hint : Begin with eqn. (8.55).
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Figure 8.18 Configuration for
Problem 8.9.

8.11 Prepare a table of formulas of the form

h(W/m2K) = C[∆T/L K/m]1/4

for natural convection at normal gravity in air and in water at
T∞ = 27◦C. Assume that Tw is close to 27◦C. Your table should
include results for vertical plates, horizontal cylinders, spheres, and
possibly additional geometries. Do not include your calculations.

8.12 For what value of Pr is the condition

∂2u
∂y2

⃓⃓⃓⃓
⃓
y=0

= gβ(Tw − T∞)
ν

satisfied exactly in the Squire-Eckert b.l. solution? [Pr = 2.86.]

8.13 The side wall of a house is 10 m in height. The overall heat
transfer coefficient between the interior air and the exterior sur-
face is 2.5 W/m2K. On a cold, still winter night Toutside = −30◦C
and Tinside air = 25◦C. What is hconv on the exterior wall of the
house if ε = 0.9? Is the external convection laminar or turbulent?[︁
h = 4.59 W/m2K

]︁
8.14 Consider Example 8.2. The sheets are mild steel, 2 m long and

6 mm thick. The bath is basically water at 60◦C, and the sheets are
put in it at 18◦C. (a) Plot the sheet temperature as a function of
time. (b) By approximating h at ∆T = [(60+ 18)/2− 18]◦C, plot
the conventional exponential response on the same graph.

8.15 In eqn. 8.7, we linearized the temperature dependence of the density
difference. Suppose that a wall at temperature Tw sits in water
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at T∞ = 7◦C. Use the data in Table A.3 to plot
⃓⃓
ρw − ρ∞

⃓⃓
and⃓⃓

−ρfβf (Tw − T∞)
⃓⃓

for 7◦C ⩽ Tw ⩽ 100◦C, where (..)f is a value at
the film temperature. How well does the linearization work?

8.16 A 77◦C vertical wall heats 27◦C air. Evaluate δtop/L,RaL, and L
where the line in Fig. 8.3 ceases to be straight. Comment on the
implications of your results. [δtop/L ≃ 0.6.]

8.17 A horizontal 8 cm O.D. pipe carries steam at 150◦C through a room
at 17◦C. The pipe is covered by a 1.5 cm layer of 85% magnesia
insulation. Evaluate the heat loss by natural convection per meter
of pipe. [Q = 97.3 W/m.]

8.18 What heat rate (in W/m) must be supplied to a 0.01 mm horizontal
wire to keep it 30◦C above the 10◦C water around it?

8.19 A vertical run of copper tubing, 5 mm in diameter and 20 cm long,
carries condensing vapor at 60◦C through 27◦C air. What is the
total heat loss? Hint : Are any of the thermal resistances negligible?
[Q = 0.94 W]

8.20 A body consists of two cones joined at their bases. The diameter is
10 cm and the overall length of the joined cones is 25 cm. The axis
of the body is vertical, and the body is kept at 27◦C in 7◦C air. What
is the rate of heat removal from the body by natural convection?
[Q = 3.38 W.]

8.21 Consider the plate dealt with in Example 8.1. Plot h as a function
of the angle of inclination of the plate as the hot side is tilted both
upward and downward over the range ±90◦. Note that you must
make do with discontinuous formulæ in different ranges of θ.

8.22 You are asked to design a vertical wall panel heater, 1.5 m high,
for a dwelling. What should the heat flux be if no part of the wall
should exceed 33◦C? How much heat goes to the room if the panel
is 7 m wide with ε = 0.7? Hint : Natural convection removes only
about 200 W depending on what room temperature you assume.

8.23 A 14 cm high vertical surface is heated by condensing steam at
1 atm. Provide an expression for the fractional change of heat
removal if H2O is replaced with a different condensing fluid to
heat the wall. Choose an organic fluid and evaluate the percentage
change in h if the wall is at 30◦C for both fluids.
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8.24 A 1 cm O.D. tube extends 27 cm horizontally through a region of
saturated steam at 1 atm. The outside of the tube can be maintained
at any temperature between 50◦C and 150◦C. Plot the heat transfer
as a function of tube temperature, omitting thermal radiation.

8.25 A 2 m high vertical plate condenses steam at 1 atm. Below what wall
temperature will Nusselt’s prediction of h begin to lose accuracy?
Below what temperature will the condensing film be turbulent?

8.26 A helical reflux condenser is made of 0.8 cm O.D. copper tubing
with a wall temperature of 30◦C. It condenses steam at 1 atm. Find
h if α = 18◦ and the coil diameter is 7 cm. [h = 9.5 kW/m2K]

8.27 The coil diameter of a helical condenser is 5 cm and the tube
diameter is 5 mm. The condenser carries water at 15◦C and is in
a bath of saturated steam at 1 atm. Specify the number of coils
and a reasonable helix angle if 6 kg/hr of steam is to be condensed.
hinside = 600 W/m2K. [4.4 coils]

8.28 A schedule 40, 304 stainless steel steam pipe with a 4 in. nominal
diameter carries saturated steam at 150 psia in a processing plant.
Calculate the heat loss per unit length of pipe if it is bare and the
surrounding air is still at 68◦F. How much would this heat loss be
reduced if the pipe were insulated with a 1 in. layer of jacketed
glass-fiber pipe insulation? Assume εss = 0.55 and εgf = 0.9.

8.29 What is the maximum speed of air in the natural convection b.l. in
Example 8.3? [umax = 0.35 m/s]

8.30 Several of the uniform-Tw , natural convection correlations in this
chapter include a small additive constant and a complicated Pr
factor: eqns. (8.13a), (8.28), and (8.33). Suppose that Pr is large
and that Ra is large enough to neglect that additive constant. What
form do these correlations take? What if you write them in terms
of Gr instead of Ra? In the same limits, what is the form of the
turbulent flow correlations, eqns. (8.13b) and (8.29)?

8.31 An industrial process includes a very large horizontal cylinder
immersed in a pool of water. The water is at 27◦C. The diameter
of the cylinder is 5 m, and it is kept at 67◦C. First, find h. Then
suppose that the diameter is increased to 10 m. What is the new
h? Explain the similarity of these answers in the turbulent natural
convection regime. [h ≃ 1000 W/m2K]
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8.32 A vertical jet of liquid of diameter d and moving at velocity u∞
impinges on a horizontal disk rotating ω rad/s. There is no heat
transfer in the system. Develop an expression for δ(r), where r is
the radial coordinate on the disk. Contrast the r dependence of δ
with that of a condensing film on a rotating disk and explain the
difference qualitatively. Hint : δ will vary as r−2/3.

8.33 We have seen that if properties are constant, h∝ ∆T 1/4 in natural
convection. If we consider the variation of properties as Tw is
increased over T∞, will h depend more or less strongly on ∆T in
air? in water?

8.34 A film of liquid falls along a vertical plate. It is initially saturated,
and it is surrounded by saturated vapor. The film thickness is δo. If
the wall temperature below a certain point on the wall (call it x = 0)
is raised to a value of Tw , slightly above Tsat, derive expressions
for δ(x), Nux , and xf—the distance at which the plate becomes
dry. Calculate xf if the fluid is water at 1 atm, if Tw = 105◦C, and
δo = 0.1 mm. Hint : The plate will dry out in just over 0.5 m.

8.35 In a particular solar steam generator, water containing high ab-
sorptance dye runs down a vertical plate in a laminar film. The
film’s initial thickness is δo. The sun’s rays pass through parallel
glass plates (see Section 10.6) a short distance away from the liquid
surface, depositing qs W/m2 at the surface of the film. Assume
the water to be saturated at the inlet and the plate behind it to be
insulated. Develop an expression for δ(x) as the water evaporates.
Develop an expression for the maximum length of wetted plate, and
determine an expression for the maximum value of δo for laminar
solution to be valid.

8.36 What heat flux can be achieved at the surface of a horizontal
0.01 mm diameter electrical resistance wire in still 27◦C air if
its melting point is 927◦C? Neglect radiation. Hint : Your answer
will be remarkably large.

8.37 A 0.03 m O.D. vertical pipe, 3 m in length with ε = 0.7, carries
refrigerant through a 24◦C room at low humidity. How much
heat does it absorb from the room if the pipe wall is at 10◦C?
[Q = 25.8 W]
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8.38 A 1 cm O.D. tube at 50◦C runs horizontally in 20◦C air. What is
the critical radius of 85% magnesia insulation on the tube? The
insulation has been coated to have a very low emissivity. Hint : An
iterative solution is required.

8.39 A 25.4 mm (1 in.) ice cube is suspended in 20◦C air. Estimate the
drip rate in gm/min. Neglect ∆T through the departing water film,
and assume poor convection on the top surface. hsf = 333.3 kJ/kg.

8.40 A horizontal electrical resistance heater, 1 mm in diameter, releases
100 W/m in water at 17◦C. What is the wire temperature? [Tw ≈
47◦C]

8.41 Solve Problem 5.39 using the correct formula for the heat transfer
coefficient.

8.42 A vertical rod, 20 mm long and 5 mm in diameter, becomes red
hot when it is used to shunt an electrical current in air at room
temperature. How much power can it dissipate if its melting point
is 1000◦C? Note all assumptions and corrections. Include radiation
using Frod–room = 0.15. Hint : More than half the heat transfer is
by radiation.

8.43 A 0.25 mm diameter platinum wire, 0.2 m long, is to be held horizon-
tally at 1035◦C. It is black. How much electric power is needed? Is
it legitimate to treat it as a constant-wall-temperature heater in cal-
culating the convective part of the heat transfer? The surroundings
are at 20◦C and the surrounding room is effectively black.

8.44 A vertical plate, 11.6 m long, condenses saturated steam at 1 atm.
We want to be sure that the film stays laminar. What is the lowest
allowable plate temperature, and what is q at this temperature?
[q = 25 kW/m2]

8.45 A straight horizontal fin exchanges heat by laminar natural convec-
tion with the surrounding air.

a. Show that
d2θ
dξ2

=m2L2θ5/4

where m is based on ho ≡ h(T = To).
b. If you have access to appropriate software for integrating

an o.d.e., solve the equation for m2L2 values ranging from
10−3 to 103. Express the results as η/ηo, where η is the fin
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efficiency and ηo is the efficiency that would result if ho were
the uniform heat transfer coefficient over the entire fin.

8.46 A 2.5 cm black sphere (F = 1) is in radiation-convection equilib-
rium with air at 20◦C. The surroundings are at 1000 K. What is the
temperature of the sphere? Hint : An iterative solution is required.

8.47 Develop expressions for h(D) and NuD during condensation on a
vertical circular plate.

8.48 A 5 mm rim surrounds a horizontal metal disk, 300 mm in diameter,
to form a shallow container. The disk is at 95◦C and is surrounded
by saturated water vapor at 100◦C.

a. Estimate the steady heat flux to the disk and rate of conden-
sation.

b. If the container is initially empty, estimate the time to fill it.

8.49 A proposed design for a nuclear power plant uses molten lead to
remove heat from the reactor core. The heated lead is then used
to boil water to drive a steam turbine. Water at 60◦C and 70 bar
(Tsat = 286◦C) flows at ṁ = 2 kg/s through a section of pipe heated
by the lead. The pipe is stainless steel (ks = 15 W/m·K) with a wall
thickness of 12 mm and a 62 mm O.D. The lead outside the pipe is
almost-stationary and at 477◦C.

a. At a point where the liquid water has a bulk temperature Tb =
80◦C, estimate the inside and outside wall temperatures of the
pipe, Twi and Two , to within about 5◦C. Neglect the entry length
and variable properties effects and take βlead ≈ 0.000118 K−1.
Hint: Guess an outside wall temperature above 370◦C when
computing h for the lead.

b. At what distance from the inlet will the inside wall of the pipe
reach Tsat? What changes to the design may be needed?

8.50 A flat plate, 10 cm long and 40 cm wide, is inclined at 30◦ from
vertical. It is held at a uniform temperature of 250 K. Saturated
HCFC-22 vapor at 260 K condenses onto the plate. Determine:

a. The ratio h′fg/hfg .

b. The average heat transfer coefficient and the rate in watts at
which the plate must be cooled.

c. The film thickness at the bottom of the plate, and the plate’s
rate of condensation in g/s.
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8.51 One component in a particular automotive air-conditioning system
is a “receiver”, a small vertical cylindrical tank that contains a pool
of liquid refrigerant, HFC-134a, with vapor above it. The receiver
stores extra refrigerant for the system and helps to regulate the
pressure. The receiver is at equilibrium with surroundings at 330 K.
A 5 mm diameter, spherical thermistor inside the receiver monitors
the liquid level. The thermistor is a temperature-sensing resistor
driven by a small electric current; it dissipates a power of 0.1 W.
When the system is full y charged with refrigerant, the thermistor
sits below the liquid surface. When refrigerant leaks from the
system, the liquid level drops and the thermistor eventually sits in
vapor. The thermistor is small compared to the receiver, and its
power is too low to affect the bulk temperature in the receiver.

a. Find the thermistor’s temperature when the system is fully
charged. Hint: NuD ≫ 2.

b. Find the thermistor’s temperature when enough refrigerant
has leaked that the thermistor sits in vapor. Neglect radiation.

8.52 Ammonia vapor at 300 K and 1.062 MPa pressure condenses onto
the outside of a horizontal tube. The tube has an O.D. of 19.1 mm.

a. Suppose that the outside of the tube has a uniform temper-
ature of 290 K. Determine the average condensation heat
transfer coefficient.

b. The tube is cooled by cold water flowing through it, and the
thermal resistance of the thin copper tube is negligible. If the
bulk temperature of the water is 275 K at a location where
the outside surface of the tube is at 290 K, what is the heat
transfer coefficient inside the tube?

c. Using the heat transfer coefficients you just found, estimate
the largest wall thickness for which the thermal resistance
of the tube could be neglected. Describe the variation the
tube wall temperature around the circumference and along
the length of the tube.

8.53 An inclined plate in a piece of process equipment is tilted 30◦

above horizontal. The plate is 20 cm long in the inclined plane
and 25 cm wide. The plate is held at 280 K by a liquid flowing
past its underside. The liquid is cooled by a refrigeration system
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capable of removing 12 W, but if the heat load exceeds 12 W, the
temperature of both the liquid and the plate will begin to rise.
The upper surface of the plate is in contact with ammonia vapor
at 300 K and a varying pressure. An engineer suggests that an
increase of the bulk temperature of the liquid will signal that the
pressure has exceeded a level of about pcrit = 551 kPa.

a. Explain why the gas’s pressure will affect the heat transfer to
the coolant. What is the significance pcrit = 551 kPa?

b. Suppose that the pressure is 255.3 kPa. What is the heat trans-
fer rate (W) from the gas to the plate, if the plate temperature
is Tw = 280 K? Will the coolant temperature rise?

c. Suppose that the pressure rises to 1062 kPa. What is the heat
transfer rate if the plate is still at Tw = 280 K? Will the coolant
temperature rise?

For gaseous ammonia at 255.3 kPa and 290 K: β = 0.0040 K−1,
ρ = 1.86 kg/m3, cp = 2314 J/kgK, µ = 9.75 × 10−6 kg/m3, and
k = 0.0247 W/m·K. Take other data from Appendix A.

8.54 The film Reynolds number Rec in eqn. (8.72) was based on the
thickness, δ. Show that the Reynolds number would be four times
larger if it were based on the hydraulic diameter of the film.

8.55 A characteristic length scale for a falling liquid film is ℓ = (ν2/g)1/3.
If the Nusselt number for a laminar film condensing on plane wall
is written as Nuℓ ≡ hℓ/k, derive an expression for Nuℓ in terms of

Rec . Show that, when ρf ≫ ρg , Nuℓ =
(︁
3Rec

)︁−1/3
.

8.56 Plot eqns. (8.13a) and (8.13b) on the coordinates matching Fig. 8.3.
(Since each has a slightly different Pr dependence, use Pr = 0.7.)
Over what range are these equations in good agreement? Copy
data points from Fig. 8.3 for abscissa values of 109, 1010, 1011, and
1012 and add them to your graph. How do the data compare to the
correlations?

8.57 Perform the integration for h in Example 8.8 and obtain eqn. (8.67).
Hint : Recall that the gamma function, Γ(z), is a tabulated special
function. It may be shown that [8.42, §12.41]:∫︂ π/2

0
cos2m−1θ sin2n−1θ dθ = Γ(m)Γ(n)

2 Γ(m+n) for m,n > 0
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8.58 If the oil line in Example 8.4 is polished stainless steel with ε = 0.17,
how does the total heat loss vary with g-level?

8.59 Using data from Tables A.4 and A.5, plot β for saturated ammo-
nia vapor over 200 K ⩽ T ⩽ 380 K, together with the ideal gas
expression, βIG = 1/T . Also calculate Z = P/ρRT . Is ammonia
vapor more like an ideal gas near the triple point or critical point
temperature?
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9. Heat transfer in boiling and
other phase-change
configurations

For a charm of powerful trouble,
like a Hell-broth boil and bubble.. . .

. . .Cool it with a baboon’s blood,
then the charm is firm and good.

Macbeth, Wm. Shakespeare

“A watched pot never boils”—the water in a teakettle takes a long time
to get hot enough to boil because natural convection initially warms it
rather slowly. Once boiling begins, the water is heated the rest of the way
to the saturation point very quickly. Boiling is of interest to us because it
is remarkably effective in carrying heat from a heater into a liquid. The
heater in question might be a red-hot horseshoe quenched in a bucket
or the core of a nuclear reactor with coolant flowing through it. Our
aim is to learn enough about the boiling process to deal with systems
that use boiling for cooling. We begin by considering pool boiling—the
boiling that occurs when a stationary heater transfers heat to an otherwise
stationary liquid.

9.1 Nukiyama’s experiment and the pool boiling curve

Hysteresis in the q vs. ∆T relation for pool boiling

In 1934, Shiro Nukiyama [9.1] did the experiment pictured in Fig. 9.1. He
boiled saturated water on a horizontal wire that functioned both as an
electric resistance heater and as a resistance thermometer. By calibrating
the resistance of a Nichrome wire as a function of temperature before
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Figure 9.1 Nukiyama’s boiling hysteresis loop.

he did the experiment, he was able to obtain both the heat flux and the
temperature from the observed current and voltage. He found that, as he
increased the power input to the wire,the heat flux rose sharply but the
temperature of the wire increased relatively little. Suddenly, at a particular
high value of the heat flux, the wire abruptly melted. Nukiyama then
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obtained a platinum wire and tried again. This time the wire reached the
same limiting heat flux, but then turned almost white-hot without melting.

As he reduced the power input to the white-hot wire, the temperature
dropped in a continuous way, as shown in Fig. 9.1, until the heat flux was
far below the value where the first temperature jump occurred. Then the
temperature dropped abruptly to the original q vs. ∆T = (Twire − Tsat)
curve, as shown. Nukiyama suspected that the hysteresis would not occur
if ∆T could be specified as the independently controlled variable. He
conjectured that such an experiment would result in the connecting line
shown between the points where the temperatures jumped.

In 1937, Drew and Mueller [9.2] succeeded in making ∆T the inde-
pendent variable by boiling organic liquids outside a tube. They allowed
steam to condense inside the tube at an elevated pressure. The steam’s
saturation temperature—and hence the tube-wall temperature—was var-
ied by controlling the steam’s pressure. This permitted them to obtain a
few scattered data points that seemed to bear out Nukiyama’s conjecture.

Measurements of this kind proved inherently hard to make accurately.
Therefore, the relatively few data that researchers obtained were, for many
years, interpreted as verifying Nukiyama’s suggestion that the boiling
curve is continuous.

Figure 9.2 is a completed boiling curve for saturated water at atmo-
spheric pressure on a particular flat horizontal heater. It displays the
behavior shown in Fig. 9.1, but it has been rotated to place the indepen-
dent variable, ∆T , on the abscissa. Nukiyama guessed that the behavior
he measured on the left and on the right would be connected by a con-
tinuous curve. We show the regions as unconnected for reasons that we
explain subsequently.

Modes of pool boiling

The boiling curve in Fig. 9.2 is divided into several regimes of behavior.
We consider these regimes, and the transitions that divide them, next.

Natural convection. Water that is not in contact with its own vapor does
not boil at the so-called normal boiling point,1 Tsat. Instead, it continues
to rise in temperature until bubbles finally begin to form. On conventional
machined metal surfaces, boiling occurs when the surface is a few degrees
above Tsat. Below the bubble inception point, heat is removed by natural
convection, as can be predicted by the methods laid out in Chapter 8.

1This notion might be new to some readers. It is explained in Section 9.2.
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Figure 9.2 Typical boiling curve and
regimes of boiling for an unspecified
heater surface.

Nucleate boiling. The nucleate boiling regime embraces two distinct
regions that lie between bubble inception and Nukiyama’s first transition
point:

1. The region of isolated bubbles. In this range, bubbles rise from
isolated nucleation sites, more or less as they are sketched in Fig. 9.1.
As q and ∆T increase, more and more sites are activated. Figure 9.3a
is a photograph of this regime as it appears on a horizontal plate.

2. The region of slugs and columns. When the active sites become
very numerous, the bubbles start to merge into one another, and an
entirely different kind of vapor escape path comes into play. Vapor
formed at the surface merges immediately into jets that feed into
large overhead bubbles or “slugs” of vapor. This process is shown
as it occurs on a horizontal cylinder in Fig. 9.3b.
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Peak heat flux, qmax. We would clearly like to operate heat exchange
equipment at the upper end of the region of slugs and columns. Here the
temperature difference is low while the heat flux is very high. Heat transfer
coefficients in this range are enormous. However, it is very dangerous
to run equipment near qmax in systems for which q is the independent
variable (as in nuclear reactors). If q is raised beyond the upper limit
of the nucleate boiling regime, such a system will suffer the sudden
and damaging increase of temperature that we indicate in Fig. 9.1. This
transition2 is known by a variety of names: the burnout point (although a
complete burning up or melting away does not always accompany it); the
peak heat flux (a modest descriptive term); the boiling crisis (a Russian
term); and the DNB, or departure from nucleate boiling, and the CHF, or
critical heat flux (terms more often used in flow boiling). We shall refer
to it as the peak heat flux and designate it qmax.

Transitional boiling regime. It might seem odd that the heat flux actually
diminishes with ∆T after qmax is reached. However, the effectiveness of
the vapor escape process in this regime becomes worse and worse. As
∆T is further increased, the hot surface becomes completely blanketed in
vapor and q reaches a minimum heat flux which we call qmin. Figure 9.3c
shows two typical instances of transitional boiling just beyond the peak
heat flux.

Film boiling. Once a stable vapor blanket is established, q again increases
with increasing ∆T . The mechanics of the heat removal process during
film boiling, and the regular removal of bubbles, has a great deal in
common with film condensation, but the heat transfer coefficients are
much lower because heat must be conducted through a vapor film instead
of through a liquid film. We see an instance of film boiling in Fig. 9.3d.

Experiment 9.1

Set an open pan of cold tap water on your stove to boil. Observe the
following stages as you watch:

• At first nothing appears to happen; then you notice that numer-
ous small, stationary bubbles have formed over the bottom of
the pan. These bubbles have nothing to do with boiling. Water

2We defer a proper physical explanation of the transition to Section 9.3.
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normally contains a small amount of air in solution. The first
bubbles that appear as the water warms up, are just air driven
out of solution.

• Suddenly the pan will begin to “sing” with a somewhat high-
pitched buzzing-humming sound as the first vapor bubbles are
triggered. They grow at the heated surface and condense very
suddenly when their tops encounter the still-cold water above
them. This so-called cavitation collapse is accompanied by a
small “ping” or “click,” over and over, as the process is repeated
at a fairly high frequency.

• As the temperature of the liquid bulk rises, the singing is increas-
ingly muted. You may then look in the pan and see a number
of points on the bottom where a feathery blur appears to be af-
fixed. These columns are actually strings of many small bubbles
emerging too rapidly to be seen individually. The bubbles in
these columns condense completely at some distance above the
heater surface. Notice that the air bubbles are all gradually being
swept away.

• The “singing” finally gives way to a full rolling boil, accompanied
by a gentle burbling sound. Bubbles no longer condense but now
reach the liquid surface, where they spill their vapor into the air.

• A full rolling-boil process, in which the liquid bulk is saturated,
is a kind of isolated-bubble process, as plotted in Fig. 9.2. No
kitchen stove supplies energy fast enough to boil water in the
slugs-and-columns regime. In fact, that gives us some sense of
the relative intensity of the slugs-and-columns process. ♦

Experiment 9.2

Repeat Experiment 9.1 with a glass beaker instead of a kitchen pan.
Place a strobe light, blinking about 6 to 10 times per second, behind
the beaker with a piece of frosted glass or tissue paper between it and
the beaker. You can now see the evolution of bubble columns from the
first singing mode up to the rolling boil. You will also be able to see
natural convection in the refraction of the light before boiling begins.
The view will be best if the backlight enters at about 15 degrees off of
a line straight into the frosted glass. ♦
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Figure 9.4 Enlarged sketch of a typical metal surface.

9.2 Nucleate boiling

Inception of boiling

Figure 9.4 shows a highly enlarged sketch of a heater surface. Most
metal-finishing operations score tiny grooves on the surface, but they
also typically involve some chattering or bouncing action, which hammers
small holes into the surface. When a surface is wetted, liquid is prevented
by surface tension from entering these holes, so small gas or vapor pockets
remain when liquid fills the container above them. These little pockets
are the sites at which bubble nucleation occurs.

To see why vapor pockets serve as nucleation sites, consider Fig. 9.5.
Here we see the problem in highly idealized form. Suppose that a spherical
bubble of pure saturated steam is at equilibrium with an infinite super-
heated liquid. The size of this equilibrium bubble will then be determined
by the requirements of thermal and mechanical equilibrium.

Thermal equilibrium requires that the temperature is uniformly Tsup

throughout. Mechanical equilibrium requires that the saturated vapor
pressure inside the bubble is slightly higher than the ambient pressure.
That is because surface tension imposes an added pressure, as the cutaway
sketch in Fig. 9.5 explains. And, this internal pressure must correspond
to the saturation pressure at Tsup. The equilibrium bubble will thus be
one in which the bubble radius is

Rb =
2σ

psat
(︁
Tsup

)︁
− pambient

(9.1)

Two states of a bubble in equilibrium are designated with black dots
in the p–v diagram, Fig. 9.5. These are the liquid just outside the bubble,
and the vapor within it. Notice that the external liquid is superheated by
(Tsup−Tsat) above its boiling point at the ambient pressure; but the vapor
inside, being held at just the right elevated pressure by surface tension,
is saturated.
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Figure 9.5 The conditions required for simultaneous mechani-
cal and thermal equilibrium of a vapor bubble. The scale of this
p–v diagram is exaggerated for clarity.

Physical digression: Surface tension

The surface tension of water in contact with its vapor is given with great
accuracy by [9.3]:

σwater = 235.8
(︃

1− Tsat

Tc

)︃1.256 [︃
1− 0.625

(︃
1− Tsat

Tc

)︃]︃
mN
m

(9.2a)

where both Tsat and the critical-point temperature, Tc = 647.096 K, are
expressed in K. The units of σ are millinewtons (mN) per meter. Table 9.1
gives additional values of σ for several pure substances.



Table 9.1 Surface tension of various substances from the
collection of Jasper [9.4]a and other sources.

Temperature σ = a− bT (◦C)
Substance

Range (◦C)
σ (mN/m)

a(mN/m) b (mN/m◦C)

Acetone 25 to 50 26.26 0.112
Ammonia −70 42.39

−60 40.25
−50 37.91
−40 35.38

Aniline 15 to 90 44.83 0.1085
Benzene 10 30.21

30 27.56
50 24.96
70 22.40

Butyl alcohol 10 to 100 27.18 0.08983
Carbon tetrachloride 15 to 105 29.49 0.1224
Cyclohexanol 20 to 100 35.33 0.0966
Ethyl alcohol 10 to 100 24.05 0.0832
Ethylene glycol 20 to 140 50.21 0.089
Hydrogen −258 2.80

−255 2.29
−253 1.95

Isopropyl alcohol 10 to 100 22.90 0.0789
Mercury 5 to 200 490.6 0.2049
Methane 90 18.877

100 16.328
115 12.371

Methyl alcohol 10 to 60 24.00 0.0773
Naphthalene 100 to 200 42.84 0.1107
Nicotine −40 to 90 41.07 0.1112
Nitrogen −195 to −183 26.42 0.2265
Octane 10 to 120 23.52 0.09509
Oxygen −202 to −184 −33.72 −0.2561
Pentane 10 to 30 18.25 0.11021
Toluene 10 to 100 30.90 0.1189
Water 10 to 100 75.83 0.1477

Temperature σ = σo [1− T (K)/Tc]n
Substance

Range (◦C) σo (mN/m) Tc (K) n

Carbon dioxide −56 to 31 75.00 304.26 1.25

CFC-12 (R12) [9.5] −148 to 112 56.52 385.01 1.27

HCFC-22 (R22) [9.5] −158 to 96 61.23 369.32 1.23

HFC-134a (R134a) [9.6] −30 to 101 59.69 374.18 1.266

Propane (R290) [9.7] −173 to 96 53.13 369.85 1.242

a The overall function σ = σ(T) is not really linear, but Jasper linearized it accurately
over modest ranges of temperature.
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Most of the expressions in Table 9.1 are linear curve fits that apply
to small ranges of surface tension. However, eqn. (9.2a) is a specialized
refinement of the following simple, but quite accurate and widely-used,
semi-empirical equation for correlating surface tension:

σ = σo
(︁
1− Tsat

/︁
Tc
)︁11/9

(9.2b)

We include similar correlations for CO2, propane, and some refrigerants
at the bottom of Table 9.1. Equations of this type are discussed in [9.8].

It is easy to see that the equilibrium bubble, whose radius is described
by eqn. (9.1), is unstable. If its radius is less than this value, surface tension
will overbalance

(︁
psat(Tsup)−pambient

)︁
. When that happens, vapor inside

will condense at this higher pressure and the bubble will collapse. If the
bubble radius is slightly larger than the equation specifies, liquid at the
interface will evaporate and the bubble will begin to grow.

Thus, as the heater surface temperature is increased, higher and higher
values of

(︁
psat(Tsup) − pambient

)︁
will result and the equilibrium radius,

Rb, will decrease in accordance with eqn. (9.1). It follows that smaller
and smaller vapor pockets become unstable, and active bubble growth
will be triggered as the temperature is increased. As an approximation,
we can use eqn. (9.1) to specify the radius of those vapor pockets that
become active nucleation sites. More accurate estimates can be made
using Hsu’s bubble inception theory [9.9] or the more recent technical
literature [9.10, 9.11].

Example 9.1

Estimate the approximate size of active nucleation sites in water at
1 atm on a wall superheated by 8 K and by 16 K. These temperatures
are roughly in the regime of isolated bubbles indicated in Fig. 9.2.

Solution. psat = 1.340× 105 N/m2 at 108◦C and 1.769× 105 N/m2

at 116◦C, and σ is given as 57.36 mN/m at Tsat = 108◦C and as
55.77 mN/m at Tsat = 116◦C by eqn. (9.2a). Then, at 108◦C, Rb from
eqn. (9.1) is

Rb =
2(57.36× 10−3) N/m(︁

1.340× 105 − 1.013× 105
)︁

N/m2

and similarly for 116◦C, so the radius of active nucleation sites is on
the order of

Rb = 0.0035 mm at T = 108◦C or 0.0016 mm at 116◦C
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This means that active nucleation sites would be holes with diameters
very roughly on the order of a few micrometers—at least on the heater
represented by Fig. 9.2. That is within the range of roughness of
commercially finished metal surfaces.

Region of isolated bubbles

The mechanism of heat transfer enhancement in the isolated bubble
regime was hotly argued in the years following World War II. A few con-
clusions emerged from that debate, and we shall attempt to identify them.
These bubbles act as small pumps that keep replacing liquid heated at
the wall with cool liquid. The question is that of specifying the correct
mechanism. Figure 9.6 shows the way bubbles probably act to remove
hot liquid from the wall and introduce cold liquid to be heated.

The number of active nucleation sites generating bubbles will clearly
exert a strong influence on q. On the basis of his experiments, Yamagata
showed in 1955 [9.12] that

q ∝ ∆Tanb (9.3)

where ∆T ≡ Tw − Tsat and n is the site density or number of active sites
per square meter. A great deal of subsequent work was done to fix the
constant of proportionality and the constant exponents, a and b. The
exponents turn out to be approximately a = 1.2 and b = 1/3.

The problem with eqn. (9.3) is that it introduces what engineers call
a nuisance variable. A nuisance variable is one that varies from system
to system and cannot easily be evaluated—the site density, n, in this
case. Normally, n increases with ∆T in some way, but how? If all sites
were identical in size, all sites would be activated simultaneously, and q
would be a discontinuous function of ∆T . When the sites have a typical
distribution of sizes, n (and hence q) can increase very strongly with ∆T .

Fortunately, n varies approximately as ∆T 5 or 6 for a large class of
factory-finished materials, so q varies roughly as ∆T 3. This has made it
possible for various researchers to create very rough correlations that
work for a large variety of materials. Dhir [9.11] summarizes several.

Warren Rohsenow [9.13] made one of the earliest, and most durable,
of those nucleate boiling correlations in 1952:

cp(Tw − Tsat)
hfg Prs

= Csf

[︄
q

µhfg

√︄
σ

g
(︁
ρf − ρg

)︁ ]︄0.33

(9.4)

http://web.mit.edu/hmtl/www/rohsenow.html
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A bubble growing and departing in saturated liquid.
The bubble grows, absorbing heat from the
superheated liquid on its periphery. As it leaves, it
entrains cold liquid onto the plate which then warms
up until nucleation occurs and the cycle repeats.

A bubble growing in subcooled liquid.
When the bubble protrudes into cold liquid,
steam can condense on the top while
evaporation continues on the bottom. This
action provides a short-circuit to cool the
wall. Then, when the bubble caves in, cold
liquid is brought to the wall.

Figure 9.6 Heat removal by bubble action during boiling. Dark
regions denote locally superheated liquid.

where all properties, unless otherwise noted, are for liquid at Tsat. The
constant Csf is an empirical correction for typical surface conditions.
Table 9.2 includes a set of values of Csf for common surfaces as well as
the Prandtl number exponent, s. A more extensive compilation of these
constants was published by Pioro in 1999 [9.14].

The Yamagata equation (9.3) applies only to the first of the two nucleate
boiling regimes, whereas Rohsenow’s is for both. Rohsenow’s equation is
frankly empirical, however, and does not depend on the rational analysis of
either nucleate boiling process. While it represents q(∆T) in both regimes,
it is not terribly accurate in either one. Figure 9.7 shows Rohsenow’s
original comparison of eqn. (9.4) with data for water over a large range of
conditions. The correlation shows typical errors in heat flux of 100% and
typical errors in ∆T of about 25%.

Thus, our ability to predict the nucleate pool boiling heat flux is poor.
Our ability to predict ∆T is better because, with q ∝ ∆T 3, a large error
in q gives a much smaller error in ∆T . The nuisance variable n is a
formidable barrier to predicting q(∆T). However, we are in luck because
we do not often have to calculate q, given ∆T , in the nucleate boiling
regime. More often, the major problem is to avoid exceeding qmax. We
turn our attention to predicting this limit in the next section.

http://www.uh.edu/engines/epi1280.htm
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Table 9.2 Selected values of the surface correction factor for
use with eqn. (9.4) [9.13].

Surface–Fluid Combination Csf s

Water–nickel 0.006 1.0
Water–platinum 0.013 1.0
Water–copper 0.013 1.0
Water–brass 0.006 1.0
CCl4–copper 0.013 1.7
Benzene–chromium 0.010 1.7
n-Pentane–chromium 0.015 1.7
Ethyl alcohol–chromium 0.0027 1.7
Isopropyl alcohol–copper 0.0025 1.7
35% K2CO3–copper 0.0054 1.7
50% K2CO3–copper 0.0027 1.7
n-Butyl alcohol–copper 0.0030 1.7

Example 9.2

What is Csf for the heater surface in Fig. 9.2?

Solution. From eqn. (9.4) we obtain

q
∆T 3

C3
sf =

µc3
p

hfg
2Pr3

√︄
g
(︁
ρf − ρg

)︁
σ

where, since the liquid is water, we take s to be 1.0. Then, for water
at Tsat = 100◦C: cp = 4.22 kJ/kg·K, Pr = 1.75, (ρf −ρg) = 958 kg/m3,
σ = 0.0589 N/m or kg/s2, hfg = 2257 kJ/kg, µ = 0.000282 kg/m·s.
Thus,

q
∆T 3

C3
sf = 3.10× 10−7 kW

m2K3

At q = 800 kW/m2, we read ∆T = 22 K from Fig. 9.2. This gives

Csf =
[︄

3.10× 10−7(22)3

800

]︄1/3

= 0.016

This value is comparable to the table’s value of Csf for a platinum
surface under water.
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Figure 9.7 Illustration of
Rohsenow’s [9.13] correlation
applied to data for water boiling on
0.61 mm diameter platinum wire.

9.3 Peak pool boiling heat flux

Transitional boiling regime and Taylor instability

We can better understand the peak heat flux if we first consider the
process that connects the peak and the minimum heat fluxes. During high
heat flux transitional boiling, a large amount of vapor is glutted about
the heater. It wants to buoy upward, but it has no clearly defined escape
route. The columns that carry vapor away from the heater in the region
of slugs and columns are unstable in this regime, and they can no longer
serve as an escape route. Therefore, vapor buoys up in big slugs—then
liquid falls in, touches the surface briefly, and a new slug begins to form.
Figure 9.3c shows part of this process.
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The high and low heat flux transitional boiling regimes are different
in character. The low heat flux region does not look like Fig. 9.2c. Rather,
it is almost indistinguishable from the film boiling shown in Fig. 9.2d.
However, the two processes display common conceptual keys: In each,
the heater is almost completely blanketed with vapor. In each, we must
contend with the unstable configuration of a liquid on top of a vapor.

Figure 9.8 shows two commonplace examples of such behavior. In
either an inverted honey jar or the water condensing from a cold water
pipe, we have seen how a heavy fluid falls into a light one (water or honey,
in this case, collapses into air). The heavy phase falls down at one node
of a wave and the light fluid rises into the other node. This process is
inverted during film boiling as we see in Fig. 9.3d. Here, a light gas rises
into a heavy liquid.

This collapse process, whether the wave collapses from above or below,
is called Taylor instability. The process is named in honor of G. I. Taylor,
who first predicted it. The so-called Taylor wavelength, λd, is the length
of the wave that grows fastest and therefore predominates during the
collapse of an infinite plane horizontal interface.3 The form of λd can be
found by writing the dimensional functional equation

λd = fn
[︂
σ,g

(︁
ρf − ρg

)︁]︂
(9.5)

These variables appear because the wave is formed by the balancing
forces of surface tension against inertia and gravity. The three variables
involve m and kg/s2, so we look for just one dimensionless group:

λd

√︄
g
(︁
ρf − ρg

)︁
σ

= constant

This relationship was derived analytically by Bellman and Pennington [9.15]
for one-dimensional waves and by Sernas [9.16] for the two-dimensional
waves that actually occur in a plane horizontal interface. The results were

λd

√︄
g
(︁
ρf − ρg

)︁
σ

=
{︄

2π
√

3 for one-dimensional waves

2π
√

6 for two-dimensional waves
(9.6a)

We shall make use of these most rapidly collapsing waves. However, the

3The subscript d is taken from the idea that the wavelength most susceptible to
collapse is the most “dangerous” one.

https://en.wikipedia.org/wiki/G._I._Taylor
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a. Taylor instability in the surface of the honey in an
inverted honey jar

b. Taylor instability in the interface of the water condensing on the
underside of a small cold water pipe.

Figure 9.8 Two examples of Taylor instabilities that one might
commonly observe.

shortest waves that will collapse are shorter than λd, e.g.:

λmin

√︄
g
(︁
ρf − ρg

)︁
σ

= 2π for one-dimensional waves (9.6b)

Experiment 9.3

Hang a metal rod horizontally by threads at both ends. The rod should
be about 30 cm in length and perhaps 1 to 2 cm in diameter. Pour
molasses, motor oil, or glycerin in a narrow cake pan and lift the
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pan up under the rod until it is submerged. Then lower the pan and
watch the liquid drain into it. Take note of the wave action on the
underside of the rod. The same experiment can be done in an even
more satisfactory way by running cold water through a horizontal
copper tube above a beaker of boiling water. The condensing liquid
will also come off in a Taylor wave such as is shown in Fig. 9.8. In either
case, the waves will approximate λd1 (the length of a one-dimensional
wave, since they are arrayed on a line.) The wavelength will not exactly
match eqn. (9.6a) since the rod or pipe curvature will alter it somewhat;
but it will be close, as long as the tube diameter is not a great deal
less than the wavelength. ♦

Throughout the transitional and film boiling regimes, vapor rises into
liquid on the nodes of Taylor waves; and at qmax this rising vapor has
taken the form of jets. These jets arrange themselves on a staggered
square grid, as shown in Fig. 9.9. The basic spacing of the grid is λd2 (the
two-dimensional Taylor wavelength). In accordance with eqn. (9.6a)

λd2 =
√

2λd1 (9.7)

Thus, the spacing of the most basic module of jets is actually λd1 , as
shown in Fig. 9.9. For water at 1 atm, using eqn. (9.6a) with the properties
in Example 9.2, we find λd1 = 2.72 cm.

Next we see how the jets become unstable at the peak heat flux and
bring about burnout.

Helmholtz instability of vapor jets

Figure 9.10 shows a commonplace example of what is called Helmholtz
instability. This is the phenomenon that causes the vapor jets to cave in
when the vapor velocity in them reaches a critical value. Any flag in a
breeze will constantly be in a state of collapse as the result of relatively
high pressures where the velocity is low and relatively low pressures
where the velocity is high, as is indicated in the top view.

This same instability is shown as it occurs in a vapor jet wall in Fig. 9.11.
This situation differs from the flag in one important particular. Surface
tension in the jet walls tends to balance the flow-induced pressure forces
that bring about collapse. Thus, while the flag is unstable in any breeze,
the vapor velocity in the jet must reach a limiting value, ug, before the
jet becomes unstable.



a. Plan view of bubbles rising from surface

b. Waveform underneath the bubbles shown in a.

Figure 9.9 The array of vapor jets as seen on an infinite
horizontal heater surface.

489
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Figure 9.10 The flapping of a flag due to Helmholtz instability.

Lamb [9.17] gives the following relation between the vapor flow ug,
shown in Fig. 9.11, and the wavelength of a disturbance in the jet wall, λH :

ug =
√︄

2πσ
ρgλH

(9.8)

This result, like eqn. (9.6a), can be predicted to within a constant using
dimensional analysis (see Problem 9.19).

A real liquid–vapor interface will usually be irregular, and therefore it
can be viewed as containing all possible sinusoidal wavelengths super-
posed on one another. One problem we face is that of guessing whether
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Figure 9.11 Helmholtz instability of vapor jets.

or not one of those wavelengths will be better developed than the others
and therefore more liable to collapse during the brief life of the jet.

Example 9.3

Saturated water at 1 atm flows slowly down the inside wall of a
10 cm I.D. vertical tube. Steam flows rapidly upward in the center.
The wall of the pipe has circumferential corrugations in it, with a 4 cm
wavelength in the axial direction. Neglect problems raised by radial
curvature and the finite thickness of the liquid, and estimate the steam
velocity required to destabilize the liquid flow.

Solution. If we can neglect the liquid velocity, the flow will be
Helmholtz-stable until the steam velocity reaches the value given by
eqn. (9.8):

ug =
√︄

2π(0.0589)
0.598(0.04)

Thus, the maximum stable steam velocity would be ug = 3.93 m/s.
Beyond that, the liquid would form whitecaps and be blown back
upward.
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Example 9.4

A long narrow rectangular container holds mercury at 300 K. It is
abruptly turned upside down. What is the minimum width for which
capillary forces will hold the mercury in place without it collapsing
and falling out?

Solution. The mercury will collapse by Taylor instability when the
spacing reaches the wavelength given by eqn. (9.6b):

λmin = 2π
√︄

σ
g
(︁
ρf − ρg

)︁ = 2π

√︄
0.485

9.8(13530)
= 0.012 m = 1.2 cm

Prediction of qmax

General expression for qmax. The heat flux must be balanced by the
latent heat carried away in the jets when the liquid is saturated. Thus, we
can write immediately

qmax = ρghfgug
(︃Aj
Ah

)︃
(9.9)

where Aj is the cross-sectional area of a jet and Ah is the heater area that
supplies each jet.

For any heater configuration, two things must be determined. One
is the length of the particular disturbance in the jet wall, λH , which will
trigger Helmholtz instability and fix ug in eqn. (9.8) for use in eqn. (9.9).
The other is the ratio Aj

/︁
Ah. The prediction of qmax in conventional pool

boiling configurations always comes down to these two problems.

qmax on an infinite horizontal plate. The original analysis of this type
was done by Zuber in his doctoral dissertation at UCLA in 1958 (see [9.18]).
He first guessed that the jet radius was λd1

/︁
4. This guess has been

corroborated as we shall see in a moment, and (with reference to Fig. 9.9)
it gives

Aj
Ah

= cross-sectional area of circular jet
area of the square portion of the heater that feeds the jet

= π
(︁
λd1/4

)︁2(︁
λd1

)︁2 = π
16

(9.10)

http://engineering.ucla.edu/in-memoriam-dr-novak-zuber/
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Lienhard and Dhir [9.19–9.21] guessed that the Helmholtz-unstable wave-
length might be equal to λd1 , so eqn. (9.9) became

qmax = ρghfg

⌜⃓⃓⎷2πσ
ρg

1

2π
√

3

√︄
g
(︁
ρf − ρg

)︁
σ

× π
16

or4

qmax = 0.149 ρ1/2
g hfg 4

√︂
g
(︁
ρf − ρg

)︁
σ (9.11)

We now move to the matter of verifying eqn. (9.11) experimentally.
The configurations to which it applies must exhibit the following features:

• They must be horizontal flat plates

• No side flow can be entrained. The heaters must have side walls (if
they are not infinite). Entrained flow can greatly alter qmax.

• The surface must be well-wetted (have high contact angle). Fortu-
nately, water wets most off-the-shelf metals.

• The heaters must be large enough to accommodate a few
wavelengths.

She and Dhir [9.22] revisited these factors using heaters below cylin-
drical side-walls in 2021, showing in detail how small size raises qmax.
They also showed that qmax increases when the surface is only partially
wetted by the liquid (i.e., has a high contact angle), and that qmax increases
as a result of induced convection for small heaters without sidewalls.

Let us look more closely at the last item above. We compare eqn. (9.11)
to data for square flat plates with vertical sidewalls in Fig. 9.12. These
data from four data sources, for eight fluids, and a range of gravity from
earth-normal up to 17.5 times earth-normal. As long as the width or
diameter of the heater is more than about 3λd1 , the prediction is quite
accurate. When the width or diameter is less than 3λd1 , a small integral
number of jets sit on the plate, and the plate may be larger or smaller
in area than 16/π per jet. The actual qmax falls below that predicted by
eqn. (9.11) as the heater size is further reduced. But it then becomes
greater as a single vapor column serves an increasingly small heater area
[see eqn. (9.17)].

4Readers are reminded that n√x ≡ x1/n.
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Figure 9.12 The qmax prediction for infinite horizontal heaters
compared to data for 8 fluids and gravity between 1 to 17.5 times
earth-normal gravity, from 4 investigators, as reported in [9.19].

In fact, C. F. Bonilla, in 1941, was the first to propose that CHF is an
instability where rising vapor velocity trips liquid to collapse into the
vapor column. He suggested that qmax is like the flooding of a distillation
column5 [9.23, 9.24]. We include his experiments in Fig. 9.12.

S. S. Kutateladze (then working in Leningrad and later director of
the Heat Transfer Laboratory near Novosibirsk, Siberia) also recognized
the similarity of burnout to column flooding [9.25]. V. M. Borishansky,
working with Kutateladze [9.24], did the dimensional analysis of qmax

based on the flooding mechanism, and got the following relationship,
which, lacking a characteristic length and being of the same form as eqn.

5As a matter of interest, A. P. Colburn wrote to Bonilla about this suggestion: “A
correlation [of the flooding velocity plots with] boiling data would not serve any great
purpose and would perhaps be very misleading.” And T. H. Chilton—another eminent
chemical engineer of that period—wrote to him: “I venture to suggest that you delete
from the manuscript…the relationship between boiling rates and loading velocities in
packed towers.” Thus, the technical conservatism of the period prevented Bonilla’s idea
from gaining acceptance for another decade.

https://en.wikipedia.org/wiki/Samson_Kutateladze
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(9.11), could have meaning only for an infinite horizontal plate:

qmax = C ρ1/2
g hfg 4

√︂
g
(︁
ρf − ρg

)︁
σ

He compared this equation with data for burnout for many fluids, and
in many configurations (none of which was a large flat plate), and he got
C = 0.131 [9.25].

Zuber read the Russian literature and considered the character of
flooding: At any level in a distillation column, vapor rises while liquid
flows downward in counterflow. He realized that, when one drives the
process too far, the flows become Helmholtz-unstable and collapse. The
liquid then cannot move downward and the column “floods.”

The assumptions in his hydrodynamic analysis yielded C = π/24 =
0.1309. That matched the Borishansky/Kutateladze value, but it was
lower by 14% than eqn. (9.11). The Russian value was low because it was
based on the wrong data. Zuber’s was low because he forced certain of
his assumptions to match the Russian result.

We therefore designate the Zuber-Kutateladze equation for the peak
heat flux on a flat plate as qmaxz . However, we cannot apply it directly to
any actual physical configuration.

qmaxz ≡ 0.131 ρ1/2
g hfg 4

√︂
g
(︁
ρf − ρg

)︁
σ (9.12)

Example 9.5

Predict the peak heat flux for Fig. 9.2.

Solution. We use eqn. (9.11) to evaluate qmax for water at 100◦C on
an infinite flat plate:

qmax = 0.149 ρ1/2
g hfg 4

√︂
g
(︁
ρf − ρg

)︁
σ

= 0.149(0.597)1/2(2,257,000) 4
√︂

9.8(958.2− 0.6)(0.0589)

= 1.260× 106 W/m2

= 1.260 MW/m2

Figure 9.2 shows qmax ≃ 1.16 MW/m2, which is less by only 8%.

Example 9.6

What is qmax in mercury on a large flat plate at 1 atm?
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Solution. The normal boiling point of mercury is 355◦C. At this tem-
perature, hfg = 294,900 J/kg, ρf = 12,740 kg/m3, ρg = 4.0 kg/m3,
and σ ≃ 0.418 kg/s2, so

qmax = 0.149(4.0)1/2(294,900) 4
√︂

9.8(12740− 4)(0.418)

= 1.328 MW/m2

The result is very close to that for water. The increases in density and
surface tension have been offset by a much lower latent heat.

Peak heat flux in other pool boiling configurations

The prediction of qmax in configurations other than an infinite flat heater
will involve a characteristic length, L. Thus, the dimensional functional
equation for qmax becomes

qmax = fn
[︂
ρg, hfg, σ , g

(︁
ρf − ρg

)︁
, L
]︂

This equation involves six variables and four dimensions: J, m, s, and
kg, where, once more in accordance with Section 4.3, we note that no
significant conversion from work to heat is occurring and J must be
retained as a separate unit. There are thus two pi-groups.

The first group can arbitrarily be multiplied by 24/π to give

Π1 =
qmax

(π/24)ρ1/2
g hfg 4

√︂
σg

(︁
ρf − ρg

)︁ = qmax

qmaxz
(9.13)

Notice that the factor of 24/π has served to make the denominator equal
to qmaxz (Zuber’s expression for qmax). Thus, for qmax on a flat plate, Π1

equals 0.149/0.131, or 1.14. The second pi-group is

Π2 =
L√︂

σ
/︁
g
(︁
ρf − ρg

)︁ = 2π
√

3
L
λd1

≡ L′ (9.14)

The latter group, Π2, is the square root of the Bond number, Bo—a group
that has often been used to compare buoyant force with capillary forces.

Predictions and correlations of qmax have been made for several finite
geometries in the form

qmax

qmaxz
= fn

(︁
L′
)︁

(9.15)

The dimensionless characteristic length in eqn. (9.15) might be a dimen-
sionless radius (R′), a dimensionless diameter (D′), or a dimensionless
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height (H′). The graphs in Fig. 9.13 are comparisons of several of the
existing predictions and correlations with experimental data. These pre-
dictions and others are listed in Table 9.3. Notice that the last three items
in Table 9.3 (10, 11, and 12) are general expressions from which several
of the preceding expressions in the table can be obtained.

The equations in Table 9.3 are all valid within ±15% or 20%, which is
very close to the inherent scatter of qmax data. However, they are subject
to the following conditions:

• The bulk liquid is saturated.

• There are no extreme or artificial surface textures.

• There is no forced convection.

Very small Bond number. Another limitation on all the equations in
Table 9.3 is that neither the size of the heater nor the relative force of
gravity can be too small. When L′ ❲ 0.15 in most configurations, the Bond
number is

Bo ≡ L′2 =
g
(︁
ρf − ρg

)︁
L3

σL
= buoyant force

capillary force
❲ 0.02

In such cases, the process becomes completely dominated by surface
tension and the Taylor-Helmholtz wave mechanisms no longer operate.
As L′ is reduced, the peak and minimum heat fluxes cease to occur
and the boiling curve becomes monotonic. Bakhru and Lienhard [9.26]
showed that, when nucleation occurs on a sufficiently small wire, the
wire is immediately enveloped in vapor in that region. The system passes
directly from natural convection into film boiling, and no nucleate boiling
can occur.

Example 9.7

A metal body, only roughly spherical in shape, has a surface area of
400 cm2 and a volume of 600 cm3. It is quenched in saturated water at
1 atm. What is the most rapid rate of heat removal during the quench?

Solution. The cooling process progresses along the boiling curve
from film boiling, through qmin, up the transitional boiling regime,
through qmax, and down the nucleate boiling curve. Cooling is finally
completed by natural convection. If you have ever seen a red-hot
horseshoe quenched, you might recall the great gush of bubbling that



Figure 9.13 The peak pool boiling heat flux on several heaters.
Note how qmax increases in all cases, as the heater size is reduced
below λd1 .
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occurs as qmax is reached. We therefore calculate the most rapid heat
flow as Q = qmaxAspheroid, where qmax is given for large bodies by eqn.
(9.25) in Table 9.3:

qmax = 0.9qmaxz = 0.9(0.131)ρ1/2
g hfg 4

√︂
gσ(ρf − ρg)

so

Q =
[︃

0.9(0.131)(0.597)1/2(2,257,000) 4
√︂

9.8(0.0589)(958) W/m2
]︃

×
(︁
400× 10−4 m2)︁

or

Q = 39,900 W or 39.9 kW

This rate of energy removal is a startlingly large for such a small object.
To complete the calculation, we must check whether or not L′ is

large enough to justify the use of eqn. (9.25):

L′ = V/A√︂
σ/g

(︁
ρf − ρg

)︁ = 0.0006
0.04

√︄
9.8(958)
0.0589

= 6.0

This is larger than the value of about 4 for which a body must be
considered “large.”

9.4 Film boiling

Film boiling bears an uncanny similarity to film condensation. The similar-
ity is so great that, in 1950, Bromley [9.29] was able to predict film boiling
from cylinders by using eqn. (8.67) for condensation on cylinders almost
directly. He observed that the boundary condition (∂u/∂y)y=δ = 0 at
the liquid–vapor interface in film condensation would have to change
to something in between (∂u/∂y)y=δ = 0 and u(y = δ) = 0 during
film boiling. The reason is that the external liquid is not so easily set
into motion.

Bromley then redid the film condensation analysis, merely changing k
and ν from liquid to vapor properties. The change of boundary conditions
gave eqn. (8.67) with the constant changed from 0.729 to 0.512. He
also changed k and ν to vapor values. By comparing the equation with
experimental data, he fixed the constant at the intermediate value of 0.62.
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Thus, NuD ≡ hD
/︁
kg became

NuD = 0.62

⎡⎣(︁ρf − ρg)︁gh′fgD3

νgkg(Tw − Tsat)

⎤⎦1/4

(9.28)

where vapor and liquid properties should be evaluated at Tsat+∆T/2 and
at Tsat, respectively.

The latent heat correction in this case is similar in form to that for
film condensation, but with different constants in it. Sadasivan and
Lienhard [9.30] have shown it to be

h′fg = hfg
[︂
1+

(︁
0.968− 0.163

/︁
Prg

)︁
Jag

]︂
(9.29)

for Prg ⩾ 0.6, where Jag = cpg(Tw − Tsat)
/︁
hfg .

Twenty years after Bromley, Dhir and Lienhard [9.31] did the same
thing for spheres, as Bromley had done for cylinders. Their result [cf.
eqn. (8.68)] was

NuD = 0.67

⎡⎣(︁ρf − ρg)︁gh′fgD3

νgkg(Tw − Tsat)

⎤⎦1/4

(9.30)

The preceding expressions are based on heat transfer by convection
through the vapor film alone. However, when film boiling occurs much
beyond qmin in water, the heater glows dull cherry-red to white-hot. Ra-
diation in such cases can be enormous. One’s first temptation might
be simply to add a radiation heat transfer coefficient, hrad to hboiling as
obtained from eqn. (9.28) or (9.30), where

hrad =
qrad

Tw − Tsat
= εσ

(︁
T 4
w − T 4

sat
)︁

Tw − Tsat

and where ε is a surface radiation property of the heater called the
emittance (see Section 10.1).

Unfortunately, such addition would not be correct, because the addi-
tional radiative heat transfer will increase the vapor blanket thickness,
reducing hboiling. Bromley [9.29] suggested for cylinders the approximate
relation

htotal = hboiling + 3
4 hrad, hrad < hboiling (9.31)
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More accurate corrections that have subsequently been offered are con-
siderably more complex than this [9.10]. One of the most comprehensive
is that of Pitschmann and Grigull [9.32]. Their correlation, which is fairly
intricate, brings together an enormous range of heat transfer data for
cylinders, within 20%. Radiation is seldom important when the heater
temperature is less than 300◦C.

The use of the analogy between film condensation and film boiling is
somewhat questionable during film boiling on a vertical surface. In this
case, the liquid–vapor interface becomes Helmholtz-unstable at a short
distance from the leading edge. However, Leonard, Sun, and Dix [9.33]
have shown that by using λd1

/︁√
3 in place of D in eqn. (9.28), one obtains

a very satisfactory prediction of h for rather tall vertical plates.
The analogy between film condensation and film boiling also dete-

riorates when it is applied to small curved bodies. The reason is that
the thickness of the vapor film in boiling is far greater than the liquid
film during condensation. Consequently, a curvature correction, which
could be ignored in film condensation, must be included during film
boiling from small cylinders, spheres, and other curved bodies. The first
curvature correction to be made was an empirical one given by Westwater
and Breen [9.34] in 1962. They showed, for cylinders, that the equation

NuD =
[︃(︃

0.715+ 0.263
R′

)︃(︁
R′
)︁1/4

]︃
NuDBromley (9.32)

applies when R′ < 1.86. Otherwise, Bromley’s equation should be used
directly.

9.5 Minimum heat flux

Zuber [9.18] also provided a prediction of the minimum heat flux, qmin,
along with his prediction of qmax. He assumed that, as Tw−Tsat is reduced
in the film boiling regime, the rate of vapor generation eventually becomes
too small to sustain the Taylor wave action that characterizes film boiling.
Zuber’s qmin prediction, based on this assumption, has to include an
arbitrary constant. The result for flat horizontal heaters is

qmin = C ρghfg 4

⌜⃓⃓⎷σg(︁ρf − ρg)︁(︁
ρf + ρg

)︁2 (9.33)

Zuber guessed a value of C which Berenson [9.35] subsequently corrected
on the basis of experimental data. Berenson used measured values of qmin
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on large flat heaters to get

qmin Berenson = 0.09 ρghfg 4

⌜⃓⃓⎷σg(︁ρf − ρg)︁(︁
ρf + ρg

)︁2 (9.34)

Lienhard and Wong [9.36] did the parallel prediction for horizontal wires
and found that

qmin = 0.515
[︃

18
R′2(2R′2 + 1)

]︃1/4
qmin Berenson (9.35)

The problem with all of these expressions is that some contact fre-
quently occurs between the liquid and the heater wall at film boiling heat
fluxes higher than the minimum. When this happens, the boiling curve
deviates above the film boiling curve and finds a higher minimum than
those reported above. The values of the constants shown above should
therefore be viewed as practical lower limits of qmin. We return to this
matter in the next section.

Example 9.8

Check the value of qmin shown in Fig. 9.2.

Solution. The heater is a flat surface, so we use eqn. (9.34) and the
physical properties given in Example 9.5.

qmin = 0.09(0.597)(2,257,000) 4

√︄
9.8(0.0589)(958)

(959)2

or
qmin = 19.0 kW/m2

From Fig. 9.2 we read 20.0 kW/m2, which is the same, to within the
accuracy of the graph.

9.6 Transition boiling

The transition boiling regime of pool boiling has received less attention
than nucleate or film boiling. That is because when the heat flux decreases
with temperature, the situation is inherently unstable—it can be sustained
only when the wall temperature can be fixed absolutely. The studies of
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transition boiling that have been done reveal that it is highly sensitive
to the heater surface condition, particularly to wettability. Hence by
understanding transition boiling, we also come to understand much
about the influence of surface condition on boiling.

The first systematic and accurate measurements of transition boiling
were provided by Berenson [9.35] in 1960. Figure 9.14 shows two sets of
his data—the upper set is for different surface condition and the lower
one is for different surface roughnesses.

The upper set makes it clear that a change of surface condition has
a great influence upon transition boiling and the onset of film boiling.
The oxidation of the surface has the effect of dramatically changing the
contact angle6—making it far easier for the liquid to wet the surface when
it touches it. Transition boiling is more susceptible than any other mode
to variations in the contact angle.

The bottom set of curves shows that roughness has a very strong
influence upon nucleate boiling. In this case, nucleate boiling is far more
susceptible to roughness than any other mode of boiling except, perhaps,
the very lowest end of the film boiling range. That is because as roughness
increases the number of active nucleation sites, the heat transfer rises in
accordance with the Yamagata relation, eqn. (9.3).

It is important to recognize that neither roughness nor surface condi-
tion affects film boiling, because the liquid does not touch the heater. The
fact that both affect the beginning of the lower film boiling means that
they actually cause film boiling to break down by initiating liquid–solid
contact at low heat fluxes.

Figure 9.15 shows what an actual boiling curve looks like under the in-
fluence of a wetting contact angle. This figure is based on the work of Witte
and Lienhard [9.24, 9.39]. On it are identified a nucleate-transition and a
film-transition boiling region. These are continuations of nucleate boiling

6The contact angle is measured in the liquid, from the surface to the liquid-vapor
interface. A contact angle of 0° means that the liquid completely wets a surface. A
spherical droplet standing on a non-wetting surface has a 180° contact angle. In the case
of water, hydrophilic surfaces have low contact angles, whereas hydrophobic surfaces
have high contact angles. Wetting is affected by surface texture, particularly when
substantial pockets of air within the texture prevent full contact of the liquid with the
surface.

As an example, both lotus leaves and rose petals have high contact angles with water
(160° and 152°, respectively), making droplets on them bead into a nearly spherical
shape. The lotus leaf’s surface structure prevents droplets from making full contact, so
that they can roll right off [9.37]. But the structures on a rose petal hold droplets in
place—even if the petal is turned upside down [9.38].



Figure 9.14 Typical data from Berenson’s [9.35] study of the
effect of surface condition on the boiling curve of a copper plate.
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Figure 9.15 The transition boiling regime.

behavior with decreasing liquid–solid contact (as shown in Fig. 9.3c) and
of film boiling behavior with increasing liquid–solid contact, respectively.
A correlation for the transition-film boiling heat flux was developed by
Ramilison and Lienhard [9.40].

These two regions of transition boiling are often connected by abrupt
jumps, which may occur in different locations depending upon whether
the surface temperature is rising or falling, leading to hysteresis of the
boiling curve. More recent work on transition boiling has been reviewed
by Ghiaasiaan [9.41].

9.7 Other system influences

Surface effects in pool boiling

Figure 9.14 provides a useful picture of the influence of roughness and
surface condition on qmax—influences that are not predicted by the hy-
drodynamic theory. Ramilison et al. [9.42] correlated these effects for
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large flat-plate heaters using the rms surface roughness, r in µm, and the
receding contact angle for the liquid on the heater material, β, in degrees:

qmax

qmaxZ
= 1.042(1− β/180)3.0r0.125 (9.36)

where 2 ⩽ r ⩽ 12 µm and 0 ⩽ β ⩽ 40◦. This correlation collapses Beren-
son’s data to ±6%. Variations from the predictions of hydrodynamic
theory reached 40% as a result of roughness and wettability. Liaw and
Dhir [9.43] showed that increasing the contact angle lowered qmax on a ver-
tical wall, although well-wetted surfaces remained within the predictions
of hydrodynamic theory [9.44].

A great deal of more recent work on boiling has focused on cooling
very small systems where it is practical to use microfabrication techniques
to create “structured surfaces”—surfaces with complex built-up micro-
textures. These surfaces have proved to be useful for achieving higher
boiling heat fluxes at lower temperature differences while maintaining
high values of qmax. Among the most promising surface structures are
those that use subsurface porosity to pump additional liquid into the
heated area.

It is important that we note that these studies reflect a great variety of
small scale configurations. We refer the reader to an excellent summary
of this work by Reed and Dhir [9.44], as well as the review by Shoji and
Mori [9.45]. Those authors conclude that, while structured surfaces have
great potential, they often include data that reflect the hydrodynamic
influence of small sizes (Figs. 9.12 and 9.13) and which may not isolate
the independent effects of surface texture, contact angle, and size.

Experiments on small heaters are also susceptible to induced convec-
tion when sidewalls are not present [9.46]. Induced convection from the
side generally reduces qmax on large flat heaters and increases qmax on
very small heaters. Such experiments may fall within the left-hand region
of Fig. 9.12 as well. Further research is required to fully understand
how induced flow together with heater sizes below λd1 affect qmax on
common surfaces.

Subcooling

A stationary pool will normally not remain below its saturation temper-
ature over an extended period of time. When heat is transferred to the
pool, the liquid soon becomes saturated—as it does in a teakettle (recall
Experiment 9.1). However, before a liquid comes up to temperature, or if
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Figure 9.16 The influence of subcooling on the boiling curve.

a very small rate of forced convection continuously replaces warm liquid
with cool liquid, we can justly ask what the effect of a cool liquid bulk
might be.

Figure 9.16 shows how a typical boiling curve would be shifted if
Tbulk < Tsat: We know, for example (recall Section 8.3), that in laminar
natural convection, q will increase as (Tw − Tbulk)5/4 or as [(Tw − Tsat)+
∆Tsub]5/4, where ∆Tsub ≡ Tsat − Tbulk. During nucleate boiling, the influ-
ence of subcooling on q is known to be small. The peak and minimum
heat fluxes are known to increase linearly with ∆Tsub. These increases
are quite significant. The film boiling heat flux increases rather strongly,
especially at lower heat fluxes. The influence of ∆Tsub on transitional
boiling is not well documented.
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Gravity

The influence of elevated gravity (or any other such body force) is of con-
cern when boiling processes take place in rotating or accelerating systems.
The reduction of gravity has a significant impact on boiling processes
aboard space vehicles. Since g appears explicitly in the equations for
qmax, qmin, and qfilm boiling, we know what its influence is. Both qmax and
qmin increase directly as g1/4 in finite bodies, and there is an additional
gravitational influence through the parameter L′. However, we noted
in the previous section that hydrodynamic transitions deteriorate and
vanish entirely as R′ is reduced below about 0.15. These equations have
been validated with experiments that varied gravity.

Although gravity is crucial to bubble removal in the nucleate boiling
regime, data suggest that the heat transfer rate is only weakly affected
by gravity, perhaps as g1/8 [9.41]. (The presence of g1/2 in Rohsenow’s
empirical correlation for nucleate boiling is a weakness that serves as a
warning not to apply it for anything but earth-normal gravity.) The onset
of nucleate boiling, however, will be affected by the role that gravity plays
in displacing the low-∆T region of natural convection.

Forced convection

A superposed flow over a given heater generally improves heat transfer
in all regimes of the boiling curve. But flow is particularly effective in
raising qmax. Let us look at the influence of forced flow on the different
regimes of boiling.

Influences of forced convection on nucleate boiling. Figure 9.17 shows
nucleate boiling during the forced convection of water over a flat plate.
Bergles and Rohsenow [9.47] offered an empirical strategy for predicting
the heat flux during nucleate flow boiling when the net vapor generation
is still relatively small. (The photograph in Fig. 9.17 shows how a more
substantial buildup of vapor can radically alter flow boiling behavior.)
They suggested that

q = qFC

⌜⃓⃓⎷1+
[︄
qB
qFC

(︄
1− qi

qB

)︄]︄2

(9.37)

where

• qFC is the single-phase forced convection heat transfer for the heater,
as one might calculate using the methods of Chapters 6 and 7.
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• qB is the pool boiling heat flux for that liquid and that heater from
eqn. (9.4).

• qi is the heat flux from the pool boiling curve evaluated at the value
of (Tw−Tsat) where boiling begins during flow boiling (see Fig. 9.17).
An estimate of (Tw − Tsat)onset can be made by intersecting the
forced convection equation q = hFC(Tw − Tb) with the following
equation [9.48]:

(Tw − Tsat)onset =
(︄

8σTsatq
ρghfgkf

)︄1/2

(9.38)

Equation (9.37) will provide a first approximation in most boiling
configurations, but it is restricted to subcooled flows or other situations
in which vapor generation is not too great.

Peak heat flux in flow over submerged bodies. The peak heat flux on a
submerged body is strongly augmented by an external flow around it. We
know from dimensional analysis that

qmax

ρghfgu∞
= fn

(︂
WeD, ρf

/︁
ρg
)︂

(9.39)

where the Weber number, We, is

WeL ≡
ρgu2

∞L
σ

= inertia force
/︁
L

surface force
/︁
L

and where L is any characteristic length.
Kheyrandish and Lienhard [9.49] suggest fairly complex expressions

of this form for qmax on horizontal cylinders in cross flows. For a cylin-
drical liquid jet impinging on a heated disk of diameter D, Sharan and
Lienhard [9.50] obtained

qmax

ρghfgujet
=
(︂
0.21+ 0.0017ρf

/︁
ρg
)︂(︄djet

D

)︄1/3(︃
1000ρg/ρf

WeD

)︃A
(9.40)

where, if we call ρf /ρg ≡ r ,

A = 0.486+ 0.06052 ln r − 0.0378(ln r)2 + 0.00362(ln r)3 (9.41)

This correlation represents all the existing data within ±20% over the full
range of the data.
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Figure 9.17 Forced convection boiling on an external surface.

The influence of fluid flow on film boiling. Bromley et al. [9.51] showed
that the film boiling heat flux during forced flow normal to a cylinder
should take the form

q = constant

(︄
kgρgh′fg∆Tu∞

D

)︄1/2

(9.42)

for u2
∞
/︁
(gD) ⩾ 4 with h′fg from eqn. (9.29). Their data fixed the constant

at 2.70. Witte [9.52] obtained the same relationship for flow over a sphere
and recommended a value of 2.98 for the constant.
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Additional work in the literature deals with forced film boiling on plane
surfaces and combined forced and subcooled film boiling in a variety of
geometries [9.53]. Although these studies are beyond our present scope,
it is worth noting that one may attain very high cooling rates in film
boiling by combining forced convection and subcooling.

9.8 Forced convection boiling in tubes

Flowing fluids often undergo boiling or condensation heat transfer to
fluids moving through tubes. For example, such phase change occurs in
all vapor-compression power cycles and refrigerators. Boilers, condensers,
steam generators, or evaporators involve heat transfer within tubes. The
prediction of heat transfer coefficients in these systems is often essential
to determiningU and sizing the equipment. So let us consider the problem
of predicting boiling heat transfer to liquids flowing through tubes.

Relationship between heat transfer and temperature difference

Forced convection boiling in a tube or duct becomes very hard to delineate
because it takes so many forms. In addition to the usual system variables
considered in pool boiling, convective boiling exhibit many regimes of
behavior. Thus, we need to several boiling mechanisms and the transitions
between them, as well.

Collier and Thome’s excellent book, Convective Boiling and Condensa-
tion [9.54], provides a comprehensive discussion of the issues involved in
forced convection boiling. Figure 9.18 is their representation of the fairly
simple case of flow of liquid in a uniform wall heat flux tube, in which
body forces can be neglected. This situation is representative of a fairly
low heat flux at the wall. The vapor fraction, or quality, x, of the flow
increases steadily until the wall “dries out.” Then the wall temperature
rises rapidly. With a very high wall heat flux, the pipe could burn out
before dryout occurs.

Figure 9.19, also from Collier and Thome, shows how the regimes
shown in Fig. 9.18 are distributed in heat flux and in position along the
tube. Notice that high enough heat fluxes can cause burnout at any station
in the pipe. In the subcooled nucleate boiling regime (B in Fig. 9.18) and
the low quality saturated regime (C), the heat transfer can be predicted
using eqn. (9.37) in Section 9.6. But in the subsequent regimes of slug
flow and annular flow (D, E, and F ) the heat transfer mechanism changes
substantially. Nucleation is increasingly suppressed, and vaporization



Figure 9.18 The development of a two-phase flow in a vertical
tube with a uniform wall heat flux (not to scale).
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Figure 9.19 The influence of heat flux on two-phase flow behavior.

takes place mainly at the free surface of the liquid film on the tube
wall—the flow regime that we call convective boiling.

Most efforts to model flow boiling differentiate between nucleate-
boiling-controlled heat transfer and convective boiling heat transfer. In
those regimes where fully developed nucleate boiling occurs (the later
parts of C), the heat transfer coefficient is essentially unaffected by the
mass flow rate and the flow quality. Locally, conditions are similar to
pool boiling.

In convective boiling, on the other hand, vaporization occurs away
from the wall, with a liquid-phase convection process dominating at the
wall. For example, in the annular regions E and F , heat is convected from
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the wall by the liquid film, and vaporization occurs at the interface of
the film with the vapor in the core of the tube. Convective boiling can
also dominate at low heat fluxes or high mass flow rates, where wall
nucleation is again suppressed. Vaporization then occurs mainly on
entrained bubbles in the core of the tube. The heat transfer coefficient
in convective boiling is essentially independent of the heat flux; but it is
strongly affected by the mass flow rate and quality.

Building a model to capture these complicated and competing trends
has presented a challenge to researchers for several decades. One early
effort by Chen [9.55] used a weighted sum of a nucleate boiling heat trans-
fer coefficient and a convective boiling coefficient, where the weighting
depended on local flow conditions. This model represented water data
to an accuracy of about ±30% [9.56], but did not work well with most
other fluids. Steiner and Taborek [9.57] substantially improved Chen’s
mechanistic prediction. Many other investigators have instead pursued
correlations built from dimensional analysis and physical reasoning.

Correlation through dimensional analysis

To do a dimensional analysis, we first note that the liquid and vapor
phases may have different velocities. Thus, we avoid introducing a flow
speed and instead rely on the superficial mass flux, G, through the pipe:

G ≡ ṁ
Apipe

kg/m2s (9.43)

This mass flow per unit area is constant along the duct if the flow is
steady. From this, we can define a “liquid only” Reynolds number

Relo ≡
GD
µf

(9.44)

which would be the Reynolds number if all the flowing mass were in
the liquid state. Then we may use Relo to compute a liquid-only heat
transfer coefficient, hlo from Gnielinski’s equation, eqn. (7.41), using
liquid properties at Tsat.

We then write the flow boiling heat transfer coefficient, hfb for satu-
rated flow in vertical tubes as:

hfb = fn
(︂
hlo, G,x,hfg, qw , ρf , ρg

)︂
(9.45)

Note that tube diameter and other liquid properties, such as viscosity
and conductivity, are represented indirectly through hlo. This functional
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equation has eight variables in four dimensions (m, kg, s, K). We thus
obtain four dimensionless groups, specifically

hfb

hlo
= fn

(︄
x,

qw
Ghfg

,
ρg
ρf

)︄
(9.46)

In fact, the situation is even a bit simpler than this, since arguments
related to the pressure gradient show that the quality and the density
ratio can be combined into a single group, called the convection number :

Co ≡
(︃

1− x
x

)︃0.8
(︄
ρg
ρf

)︄0.5

(9.47)

The other dimensionless group in eqn. (9.46) is called the boiling number :

Boi ≡ qw
Ghfg

(9.48)

so that
hfb

hlo
= fn (Boi,Co) (9.49)

When the convection number is large (Co ❳ 1), as for low quality,
nucleate boiling dominates. In this range, hfb/hlo rises with increasing
Boi and is approximately independent of Co. When the convection number
is smaller, as at higher quality, the effect of the boiling number declines
and hfb/hlo increases with decreasing Co.

Correlations having the general form of eqn. (9.49) were developed
by Schrock and Grossman [9.58], Shah [9.59], and Gungor and Winter-
ton [9.60]. Kandlikar [9.56, 9.61, 9.62] refined this approach further,
obtaining good accuracy and better capturing the parametric trends. His
method is to calculate hfb/hlo from each of the following two correlations
and to choose the larger value:

hfb

hlo

⃓⃓⃓⃓
nbd

= (1− x)0.8
[︂
0.6683 Co−0.2fo + 1058 Boi0.7F

]︂
(9.50a)

hfb

hlo

⃓⃓⃓⃓
cbd

= (1− x)0.8
[︂
1.136 Co−0.9fo + 667.2 Boi0.7F

]︂
(9.50b)

where “nbd” means “nucleate boiling dominant,” “cbd” means “convective
boiling dominant,” and fo is a factor that characterizes the orientation of
the tube.
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Table 9.4 Fluid-dependent parameter F in the Kandlikar corre-
lation for copper tubing. Additional values are given in [9.61].

Fluid F Fluid F

Water 1.0 R-124 1.90
Propane 2.15 R-125 1.10
R-12 1.50 R-134a 1.63
R-22 2.20 R-152a 1.10
R-32 1.20 R-410a 1.72

In these equations, fo is set to one for vertical tubes7 and F is a fluid-
dependent parameter whose value is given in Table 9.4. The parameter
F arises here for the same reason that fluid-dependent parameters ap-
pear in nucleate boiling correlations: surface tension, contact angles, and
other fluid-dependent variables influence nucleation and bubble growth.
The values in Table 9.4 are for commercial grades of copper tubing. For
stainless steel tubing, Kandlikar recommends F = 1 for all fluids. Equa-
tions (9.50) are applicable for the saturated boiling regimes (C through
F ) with quality in the range 0 < x ⩽ 0.8. For subcooled conditions, see
Problem 9.21.

Example 9.9

0.6 kg/s of saturated H2O at Tb = 207◦C flows in a 5 cm diameter ver-
tical tube heated at a rate of 184,000 W/m2. Find the wall temperature
at a point where the quality x is 20%.

Solution. Data for water are taken from Tables A.3–A.5. We first
compute hlo.

G = ṁ
Apipe

= 0.6
0.001964

= 305.6 kg/m2s

and

Relo =
GD
µf

= (305.6)(0.05)
1.297× 10−4

= 1.178× 105

7The value for horizontal tubes is given in eqn. (9.52).
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From eqns. (7.42) and (7.41):

f = 1[︁
1.82 log10(1.178× 105)− 1.64

]︁2 = 0.01736

NuD =
(0.01736/8)

(︁
1.178× 105 − 1000

)︁
(0.892)

1+ 12.7
√︁

0.01736/8
[︁
(0.892)2/3 − 1

]︁ = 236.3

Hence,

hlo =
kf
D

NuD =
0.6590

0.05
236.3 = 3,115 W/m2K

Next, we find the parameters for eqns. (9.50). From Table 9.4, F = 1
for water, and for a vertical tube, fo = 1. Also,

Co =
(︃

1− x
x

)︃0.8
(︄
ρg
ρf

)︄0.5

=
(︃

1− 0.20
0.2

)︃0.8(︃9.014
856.5

)︃0.5
= 0.3110

Boi = qw
Ghfg

= 184,000
(305.6)(1,913,000)

= 3.147× 10−4

Substituting into eqns. (9.50):

hfb⃓⃓⃓ nbd
= (3,115)(1− 0.2)0.8

[︂
0.6683 (0.3110)−0.2(1)

+ 1058 (3.147× 10−4)0.7(1)
]︂
= 11,950 W/m2K

hfb⃓⃓⃓ cbd
= (3,115)(1− 0.2)0.8

[︂
1.136 (0.3110)−0.9(1)

+ 667.2 (3.147× 10−4)0.7(1)
]︂
= 14,620 W/m2K

Since the second value is larger, we use it: hfb = 14,620 W/m2K. Then,

Tw = Tb +
qw
hfb

= 207+ 184,000
14,620

= 220◦C

The Kandlikar correlation leads to mean deviations of 16% for wa-
ter and 19% for the various refrigerants. The Gungor and Winterton
correlation [9.60], which is popular for its simplicity, does not con-
tain fluid-specific coefficients, but it is somewhat less accurate than ei-
ther the Kandlikar equations or the more complex Steiner and Taborek
method [9.56, 9.57].
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Figure 9.20 The discernible flow regimes
during boiling, condensation, or adiabatic
flow from left to right in horizontal tubes.

Two-phase flow and heat transfer in horizontal tubes

The preceding discussion of flow boiling in tubes is largely restricted to
vertical tubes. Several of the flow regimes in Fig. 9.18 will be altered as
shown in Fig. 9.20 if the tube is oriented horizontally. The reason is that,
especially at low quality, liquid will tend to flow along the bottom of the
pipe and vapor along the top. The patterns shown in Fig. 9.20, by the
way, will also be observed during the reverse process—condensation—or
during adiabatic two-phase flow.

Which flow pattern actually occurs depends on several parameters in a
fairly complex way. Many means have been suggested for predicting what
flow pattern will result for a given set of conditions in a pipe. We suggest
the work of Dukler, Taitel, and their coworkers. They summarized their
two-phase flow-regime maps in [9.63] and [9.64].

For the prediction of heat transfer, the most important additional
parameter is the Froude number, Frlo, which characterizes the strength
of the flow’s inertia (or momentum) relative to the gravitational forces
that drive the separation of the liquid and vapor phases:

Frlo ≡
G2

ρf 2 gD
(9.51)

When Frlo < 0.04, the top of the tube becomes relatively dry and hfb/hlo

begins to decline as the Froude number decreases further.
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Kandlikar found that he could modify his correlation to account for
gravitational effects in horizontal tubes by changing the value of fo in
eqns. (9.50):

fo =

⎧⎨⎩1 for Frlo ≥ 0.04

(25 Frlo)0.3 for Frlo < 0.04
(9.52)

Peak heat flux

We have seen that there are two limiting heat fluxes in flow boiling in a
tube: dryout and burnout. The latter is the more dangerous of the two
since it occurs at higher heat fluxes and gives rise to more catastrophic
temperature rises. Collier and Thome provide an extensive discussion of
the subject [9.54].

One effective set of empirical formulas was developed by Katto [9.65].
He used dimensional analysis to show that

qmax

Ghfg
= fn

(︄
ρg
ρf
,
σρf
G2L

,
L
D

)︄

where L is the length of the tube and D its diameter. Since G2L
/︁
σρf

is a Weber number, we can see that this equation is of the same form
as eqn. (9.39). Katto identifies several regimes of flow boiling with both
saturated and subcooled liquid entering the pipe. For each of these
regions, he and Ohne [9.66] later fit a successful correlation of this form
to existing data.

Pressure gradients in flow boiling

Pressure gradients in flow boiling interact with the flow pattern and the
void fraction, and they can change the local saturation temperature of the
fluid. Gravity, flow acceleration, and friction all contribute to pressure
change, and friction can be particularly hard to predict. In particular, the
frictional pressure gradient can increase greatly as the flow quality rises
from the pure liquid state to the pure vapor state; the change can amount
to more than two orders of magnitude at low pressures.

Data correlations are usually used to estimate the frictional pressure
loss, but they are, at best, accurate to within about ±30%. Whalley [9.67]
provides a nice introduction such methods. Certain complex models,
designed for use in computer codes, can be used to make more accurate
predictions [9.68].
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9.9 Forced convective condensation heat transfer

When vapor is blown or forced past a cool wall, it exerts a shear stress
on the condensate film. If the direction of forced flow is downward, it
will drag the condensate film along, thinning it out and enhancing heat
transfer. It is not hard to show (see Problem 9.22) that

4µk(Tsat − Tw)x
gh′fgρf

(︁
ρf − ρg

)︁ = δ4 + 4
3

[︄
τδδ3(︁

ρf − ρg
)︁
g

]︄
(9.53)

where τδ is the shear stress exerted by the vapor flow on the condensate
film.

Equation (9.53) is the starting point for any analysis of forced convec-
tion condensation on an external surface. Notice that if τδ is negative—if
the shear opposes the direction of gravity—then it will have the effect of
thickening δ and reducing heat transfer. Indeed, if for any value of δ,

τδ = −
3g
(︁
ρf − ρg

)︁
4

δ, (9.54)

the shear stress will have the effect of halting the flow of condensate
completely for a moment until δ grows to a larger value.

Heat transfer solutions based on eqn. (9.53) are complex because they
require that one solve the boundary layer problem in the vapor in order
to evaluate τδ; and this solution must be matched with the velocity at the
outside surface of the condensate film. Collier and Thome [9.54] discuss
such solutions in some detail. One explicit result has been obtained in
this way for condensation on the outside of a horizontal cylinder by
Shekriladze and Gomelauri [9.69]:

NuD = 0.64

⎧⎨⎩ρfu∞Dµf

⎡⎣1+
(︄

1+ 1.69
gh′fgµfD

u2∞kf (Tsat − Tw)

)︄1/2⎤⎦⎫⎬⎭
1/2

(9.55)

where u∞ is the free stream velocity and NuD is based on the liquid
conductivity. Equation (9.55) is valid up to ReD ≡ ρfu∞D

/︁
µf = 106.

Notice, too, that under appropriate flow conditions (large values of u∞,
for example), gravity becomes unimportant and

NuD ⎯→ 0.64
√︁

2ReD (9.56)

The prediction of heat transfer during forced convective condensation
in tubes becomes a different problem for each of the many possible flow
regimes. See [9.54, §10.5] or [9.70] for details.
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9.10 Dropwise condensation

An automobile windshield normally is covered with droplets during a light
rainfall. They are hard to see through, and one must keep the windshield
wiper moving constantly to achieve any kind of visibility. Water has a
high surface tension, and, unless it is very pure, it forms a significant
contact angle with glass. Water normally beads up into droplets on car
windshields. Visibility can be improved by mixing a surfactant chemical
into the windshield-washing water to reduce the surface tension, so that
the droplets will spread into a film. Visibility can also be improved by
preparing a surface with a “wetting agent” to reduce the contact angle.8

Such behavior can also occur on a metallic condensing surface, but
there is an important difference: metal surfaces are usually wetting. When
vapor condenses, a continuous film is formed. It is regrettable that this
is the case, because what is called dropwise condensation is an extremely
effective heat removal mechanism.

Figure 9.21 shows how dropwise condensation works. Droplets grow
from active nucleation sites on the surface, and in this sense there is
a great similarity between nucleate boiling and dropwise condensation.
The similarity persists as the droplets grow, touch, and merge with one
another until one is large enough to be pulled away from its position by
gravity. It then slides off, wiping away the smaller droplets in its path
and leaving a dry swath in its wake. New droplets immediately begin to
grow at the nucleation sites in the path.

The repeated re-creation of the early droplet growth cycle creates a very
efficient heat removal mechanism. It is typically ten times more effective
than film condensation under the same temperature difference. Indeed,
condensing heat transfer coefficients of 200,000 W/m2K can be obtained
with water at 1 atm [9.71]. Were it possible to sustain dropwise condensa-
tion, we would certainly design equipment in such a way as to make use
of it because condenser sizes and costs could be significantly reduced.

Wetting can be temporarily suppressed, and dropwise condensation
can be encouraged, by treating an otherwise clean surface (or the va-
por) with oil, kerosene, a fatty acid, or a silane compound. Ion beam
implantation of nitrogen into metals can also produce dropwise conden-
sation [9.72]. But these treatments either wash away or break down fairly
quickly, especially in steam atmospheres. More permanent solutions have

8A way in which one can accomplish these ends is by wiping the wet window with
a cigarette. It is hard to tell which of the two effects the many nasty chemicals in the
cigarette achieve.



a. The process of liquid removal during dropwise conden-
sation.

b. Typical photograph of dropwise condensation provided by
Professor Borivoje B. Mikić. Notice the dry paths on the left
and in the wake of the middle droplet.

Figure 9.21 Dropwise condensation.
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proven very elusive, with the result that the liquid condensed in heat
exchangers almost always forms a film.

Laboratory experiments on dropwise condensation have typically been
done on surfaces that have been pretreated with oleic, stearic, or other
fatty acids, or with dioctadecyl disulphide or one of the silanes. See [9.73]
for discussion of these nonwetting agents or promoters as they are called.
Such promoters, lacking durability, are normally impractical for industrial
use.9

The obvious tactic of coating the surface with a thin, nonwetting, poly-
mer film (such as PTFE, or Teflon) has also proven challenging. Historically,
such films have required thicknesses in the range of 20 to 30 µm, which
add just enough conduction resistance to reduce the overall heat transfer
coefficient to a value similar to film condensation [9.73], fully defeating
the purpose! More recently, techniques for grafting polymer films to
metals have appeared, allowing an apparently durable film of only about
40 nm thickness [9.74]. For steam condensation, these films have contact
angles of 130◦ with reported heat transfer coefficients above 35 kW/m2K.
Similarly, coatings of graphene have produced contact angles of 90◦

with heat transfer coefficients around 60 kW/m2K [9.75]. These recent
approaches show great promise for resolving a long-standing problem.

Most refrigerants and hydrocarbons have lower surface tension than
water, and these liquids spread into films very readily. The challenge of
promoting dropwise condensation is accordingly greater [9.76].

Noble metals, such as gold, platinum, and palladium, can also be
used as nonwetting coatings, and they have sufficiently high thermal
conductivity to avoid the problem encountered with polymeric coatings.
For gold, however, the minimum effective coating thickness is about
0.2 µm, or about 1 ⁄8 troy ounce per square meter [9.77]—far too expensive
for the vast majority of technical applications.

Just as for film condensation, the presence of a small amount of a
noncondensable gas, such as air, can greatly reduce the heat transfer
rates of dropwise condensation (see discussion on page 455). Because
heat transfer coefficients are much higher for dropwise condensation, the
sensitivity to noncondensable gases is correspondingly greater. This fact
has challenged many experimental studies of dropwise condensation.

Rose [9.73] offers the following expression for the dropwise conden-
sation of steam on short vertical walls, with no noncondensable gases

9Experienced plant engineers were once known to have added rancid butter through
the cup valves of commercial condensers to get at least a temporary improvement of
performance through dropwise condensation.
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Figure 9.22 A typical heat pipe configuration.

present. It applies for pressures from near atmospheric down to 1 kPa,
for contact angles near 90◦:

q = T 0.8
(︂
5∆T + 0.3∆T 2

)︂
kW/m2 (9.57)

Here, T is in ◦C and ∆T is the difference between the bulk vapor and
surface temperatures. Temperature differences in the supporting data
sets are generally below 8 K.

9.11 The heat pipe

A heat pipe is a device that combines the high efficiencies of boiling and
condensation. It is aptly named because it literally pipes heat from a hot
region to a cold one.

The operation of a heat pipe is shown in Fig. 9.22. The pipe is a tube
that can be bent or turned in any way that is convenient. The inside of the
tube is lined with a layer of wicking material. The wick is wetted with an
appropriate liquid. One end of the tube is exposed to a heat source that
evaporates the liquid from the wick. The vapor then flows from the hot
end of the tube to the cold end, where it is condensed. Capillary action
moves the condensed liquid axially along the wick, back to the evaporator
where it is again vaporized.



526 Heat transfer in boiling and other phase-change configurations §9.11

Placing a heat pipe between a hot region and a cold one is thus simi-
lar to connecting the regions with a material of extremely high thermal
conductivity—potentially orders of magnitude higher than any solid mate-
rial. Such devices are used not only for achieving high heat transfer rates
between a source and a sink but for a variety of less obvious purposes.
They are used, for example, to level out temperatures in systems, since
they function almost isothermally and offer very little thermal resistance.

Design considerations in matching a heat pipe to a given application
center on the following issues.

• Selection of the right fluid. The intended operating temperature
of the heat pipe can be met only with a fluid whose saturation
temperatures cover the design temperature range. Depending on
the temperature range needed, the fluid can be a cryogen, an organic
substance, water, a liquid metal, or, in principle, almost any fluid.
However, the following characteristics will serve to limit the vapor
mass flow per watt, provide good capillary action in the wick, and
control the temperature rise between the wall and the wick:

i) High latent heat

ii) High surface tension

iii) Low liquid viscosities

iv) High thermal conductivity

Two fluids that meet these four criteria admirably are water and
mercury, although toxicity and wetting problems discourage the use
of the latter. Ammonia is useful at temperatures that are a bit too
low for water. At high temperatures, sodium and lithium have good
characteristics, while nitrogen is good for cryogenic temperatures.

Fluids can be compared using the merit number, M = hfgσ/νf . M
generally rises to a maximum as the temperature increases, then falls
off again. We should select fluids that operate near their maximum
M . Good fluid selections usually result in values of M that range
from about 1010 to 1012 kg/s3 (see Problem 9.36).

• Selection of the tube material. The tube material must be compatible
with the working fluid. Gas generation and corrosion are particular
considerations. Copper tubes are widely used with water, methanol,
and acetone, but they cannot be used with ammonia. Stainless steel
tubes can be used with ammonia and many liquid metals, but are
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not suitable for long term service with water. In some aerospace
applications, aluminum is used for its low weight, typically with
ammonia as the working fluid.

• Selection and installation of the wick. Like the tube material, the wick
material must be compatible with the working fluid. In addition, the
working fluid must be able to wet the wick. Wicks can be fabricated
from a metallic mesh, from a layer of sintered beads, or simply by
scoring grooves along the inside surface of the tube. Many ingenious
schemes have been created for bonding the wick to the inside of the
pipe and keeping it at optimum porosity.

• Operating limits of the heat pipe. The heat transfer through a heat
pipe is restricted by

i) Viscous drag in the wick at low temperature

ii) The sonic, or choking, speed of the vapor

iii) Drag of the vapor on the counterflowing liquid in the wick

iv) Ability of capillary forces in the wick to pump the liquid through
the pressure rise between evaporator and condenser

v) The boiling burnout heat flux in the evaporator section.

These items must each be dealt with in detail during the design of a
new heat pipe [9.78].

• Control of the pipe performance. Often a given heat pipe will be
called upon to function over a range of conditions—under varying
evaporator heat loads, for example. One way to vary its performance
is through the introduction of a noncondensable gas in the pipe. This
gas will collect at the condenser, limiting the area of the condenser
that vapor can reach. By varying the amount of gas, the thermal
resistance of the heat pipe can be controlled. In the absence of active
control of the gas, an increase in the heat load at the evaporator
will raise the pressure in the pipe, compressing the noncondensable
gas and lowering the thermal resistance of the pipe. The result is
that the temperature at the evaporator remains essentially constant
even as the heat load rises as falls.

Heat pipes have proven useful in cooling high power-density electronic
devices. The evaporator is located on a small electronic component to
be cooled, perhaps a microprocessor, and the condenser is finned and
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cooled by a forced air flow (in a desktop or mainframe computer) or is
unfinned and cooled by conduction into the exterior casing or structural
frame (in a laptop computer). These applications rely on having a heat
pipe with much larger condenser area than evaporator area. Thus, the
heat fluxes on the condenser are kept relatively low, and the ultimate heat
disposal can be as simple as a small fan blowing air over the condenser.
Typical heat pipe cooling systems for personal computer equipment are
shown in Fig. 9.23.

The reader interested in designing or selecting a heat pipe will find a
broad discussion in the book by Dunn and Reay [9.78].

Problems

9.1 A large square tank with insulated sides has a copper base 1.27 cm
thick. The base is heated to 650◦C and saturated water is suddenly
poured in the tank. Plot the temperature of the base as a function of
time on the basis of Fig. 9.2 if the bottom of the base is insulated. In
your graph, indicate the regimes of boiling and note the temperature
at which cooling is most rapid. Note that the base is being quenched
(recall discussion in Example 9.7).

9.2 Predict qmax for the two heaters in Fig. 9.3b. At what percentage
of qmax is each one operating? Hint: Both are operating close
to burnout.

9.3 A very clean glass container of water at 70◦C is depressurized until
it is subcooled 30◦C. Then it suddenly and explosively “flashes” (or
boils). What is the pressure at which this happens? Approximately
what diameter of gas bubble, or other disturbance in the liquid,
caused it to flash?

9.4 Plot the unstable bubble radius as a function of liquid superheat
for water at 1 atm. How far is it reasonable to draw your curve
and why?

9.5 In chemistry class you have probably witnessed the phenomenon
of “bumping” in a test tube (the explosive boiling that blows the
contents of the tube all over the ceiling). Yet you have never seen
this happen in a kitchen pot. Explain why not.

9.6 Use van der Waals equation of state (recall your thermodynamics
course) to approximate the highest reduced temperature to which



Figure 9.23 Two heat-pipe-cooled computer heat sinks. Top:
A Cooler Master unit for cooling a CPU. The copper disk on the
right affixes to the CPU. The visible heat pipes carry heat to the
fin array which is cooled by the fan on the left. Bottom: A Dell
nVidia graphics card cooled by a copper block beneath the fan
in the center. The block feeds four heat pipes which carry heat
to the fin arrays on either side of the fan in the center. Courtesy
of Gene Quach, PC&C Computers, Houston, TX.
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water can be superheated at low pressure. How many degrees
of superheat does this suggest that water can sustain at the low
pressure of 1 atm? (It turns out that this calculation is accurate
within about 10%.) What would Rb be at this superheat?

9.7 Use Yamagata’s equation, (9.3), to determine how nucleation site
density increases with ∆T for Berenson’s curves in Fig. 9.14. In
other words, find c in the relation n = constant ∆T c . Hint : In all
cases, the site density is very strongly dependent on ∆T .

9.8 Suppose that Csf for a given surface is high by 50%. Estimate the
percentage error in q calculated for a given value of ∆T . [Low
by 70%.]

9.9 Water at 100 atm boils on a nickel heater whose temperature is 6◦C
above Tsat. Estimate h and q.

9.10 Water boils on a large flat plate at 1 atm. Calculate qmax if the plate
is operated on the surface of the moon (at 1 ⁄6 of gearth−normal). What
would qmax be in a space vehicle experiencing 10−4 of gearth−normal?

9.11 Water at 1 atm and at its boiling point is electrically heated by a
2 mm diameter horizontal copper wire. Plot q vs. ∆T from ∆T = 0
up to the copper’s melting point. Note that parts of this curve
would be inaccessible.

9.12 Redo Problem 9.11 for a 30 mm diameter sphere in water at 10 atm.

9.13 Verify eqn. (9.17).

9.14 Make a sketch of the q vs. (Tw − Tsat) relation for a pool boiling
process, and describe a graphical method for locating the points
where h is maximum and minimum. What numerical values do you
get for these two h’s from Fig. 9.2? [h = 48,000 and 680 W/m2K]

9.15 A 2 mm diameter jet of methanol is directed normal to the center
of a 1.5 cm diameter disk heater at 1 m/s. How many watts can
safely be supplied by the heater? [Qmax = 6,450 W]

9.16 Saturated water at 1 atm boils on a ½ cm diameter platinum rod.
Estimate the temperature of the rod at burnout. [Trod = 119◦C]

9.17 Plot (Tw − Tsat) and the quality x as a function of position z for
the conditions in Example 9.9. Set z = 0 where x = 0 and end the
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plot where the quality reaches 80%. Hint : The solution will require
trial and error.

9.18 Plot (Tw − Tsat) and the quality x as a function of position in an
8 cm I.D. pipe if 0.3 kg/s of water at 100◦C passes through it and
qw = 200,000 W/m2. Hint : The solution will require trial and error.

9.19 Use dimensional analysis to verify the form of eqn. (9.8).

9.20 Compare the peak heat flux calculated from the data given in
Problem 5.6 with the appropriate prediction. [The prediction is
within 11%.]

9.21 The Kandlikar correlation, eqn. (9.50a), can be adapted subcooled
flow boiling, with x = 0 (region B in Fig. 9.19). Noting that qw =
hfb(Tw − Tsat), show that

qw =
[︂
1058hloF

(︁
Ghfg

)︁−0.7(Tw − Tsat)
]︂10/3

in subcooled flow boiling [9.61].

9.22 Verify eqn. (9.53) by repeating the analysis following eqn. (8.50)
but using the b.c. (∂u/∂y)y=δ = τδ

/︁
µ in place of (∂u/∂y)y=δ = 0.

Verify the statement that includes eqn. (9.54).

9.23 A 7 cm O.D. pipe carrying cool water has an outside temperature
of 40◦C. Saturated steam at 80◦C flows across it. Plot hcondensation

over the range of Reynolds numbers 0 ⩽ ReD ⩽ 106. Do you get
the value at ReD = 0 that you would anticipate from Chapter 8?

9.24 (a) Suppose that you have pits of roughly 2 µm diameter in a metallic
heater surface. At about what temperature might you expect water
to boil on that surface if the pressure is 20 atm? (b) Measurements
have shown that water at atmospheric pressure can be superheated
about 200◦C above its normal boiling point. Roughly how large an
embryonic bubble would be needed to trigger nucleation in water
in such a state? Hint for (b): Your result should be ten times the
atomic lattice spacing of copper.

9.25 Use dimensional analysis to obtain the dimensionless functional
form of the qmax equation for pool boiling and of the qmax equation
for flow boiling on external surfaces. Compare your results to
equations in the text.
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9.26 An imaginary chemist produces a nondegradable additive that will
increase σ by a factor of ten for water at 1 atm. By what factor
will the additive improve qmax during pool boiling on: (a) infinite
flat plates, and (b) small horizontal cylinders? By what factor
will it improve burnout in the flow of jet on a disk? [qmax will
approximately double]

9.27 Steam at 1 atm is blown at 26 m/s over a 1 cm O.D. cylinder at
90◦C. What is h? Can you suggest any physical process within the
cylinder that could sustain this temperature in this flow?

9.28 The water shown in the photo in Fig. 9.17 is at 1 atm, and the
Nichrome heater can be approximated as nickel. What is Tw −Tsat?
Hint : You will need to read a missing dimension from the figure.

9.29 For film boiling on horizontal cylinders, eqn. (9.6a) must take the
form

λd = 2π
√

3

[︄
g
(︁
ρf − ρg

)︁
σ

+ 2
(diam.)2

]︄−1/2

If ρf is 748 kg/m3 for saturated acetone, compare this λd, and the
infinite flat plate value, to Fig. 9.3d. Hint : Note that one can extract
a range of wavelengths from the photos, owing to a disturbance
which, we can see, is moving horizontally across the wave pattern.
Your calculation should show this formula to be far better than the
flat plate value; but the comparison will certainly not be perfect.

9.30 Water at 47◦C flows through a 13 cm diameter thin-walled tube at
8 m/s. Saturated water vapor, at 1 atm, flows across the tube at
50 m/s. Evaluate Ttube, U , and q. [Ttube = 69◦C]

9.31 A 1 cm diameter thin-walled tube carries liquid metal through
saturated water at 1 atm. The throughflow of metal is increased
until burnout occurs. At that point the metal temperature is 250◦C
and h inside the tube is 9600 W/m2K. What is the wall temperature
at burnout? [Twall = 132◦C]

9.32 At about what velocity of liquid metal flow does burnout occur in
Problem 9.31 if the metal is mercury?

9.33 Explain, in physical terms, why eqns. (9.23) and (9.24), instead
of differing by a factor of two, are almost equal. How do these
equations change when H′ is large? Hint : In thinking this through,
remember that burnout depends on the amount of vapor produced.
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9.34 A liquid enters the heated section of a pipe at a location z = 0
with a specific enthalpy ĥin. If the wall heat flux is qw(z) and
the pipe diameter is D, show that the enthalpy a distance z = L
downstream is

ĥ = ĥin +
πD
ṁ

∫︂ L
0
qw(z)dz

Since the quality may be defined as x ≡ (ĥ− ĥf ,sat)
/︁
hfg , show that

for constant qw , when x ⩾ 0

x =
ĥin − ĥf ,sat

hfg
+ 4qwL
GDhfg

9.35 Consider again the x-ray monochrometer described in Problem
7.44. Suppose now that the mass flow rate of liquid nitrogen is
0.023 kg/s, that the nitrogen is saturated at 110 K when it enters
the heated section, and that the passage horizontal. Estimate the
quality and the wall temperature at end of the heated section if
F = 4.70 for nitrogen in eqns. (9.50). As before, assume the silicon
to conduct well enough that the heat load is distributed uniformly
over the surface of the passage.

9.36 Use data from Appendix A and Table 9.1 to calculate the merit
number, M , for the following potential heat-pipe working fluids
over the range 200 K to 600 K in 100 K increments: water, mer-
cury, methanol, ammonia, and HCFC-22. Indicate when data are
unavailable for a fluid at some temperature. What fluids are best
suited for particular temperature ranges?

9.37 Use Rose’s dropwise condensation correlation, eqn. (9.57), to plot
q vs. ∆T for steam pressures of 1 kPa, 10 kPa, and 100 kPa, with
∆T ⩽ 8 K. Calculate the range of h for each pressure. Comment on
the magnitudes of the numbers you obtain.

9.38 Cercignani [9.79] used nonequilibrium gas kinetics to derive the
following expression for the evaporation rate (kg/m2s) from a
superheated liquid surface at T0 into vapor at a lower temperature:

ṁ′′ = ρg,0

√︄
RT0

2π

(︃
ασ

σ +α(1− σ)

)︃(︄∆pg
pg,0

)︄
(9.58)

Here: α = 32π/(32 + 9π); R is the gas constant of the vapor
in J/kg·K; pg,0 is the saturation vapor pressure at T0; ∆pg is the
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difference between the saturation vapor pressure and pressure of
the vapor far from the surface; and 0 < σ ⩽ 1, the accommodation
coefficient, characterizes the likelihood that a vapor molecule will
not bounce off of the liquid surface after hitting it. Lu et al. [9.80]
measured water evaporation rates for ∆pg

/︁
pg,0 ❲ 0.4, reporting

that σ = 0.31 for interfaces at 22–50◦C. Equation (9.58) matches
these data very well. Assuming that σ stays near 0.31 at higher
temperatures, plot the evaporative heat flux into saturated vapor
at 100◦C from a water surface between 100 and 110◦C.
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10. Radiative heat transfer

The sun that shines from Heaven shines but warm,
And, lo, I lie between that sun and thee:
The heat I have from thence doth little harm,
Thine eye darts forth the fire that burneth me:

And were I not immortal, life were done
Between this heavenly and earthly sun.

Venus and Adonis, Wm. Shakespeare, 1593

10.1 The problem of radiative exchange

Chapter 1 included an introduction to heat radiation. We shall now assume
that the following concepts from Chapter 1 are understood:

• Electromagnetic wave spectrum • Stefan-Boltzmann law

• Heat radiation & infrared radiation • Wien’s law

• Black body • Planck’s law

• Absorptance, α • Radiant heat exchange

• Reflectance, ρ • Configuration factor, F1–2

• Transmittance, τ • Emittance, ε
• α+ ρ + τ = 1 • Transfer factor, F1–2

• e(T) and eλ(T) for black bodies • Radiation shielding

We shall also make use of the concept of a radiation heat transfer co-
efficient, which we introduced in Section 2.3. Please review these ideas
before proceeding further (pp. 26–34).
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Figure 10.1 Thermal radiation between two arbitrary surfaces.

The heat exchange problem

Figure 10.1 shows two arbitrary surfaces radiating energy to one another.
The net heat exchange, Qnet, from the hotter surface (1) to the cooler
surface (2) depends on the following influences:

• T1 and T2

• The areas of surfaces 1 and 2, A1 and A2

• The shape, orientation, and spacing of surfaces 1 and 2

• The radiative properties of the surfaces

• Additional surfaces in the environment, which may reflect radiation
from surface 1 to surface 2 and vice versa

• The medium between surfaces 1 and 2 if it absorbs, emits, or “re-
flects” radiation. (When the medium is air, we can usually neglect
these effects.)
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If surfaces 1 and 2 are black, if they are surrounded by air, and if
no heat flows between them by conduction or convection, then only the
first three considerations are involved in determining Qnet. We saw some
elementary examples of how this could be done in Chapter 1, leading to

Qnet = A1F1–2σ
(︁
T 4

1 − T 4
2

)︁
(10.1)

The last three considerations complicate the problem considerably. In
Chapter 1, we saw that these nonideal factors are sometimes included in
a transfer factor F1–2, such that

Qnet = A1F1–2σ
(︁
T 4

1 − T 4
2

)︁
(10.2)

Before we undertake the problem of evaluating heat exchange among real
bodies, we need several definitions.

Some definitions

Emittance. A real body at temperature T does not emit with the black
body emissive power eb = σT 4 but rather with some fraction, ε, of eb. The
same is true of the monochromatic (or single wavelength) emissive power,
eλ(T), which is always lower for a real body than the black body value given
by Planck’s law, eqn. (1.30). Thus, we define either the monochromatic
emittance, ελ

ελ ≡
eλ(λ, T)
eλb(λ, T)

(10.3)

or the total emittance, ε

ε ≡ e(T)
eb(T)

=

∫︂∞
0
eλ(λ, T)dλ

σT 4
=

∫︂∞
0
ελ eλb(λ, T)dλ

σT 4
(10.4)

For real bodies, both ε and ελ are greater than zero and less than one;
for black bodies, ε = ελ = 1. The emittance is determined entirely by the
properties of the surface of the particular body and its temperature. It is
independent of the environment of the body.

Table 10.1 lists typical values of the total emittance for a variety of
substances. Notice that most metals have quite low emittances, unless
they are oxidized. Most nonmetals have emittances that are quite high—
approaching the black body limit of one.

One particular kind of surface behavior is that for which ελ is inde-
pendent of λ. We call such a surface a gray body. The monochromatic



Table 10.1 Total emittances for a variety of surfaces [10.1]

Metals Nonmetals

Surface Temp. (°C) ε Surface Temp. (°C) ε

Aluminum Asbestos 40 0.93–0.97
Polished, 98% pure 200−600 0.04–0.06 Brick
Commercial sheet 90 0.09 Red, rough 40 0.93
Heavily oxidized 90−540 0.20–0.33 Silica 980 0.80–0.85

Brass Fireclay 980 0.75
Highly polished 260 0.03 Ordinary refractory 1090 0.59
Dull plate 40−260 0.22 Magnesite refractory 980 0.38
Oxidized 40−260 0.46–0.56 White refractory 1090 0.29

Copper Carbon
Highly polished electrolytic 90 0.02 Filament 1040−1430 0.53
Slightly polished to dull 40 0.12–0.15 Lampsoot 40 0.95
Black oxidized 40 0.76 Concrete, rough 40 0.94

Gold: pure, polished 90−600 0.02–0.035 Glass
Iron and steel Smooth 40 0.94

Mild steel, polished 150−480 0.14–0.32 Quartz glass (2 mm) 260−540 0.96–0.66
Steel, polished 40−260 0.07–0.10 Pyrex 260−540 0.94–0.74
Sheet steel, rolled 40 0.66 Gypsum 40 0.80–0.90
Sheet steel, strong 40 0.80 Ice 0 0.97–0.98

rough oxide
Cast iron, oxidized 40−260 0.57–0.66 Limestone 400−260 0.95–0.83
Iron, rusted 40 0.61–0.85 Marble 40 0.93–0.95
Stainless, polished 40 0.07–0.17 Black gloss 40 0.90
Stainless, after repeated 230−900 0.50–0.70 White paint 40 0.89–0.97

heating Lacquer 40 0.80–0.95
Wrought iron, smooth 40 0.35 Mica 40 0.75
Wrought iron, dull oxidized 20−360 0.94 Paints

Lead Various oil paints 40 0.92–0.96
Polished 40−260 0.05–0.08 Red lead 90 0.93
Oxidized 40−200 0.63 Paper

Mercury: pure, clean 40−90 0.10–0.12 White 40 0.95–0.98
Platinum Other colors 40 0.92–0.94

Pure, polished plate 200−590 0.05–0.10 Roofing 40 0.91
Oxidized at 590◦C 260−590 0.07–0.11 Plaster, rough lime 40−260 0.92
Drawn wire and strips 40−1370 0.04–0.19 Quartz 100−1000 0.89–0.58

Silver 200 0.01–0.04 Rubber 40 0.86–0.94
Tin 40−90 0.05 Snow 10−20 0.82
Tungsten Water, thickness ≥0.1 mm 40 0.96

Filament 540−1090 0.11–0.16 Wood 40 0.80–0.90
Filament 2760 0.39 Oak, planed 20 0.90
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Black body
at 5772 K

eλ   b

ε = 0.6

eλ = 0.6 eλ b

Figure 10.2 Comparison of the sun’s energy as typically seen
through the earth’s atmosphere with that of a black body having
the same mean temperature, size, and distance from the earth.
(Notice that eλ, just outside the earth’s atmosphere, is far less
than near the surface of the sun because the radiation has spread
out over a vastly greater area.)

emissive power, eλ(T), for a gray body is a constant fraction, ε, of ebλ(T),
as indicated in the inset of Fig. 10.2. In other words, for a gray body, ελ = ε.
No real body is gray, but many exhibit approximately gray behavior. We
see in Fig. 10.2, for example, that the sun appears to us on earth as an
approximately gray body with an emittance of approximately 0.6. Some
materials—for example, copper, aluminum oxide, and certain paints—are
actually pretty close to being gray surfaces at normal temperatures.

Yet, the emittance of most common materials and coatings varies
with wavelength in the thermal range. The total emittance ε accounts
for this behavior at a particular temperature. By using it, we can write
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Specular or mirror-like
reflection of incoming ray.

Reflection which is between
diffuse and specular (a real
surface).

Diffuse radiation in which
directions of departure are
uninfluenced by incoming
ray angle, θ.

Figure 10.3 Specular and diffuse reflection of radiation.
Arrows indicate the magnitude of the heat flux in the directions
indicated.

the emissive power as if the body were gray, without integrating over
wavelength:

e(T) = ε σT 4 (10.5)

We shall use this type of “gray body approximation” often in this chapter.
In situations where surfaces at very different temperatures are in-

volved, the wavelength dependence of ελ must be dealt with explicitly.
This occurs, for example, when sunlight heats objects here on earth. Solar
radiation (from a high temperature source) is on visible wavelengths,
whereas radiation from low temperature objects on earth is mainly in the
infrared range. We look at this issue further in the next section.

Diffuse and directional emission and reflection. The energy emitted
by a non-black surface, together with that portion of an incoming ray of
energy that is reflected by the surface, may leave the body diffusely or
directionally, as shown in Fig. 10.3. That energy may also be emitted or
reflected in a way that lies between these limits. A mirror reflects visible
radiation in an almost perfectly specular fashion. (The “reflection” of a
billiard ball as it rebounds from the side of a pool table is also specular.)
When reflection or emission is diffuse, there is no preferred direction for
outgoing rays. Black body emission is always diffuse.
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The character of the emittance or reflectance of a surface will normally
change with the wavelength of the radiation. If we take account of both
directional and spectral characteristics, then properties like emittance and
reflectance depend on wavelength, temperature, and angles of incidence
and/or departure. In this chapter, we shall assume diffuse behavior for
most surfaces. This approximation works well for many problems in
engineering, in part because most tabulated spectral and total emittances
have been averaged over all angles (in which case they are properly called
hemispherical properties).

Experiment 10.1

Obtain a flashlight with as narrow a spot focus as you can find. Direct
it at an angle onto a mirror, onto the surface of a bowl filled with
sugar, and onto a variety of other surfaces, all in a darkened room.
In each case, move the palm of your hand around the surface of an
imaginary hemisphere centered on the point where the spot touches
the surface. Notice how your palm is illuminated, and categorize the
kind of reflectance of each surface—at least in the range of visible
wavelengths. ♦

Intensity of radiation. To account for the effects of geometry on radiant
exchange, we must think about how angles of orientation affect the
radiation between surfaces. Consider radiation from a circular surface
element, dA, as shown at the top of Fig. 10.4. If the element is black,
the radiation that it emits is indistinguishable from that which would be
emitted from a black cavity at the same temperature, and that radiation
is diffuse — the same in all directions. If it were non-black but diffuse,
the heat flux leaving the surface would again be independent of direction.
Thus, the rate at which energy is emitted in any direction from this diffuse
element is proportional to the projected area of dA normal to the direction
of view, as shown in the upper right side of Fig. 10.4.

If an aperture of area dAa is placed at a radius r and angle θ from
dA and is normal to the radius, it will see dA as having an area cosθ dA.
The energy dAa receives will depend on the solid angle,1 dω, it subtends.
Radiation that leaves dA within the solid angle dω stays within dω as it
travels to dAa. Hence, we define a quantity called the intensity of radiation,

1The unit of solid angle is the steradian. One steradian is the solid angle subtended by
a spherical segment whose area equals the square of its radius. A full sphere therefore
subtends 4πr 2/r 2 = 4π steradians. The aperture dAa subtends dω = dAa

/︁
r 2.
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A single area element 
radiates with equal 
intensity in all 
directions 

The element dAa subtends 
dW = d0 d<j) sin 0 
Its area is 
(1 )

2 sin 0 d0 d<j) 

Top view 
area = dA 

View from 20
°

. 

area = dA cos 20
° 

View from 
horizontal. 
area = d A cos 90

° 

Area seen by dAa = dA cos θ

i

Figure 10.4 Radiation intensity through a unit sphere.

i (W/m2·steradian) using an energy conservation statement:

dQoutgoing = (idω)(cosθ dA) =
{︃

radiant energy from dA
that is intercepted by dAa

(10.6)

Notice that while the heat flux from dA decreases with θ (as indicated
on the right side of Fig. 10.4), the intensity of radiation from a diffuse
surface is uniform in all directions.

Finally, we use our definition of i to express it in terms of the heat
flux from dA. We do this by dividing eqn. (10.6) by dA and integrating
over the entire hemisphere. For convenience we set r = 1, and we note
(see Fig. 10.4) that dω = sinθ dθdφ.

qoutgoing =
∫︂ 2π

φ=0

∫︂ π/2
θ=0

i cosθ (sinθ dθdφ) = πi (10.7a)
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In the particular case of a black body,

ib =
eb
π
= σT

4

π
= fn(T only) (10.7b)

For a given wavelength, we likewise define the monochromatic intensity

iλ =
eλ
π
= fn(T , λ) (10.7c)

10.2 Kirchhoff’s law

The problem of predicting α

The total emittance, ε, of a surface is determined only by the physical
properties and temperature of that surface, as can be seen from eqn. (10.4).
The total absorptance, α, on the other hand, depends on the source
from which the surface absorbs radiation, as well as the surface’s own
characteristics. This happens because the surface may absorb some
wavelengths better than others. Thus, the total absorptance will depend
on the way that incoming radiation is distributed in wavelength. And that
distribution, in turn, depends on the temperature and physical properties
of the surface or surfaces from which radiation is absorbed.

The total absorptance α thus depends on the physical properties
and temperatures of all bodies involved in the heat exchange process.
Kirchhoff’s law2 is an expression that allows us to determine α under
certain restrictions.

Kirchhoff’s law

Kirchhoff’s law is a relationship between the monochromatic, directional
emittance and the monochromatic, directional absorptance of a surface
that is in thermodynamic equilibrium with its surroundings

ελ(T , θ,φ) = αλ(T , θ,φ) exact form of
Kirchhoff’s law

(10.8a)

Kirchhoff’s law states that a body in thermodynamic equilibrium emits as
much energy as it absorbs in each direction and at each wavelength. If this

2Gustav Robert Kirchhoff (1824–1887) developed important new ideas in electrical
circuit theory, thermal physics, spectroscopy, and astronomy. He formulated this
particular “Kirchhoff’s Law” when he was only 25. He and Robert Bunsen (inventor
of the Bunsen burner) subsequently went on to do significant work on radiation from
gases.

https://en.wikipedia.org/wiki/Gustav_Kirchhoff
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were not so, for example, a body might absorb more energy than it emits
in one direction, θ1, and might also emit more than it absorbs in another
direction, θ2. The body would thus pump heat out of its surroundings
from the first direction, θ1, and into its surroundings in the second
direction, θ2. Since whatever matter lies in the first direction would be
refrigerated without any work input, the Second Law of Thermodynamics
would be violated. Similar arguments can be built for the wavelength
dependence. In essence, then, Kirchhoff’s law is a consequence of the
laws of thermodynamics.

For a diffuse body, the emittance and absorptance do not depend on
the angles, and Kirchhoff’s law becomes

ελ(T) = αλ(T) diffuse form of
Kirchhoff’s law

(10.8b)

If, in addition, the body is gray, Kirchhoff’s law is further simplified

ε(T) = α(T) diffuse, gray form
of Kirchhoff’s law

(10.8c)

Equation (10.8c) is the most widely used form of Kirchhoff’s law. Yet,
it is a somewhat dangerous result, since many surfaces are not even
approximately gray. If radiation is emitted on wavelengths much different
from those that are absorbed, then a non-gray surface’s variation of ελ
and αλ with wavelength will matter, as we discuss next.

Total absorptance during radiant exchange

Let us restrict our attention to diffuse surfaces, so that eqn. (10.8b) is the
appropriate form of Kirchhoff’s law. Consider two plates, as shown in
Fig. 10.5. Let the plate at T1 be non-black and that at T2 be black. Then
net heat transfer from plate 1 to plate 2 is the difference between what
plate 1 emits and what it absorbs. Since all the radiation reaching plate 1
comes from a black source at T2, we may write

qnet =
∫︂∞

0
ελ1(T1) eλb(T1)dλ⏞ ⏟⏟ ⏞
emitted by plate 1

−
∫︂∞

0
αλ1(T1) eλb(T2)dλ⏞ ⏟⏟ ⏞

radiation from plate 2
absorbed by plate 1

(10.9)
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Figure 10.5 Heat transfer between two
infinite parallel plates.

From eqn. (10.4), we may write the first integral in terms of total emittance,
as ε1σT 4

1 . We define the total absorptance, α1(T1, T2), as the second
integral divided by σT 4

2 . Hence,

qnet = ε1(T1)σT 4
1⏞ ⏟⏟ ⏞

emitted by plate 1

− α1(T1, T2)σT 4
2⏞ ⏟⏟ ⏞

absorbed by plate 1

(10.10)

We see that the total absorptance depends on T2 as well as T1.
Why does total absorptance depend on both temperatures? It depends

on T1 simply because αλ1 is a property of plate 1 that may be temperature
dependent. It depends on T2 because the spectrum of radiation from
plate 2 depends on the temperature of plate 2 according to Planck’s law,
as we saw in Fig. 1.15.

As a typical example, consider solar radiation incident on a warm roof,
painted black. From Table 10.1, we see that ε is on the order of 0.94. It
turns out that α is just about the same. If we repaint the roof white, ε
will not change noticeably. However, much of the energy arriving from
the sun is carried in visible wavelengths, owing to the sun’s very high



554 Radiative heat transfer §10.2

surface temperature (about 5772 K).3 Our eyes tell us that white paint
reflects sunlight very strongly in these wavelengths, and indeed this is
the case—80 to 90% of the sunlight is reflected. The absorptance of white
paint to energy from the sun is only 0.1 to 0.2—much less than ε for
the energy it emits, which is mainly at infrared wavelengths. For both
paints, eqn. (10.8b) applies. However, in this situation, eqn. (10.8c) is only
accurate for the black paint.

The gray body approximation

The simplest first estimate for total absorptance is the diffuse, gray body
approximation, eqn. (10.8c). It is accurate if the monochromatic emittance
does not vary strongly with wavelength and if the bodies exchanging radi-
ation are at sufficiently similar absolute temperature. The more strongly
the emittance varies with wavelength, the closer these temperatures must
be. Several examples are studied in [10.2], showing that some common
materials may be modeled as gray for up to 30% difference in absolute
temperature, whereas highly selective materials in worst-case scenarios
may have large errors at only a 10% temperature difference.

With eqn. (10.8c), the net heat flux between diffuse, gray, facing plates
can be expressed very simply:

qnet = ε1(T1)σT 4
1 −α1(T1, T2)σT 4

2

≊ ε1(T1)σT 4
1 − ε1(T1)σT 4

2

= ε1σ
(︁
T 4

1 − T 4
2

)︁
(10.11)

More advanced texts describe techniques for calculating total absorptance
(by integration) in other situations [10.3, 10.4].

We should always mistrust eqn. (10.8c) when solar radiation is ab-
sorbed by a low temperature object—a space vehicle or something on
earth’s surface, say. Because the temperatures of the sun and the ab-
sorbing object are very far apart, the solar energy’s wavelengths are
well separated from the object’s emitted wavelengths. In this case, the
best first approximation is to set total absorptance to a value for visible
wavelengths of radiation (near 0.5 µm, like sunlight). Total emittance
may be taken at the object’s actual temperature, typically for infrared
wavelengths. We return to solar absorptance in Section 10.6.

3Ninety percent of the sun’s energy is on wavelengths between 0.33 and 2.2 µm (see
Figure 10.2). For a black object at 300 K, 90% of the radiant energy is between 6.3
and 42 µm, in the infrared. This fact is at the heart of the “greenhouse effect” (see
pp. 599–602).



§10.3 Radiant heat exchange between two finite black bodies 555

Figure 10.6 Some configurations for which the value of the
view factor is immediately apparent.

10.3 Radiant heat exchange between two finite black
bodies

Let us now return to the purely geometric problem of evaluating the view
factor, F1–2. Although the evaluation of F1–2 is also used in the calculation
of heat exchange among diffuse, nonblack bodies, it is the only correction
of the Stefan-Boltzmann law that we need for black bodies.

Some evident results. Figure 10.6 shows three elementary situations in
which the value of F1–2 is evident using just the definition:

F1–2 ≡ fraction of field of view of (1) occupied by (2).

When the surfaces are each isothermal and diffuse, this corresponds to

F1–2 = fraction of energy leaving (1) that reaches (2)

A second apparent result in regard to the view factor is that all the radi-
ant energy leaving a body (1) reaches something else. Thus, conservation
of energy requires

1 = F1–1 + F1–2 + F1–3 + · · · + F1–n (10.12)
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Figure 10.7 A body (1) that views three other bodies and itself
as well.

where (2), (3),…,(n) are all of the bodies in the neighborhood of (1). Fig-
ure 10.7 shows a representative situation in which a body (1) is surrounded
by three other bodies. It sees all three bodies, but it also views itself, in
part. This accounts for the inclusion of the view factor, F1–1 in eqn. (10.12).

By the same token, it should also be apparent from Fig. 10.7 that the
kind of sum expressed by eqn. (10.12) would also be true for any subset
of the bodies seen by body (1). Thus,

F1–(2+3) = F1–2 + F1–3

Of course, such a sum makes sense only when all the view factors are
based on the same viewing surface (body 1 in this case). One might be
tempted to write this sort of sum in the opposite direction, but it would
clearly be untrue,

F(2+3)–1 ≠ F2–1 + F3–1,

since each view factor is for a different viewing surface—(2+ 3), 2, and 3,
in this case.

View factor reciprocity. So far, we have referred to the net radiation
from black surface (1) to black surface (2) as Qnet. Let us refine our
notation a bit, and call this Qnet1–2 :

Qnet1–2 = A1F1–2σ
(︁
T 4

1 − T 4
2

)︁
(10.13)

Likewise, the net radiation from (2) to (1) is

Qnet2–1 = A2F2–1σ
(︁
T 4

2 − T 4
1

)︁
(10.14)
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Of course, Qnet1–2 = −Qnet2–1 . It follows that

A1F1–2σ
(︁
T 4

1 − T 4
2

)︁
= −A2F2–1σ

(︁
T 4

2 − T 4
1

)︁
or

A1F1–2 = A2F2–1 (10.15)

This result, called view factor reciprocity, is very useful in calculations.

Example 10.1

A jet of liquid metal at 2000◦C pours from a crucible. It is 3 mm in
diameter. A long cylindrical radiation shield, 5 cm diameter, surrounds
the jet through an angle of 330◦, but there is a 30◦ slit in it. The jet
and the shield radiate as black bodies. They sit in a room at 30◦C, and
the shield has a temperature of 700◦C. Calculate the net heat transfer:
from the jet to the room through the slit; from the jet to the shield;
and from the inside of the shield to the room.

Solution. By inspection, we see that Fjet–room = 30/360 = 0.08333
and Fjet–shield = 330/360 = 0.9167. The area of the jet per unit length
is Ajet = π(0.003) m2/m length. Thus,

Qnetjet–room = AjetFjet–roomσ
(︂
T 4

jet − T 4
room

)︂
= π(0.003)(0.08333)

(︁
5.67× 10−8)︁(︁22734 − 3034)︁

= 1.19 kW/m

Likewise,

Qnetjet–shield = AjetFjet–shield σ
(︂
T 4

jet − T 4
shield

)︂
= π(0.003)(0.9167)

(︁
5.67× 10−8)︁(︁22734 − 9734)︁

= 12.64 kW/m

The heat absorbed by the shield leaves it by radiation and convection
to the room. (The 700◦C shield temperature would, in reality, have to
have been determined by a calculation that balanced these two effects
with the radiation absorbed from the jet.)

To find the radiation from the inside of the shield to the room, we
need Fshield–room. Since any radiation passing out of the slit goes to the
room, we can find this view factor equating view factors of the shield
and the jet to the room with their view factors to the slit. We treat the
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slit as a plane surface extending between the edges of the shield. The
slit’s area is Aslit = (0.05) sin(30◦/2) = 0.01294 m2/m length. Hence,
using our reciprocity and summation rules, eqns. (10.12) and (10.15),

Fslit–jet =
Ajet

Aslit
Fjet–room =

π(0.003)
0.01294

(0.0833) = 0.06067

Fslit–shield = 1− Fslit–jet = 1− 0.06067 = 0.9393

Fshield–room =
Aslit

Ashield
Fslit–shield

= 0.01294
π(0.05)(330/360)

(0.9393) = 0.08441

Hence, for heat transfer from the inside of the shield only,

Qnetshield–room = AshieldFshield–roomσ
(︁
T 4

shield − T 4
room

)︁
=
[︃
π(0.05)330

360

]︃
(0.08441)(5.67× 10−8)

(︁
9734 − 3034)︁

= 611 W/m

Both the jet and the inside of the shield have relatively small view
factors to the room, so that comparatively little heat is lost through
the slit.

Calculation of the black-body view factor, F1–2. When a view factor is
not obvious, as those in Fig. 10.6 were, or when it cannot be obtained
from other view factors using equations such as (10.12) or (10.15), one
must resort to direct integration. Let us see how to do that.

Consider two elements, dA1 and dA2, of larger black bodies 1 and 2,
as shown in Fig. 10.8. Body 1 and body 2 are each isothermal. Since
element dA2 subtends a solid angle dω1, we use eqn. (10.6) to write

dQ1 to 2 = (i1dω1)(cosβ1 dA1)

But from eqn. (10.7b),

i1 =
σT 4

1

π
Note that because black bodies radiate diffusely, i1 does not vary with
angle; and because these bodies are isothermal, it does not vary with
position. The element of solid angle is given by

dω1 =
cosβ2 dA2

s2
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Figure 10.8 Radiant exchange between two black elements that
are part of the bodies 1 and 2.

where s is the distance from element 1 to element 2 and cosβ2 enters
because dA2 is not necessarily normal to s. Thus,

dQ1 to 2 =
σT 4

1

π

(︃
cosβ1 cosβ2 dA1dA2

s2

)︃
By the same token,

dQ2 to 1 =
σT 4

2

π

(︃
cosβ2 cosβ1 dA2dA1

s2

)︃
Then

Qnet1–2 = σ
(︁
T 4

1 − T 4
2

)︁ ∫︂
A1

∫︂
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.16)

The view factors F1–2 and F2–1 are immediately obtainable from eqn.
(10.16). If we compare this result withQnet1–2 = A1F1–2σ

(︁
T 4

1 −T 4
2

)︁
, we get

F1–2 =
1
A1

∫︂
A1

∫︂
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.17a)
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From the inherent symmetry of the problem, we can also write

F2–1 =
1
A2

∫︂
A2

∫︂
A1

cosβ2 cosβ1

πs2
dA2dA1 (10.17b)

We can easily see that eqns. (10.17a) and (10.17b) are consistent with the
reciprocity relation, eqn. (10.15).

The direct evaluation of F1–2 from eqn. (10.17a) becomes fairly involved,
even for the simplest configurations. Howell, Mengüç, and Siegel [10.5]
provide a comprehensive discussion of such calculations and a large
catalog of results. Howell [10.6] gives an even more extensive tabulation
of view factor equations, which is available on the World Wide Web.

We list some typical expressions for view factors in Tables 10.2 and
10.3. Table 10.2 gives equations for F1–2 for two-dimensional bodies—
various configurations of cylinders and strips that approach infinite length.
Table 10.3 gives F1–2 for some three-dimensional configurations.

Many view factors have been evaluated numerically and presented
in graphical form for easy reference. Figure 10.9, for example, includes
graphs for configurations 1, 2, and 3 from Table 10.3. The reader should
study these results and be sure that the trends they show make sense. Is
it clear, for example, that as the abscissa becomes large, F1–2 ⎯→ constant,
which is < 1, in each case? Can you locate the configuration on the
right-hand side of Fig. 10.6 in Fig. 10.9? And so forth.

Figure 10.10 shows view factors for another kind of configuration—one
in which one area is very small in comparison with the other one. Many
solutions like this exist because they are a bit less difficult to calculate,
and they can often be very useful in practice.

To find shape factors for configurations that lack charts or tabulated
equations, we may often combine known shape factors for components
of the configuration, using eqns. (10.12) and (10.15). Examples 10.2, 10.3,
and 10.4 illustrate this very useful technique.

Example 10.2

Find F1–2 for the configuration of two offset squares of area A, as
shown in Fig. 10.11.

Solution. In this case we see how to obtain a view factor by the
creative use of the various equations relating view factors to one



Table 10.2 View factors for a variety of two-dimensional
configurations (infinite in extent normal to the paper)

Configuration Equation

1.
F1–2 = F2–1 =

√︄
1+

(︃
h
w

)︃2

−
(︃
h
w

)︃

2.

F1–2 = F2–1 = 1− sin(α/2)

3.
F1–2 =

1
2

⎡⎣1+ h
w
−
√︄

1+
(︃
h
w

)︃2
⎤⎦

4.

F1–2 =
(︁
A1 +A2 −A3

)︁/︁
2A1

5.

F1–2 =
r

b − a

[︃
tan−1 b

c
− tan−1 a

c

]︃

6.
Let X = 1+ s/D. Then:

F1–2 = F2–1 =
1
π

[︃√︁
X2 − 1+ sin−1 1

X
−X

]︃

7.

F1–2 = 1, F2–1 =
r1

r2
, and

F2–2 = 1− F2–1 = 1− r1

r2
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Table 10.3 View factors for some three-dimensional configurations

Configuration Equation

1. Let X = a/c and Y = b/c. Then:

F1–2 =
2

πXY

⎧⎨⎩ln

[︄
(1+X2)(1+ Y 2)

1+X2 + Y 2

]︄1/2

−X tan−1X − Y tan−1 Y

+X
√︁

1+ Y 2 tan−1 X√
1+ Y 2

+ Y
√︁

1+X2 tan−1 Y√
1+X2

⎫⎬⎭
2. Let H = h/ℓ and W = w/ℓ. Then:

F1–2 =
1
πW

⎧⎪⎨⎪⎩W tan−1 1
W
−
√︁
H2 +W 2 tan−1(︁H2 +W 2)︁−1/2

+H tan−1 1
H
+ 1

4
ln

⎧⎨⎩
[︄
(1+W 2)(1+H2)

1+W 2 +H2

]︄

×
[︄
W 2(1+W 2 +H2)
(1+W 2)(W 2 +H2)

]︄W2 [︄
H2(1+H2 +W 2)
(1+H2)(H2 +W 2)

]︄H2⎫⎬⎭
⎫⎪⎬⎪⎭

3.

Let R1 = r1/h, R2 = r2/h, and X = 1+
(︁
1+ R2

2

)︁/︁
R2

1 . Then:

F1–2 =
1
2

[︃
X −

√︂
X2 − 4(R2/R1)2

]︃

4.

Concentric spheres:

F1–2 = 1, F2–1 =
(︁
r1/r2

)︁2, F2–2 = 1−
(︁
r1/r2

)︁2
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Figure 10.10 The view factor for three very small surfaces
“looking at” three large surfaces (A1 ≪ A2).

564
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Figure 10.11 Radiation between two
offset perpendicular squares.

another. Consider two fictitious areas 3 and 4 as indicated by the
dotted lines. The view factor between the combined areas, (1+3) and
(2+4), can be obtained from Fig. 10.9. In addition, we can write that
view factor in terms of the unknown F1–2 and other known view factors:

(2A)F(1+3)–(4+2) = AF1–4 +AF1–2 +AF3–4 +AF3–2

2F(1+3)–(4+2) = 2F1–4 + 2F1–2

F1–2 = F(1+3)–(4+2) − F1–4

And F(1+3)–(4+2) can be read from Fig. 10.9 (atφ = 90,w/ℓ = 1/2, and
h/ℓ = 1/2) as 0.245 and F1–4 as 0.20. Thus,

F1–2 = (0.245− 0.20) = 0.045

Example 10.3

A heater (h) as shown in Fig. 10.12 radiates to the partially conical
shield (s) that surrounds it. If the heater and shield are black, calculate
the net heat transfer from the heater to the shield.

Solution. First imagine a plane (i) laid across the open top of the
shield:

Fh−s + Fh−i = 1

Fh−i can be obtained from Fig. 10.9 or case 3 of Table 10.3, for R1 =
r1/h = 5/20 = 0.25 and R2 = r2/h = 10/20 = 0.5. The result is
Fh−i = 0.192. Then

Fh−s = 1− 0.192 = 0.808
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Figure 10.12 Heat transfer from a disk heater to its radiation shield.

Thus,

Qneth−s = AhFh−s σ
(︁
T 4
h − T 4

s
)︁

= π
4
(0.1)2(0.808)(5.67× 10−8)

[︂
(1200+ 273)4 − 3734

]︂
= 1687 W

Example 10.4

Suppose that the shield in Example 10.3 were heating the region where
the heater is presently located. What would Fs−h be?

Solution. From eqn. (10.15) we have

AsFs−h = AhFh−s

But the frustum-shaped shield has an area of

As = π(r1 + r2)
√︂
h2 + (r2 − r1)2

= π(0.05+ 0.1)
√︁

0.22 + 0.052 = 0.09715 m2

and
Ah =

π
4
(0.1)2 = 0.007854 m2
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so

Fs−h =
0.007854
0.09715

(0.808) = 0.0653

10.4 Heat transfer among gray bodies

Electrical analogy for gray body heat exchange

An electric circuit analogy for heat exchange among diffuse gray bodies
was developed by Oppenheim [10.7] in 1956. He began with the definition
of two new quantities:

H (W/m2) ≡ irradiance =
{︃

flux of energy that irradiates
the surface

and

B (W/m2) ≡ radiosity =
{︃

total flux of radiative energy
away from the surface

The radiosity can be expressed as the sum of the irradiated energy that is
reflected by the surface and the radiation emitted by it. Thus,

B = ρH + εeb (10.18)

We can immediately write the net heat flux leaving any particular
surface as the difference between B and H for that surface. Then, with
the help of eqn. (10.18), we get

qnet = B −H = B − B − εeb
ρ

(10.19)

This equation can be rearranged as

qnet =
ε
ρ
eb −

1− ρ
ρ

B (10.20)

If the surface is opaque, so that τ = 0, then 1− ρ = α; and if it is gray,
α = ε. Then, eqn. (10.20) gives

qnetA = Qnet =
eb − B
ρ/εA

= eb − B
(1− ε)

/︁
εA

(10.21)

Equation (10.21) may be viewed as a form of Ohm’s law. It tells us that
(eb−B) can be seen as a driving potential for transferring heat away from
a surface through an effective surface resistance, (1− ε)/εA.
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Figure 10.13 The electrical circuit analogy for radiation
between two gray infinite plates.

Now consider heat transfer from one infinite gray plate to another
parallel to it. Radiant energy flows past an imaginary surface, parallel
to the first infinite plate and quite close to it, as shown as a dotted line
in Fig. 10.13. If the gray plate is diffuse, its radiation has the same
geometrical distribution as that from a black body, and it will travel to
other objects in the same way that black body radiation would. Therefore,
we can treat the radiation leaving the imaginary surface—the radiosity,
that is—as though it were black body radiation travelling to an imaginary
surface above the other plate. Thus, by analogy to eqn. (10.13),

Qnet1–2 = A1F1–2(B1 − B2) =
B1 − B2(︄

1

A1F1–2

)︄ (10.22)

where the final fraction is also a form of Ohm’s law: the radiosity difference
(B1 − B2), can be said to drive heat through the geometrical resistance,
1/A1F1–2, that describes the field of view between the two surfaces.

When two gray surfaces exchange radiation only with each other, the
net radiation flows through a surface resistance for each surface and a
geometric resistance for the configuration. The electrical circuit shown
in Fig. 10.13 expresses the analogy and gives us means for calculating
Qnet1–2 using Ohm’s law. Recalling that eb = σT 4, we obtain

Qnet1–2 =
eb1 − eb2∑︂
resistances

=
σ
(︁
T 4

1 − T 4
2

)︁(︄
1− ε
εA

)︄
1

+
1

A1F1–2
+
(︄

1− ε
εA

)︄
2

(10.23)

For the particular case of infinite parallel plates, F1–2 = 1 and A1 = A2
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(Fig. 10.6); and, with qnet1–2 = Qnet1–2/A1, we find

qnet1–2 =
σ
(︁
T 4

1 − T 4
2

)︁(︄
1

ε1
+

1

ε2
− 1

)︄ (10.24)

Comparing eqn. (10.24) with eqn. (10.2), we may identify

F1–2 =
1(︃

1
ε1
+ 1
ε2
− 1

)︃ (10.25)

for infinite, gray, parallel plates. Notice, too, that if the plates are both
black (ε1 = ε2 = 1), then both surface resistances are zero and

F1–2 = 1 = F1–2

which, of course, is what we would have expected.

Example 10.5 One gray body enclosed by another

Evaluate the heat transfer and the transfer factor for one gray body
enclosed by another, as shown in Fig. 10.14.

Solution. The electrical circuit analogy is exactly the same as that
shown in Fig. 10.13, and F1–2 is still one. Therefore, with eqn. (10.23),

Qnet1–2 =
σ
(︁
T 4

1 − T 4
2

)︁(︄
1− ε1

ε1A1
+

1

A1
+

1− ε2

ε2A2

)︄ (10.26)

Figure 10.14 Heat transfer between
an enclosed body and the body
surrounding it.
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The transfer factor may again be identified by comparison to eqn. (10.2):

Qnet1–2 = A1
1

1
ε1
+ A1

A2

(︃
1
ε2
− 1

)︃
⏞ ⏟⏟ ⏞

=F1–2

σ
(︁
T 4

1 − T 4
2

)︁
(10.27)

This calculation is valid only when body 1 does not view itself.

Example 10.6 Transfer factor reciprocity

Derive F2–1 for the enclosed bodies shown in Fig. 10.14.

Solution. The net radiation from each body is equal and opposite:

Qnet1–2 = −Qnet2–1

A1F1–2σ
(︁
T 4

1 − T 4
2

)︁
= −A2F2–1σ

(︁
T 4

1 − T 4
2

)︁
from which we obtain the reciprocity relationship for transfer factors:

A1F1–2 = A2F2–1 (10.28)

Hence, with the result of Example 10.5, we have

F2–1 =
A1

A2
F1–2 =

1
1
ε1

A2

A1
+
(︃

1
ε2
− 1

)︃ (10.29)

Example 10.7 Small gray object in a large environment

DeriveF1–2 for a small gray object (1) in a large isothermal environment
(2), the result that was given as eqn. (1.35).

Solution. We may use eqn. (10.27) with A1/A2 ≪ 1:

F1–2 =
1

1
ε1
+ A1

A2⏞⏟⏟⏞
≪1

(︃
1
ε2
− 1

)︃ ≊ ε1 (10.30)

A large enclosure does not reflect much radiation back to the small
object, and therefore acts as a perfect absorber of the small object’s
radiation—a black body. Note that the same result is obtained for any
value of A1/A2 if the enclosure is black (ε2 = 1).
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Additional two-body exchange problems

Radiation shields. A radiation shield is a surface, usually of high re-
flectance, that is placed between a high-temperature source and its cooler
environment. Earlier examples in this chapter and in Chapter 1 show how
such a surface can reduce heat exchange. Let us now examine the role
of reflectance (or emittance, ε = 1− ρ) in the performance of a radiation
shield.

Consider a gray body 1 surrounded by another gray body 2, as dis-
cussed in Example 10.5. Suppose now that a thin sheet of reflective
material is placed between bodies 1 and 2 as a radiation shield. The sheet
will reflect radiation arriving from body 1 back toward body 1; likewise,
owing to its low emittance, it will radiate little energy to body 2.

The radiation from body 1 to the inside of the shield and from the
outside of the shield to body 2 are each two-body exchange problems,
coupled by the shield temperature. We may put the various radiation
resistances in series to find (see Problem 10.46)

Qnet1–2 =
σ
(︁
T 4

1 − T 4
2

)︁(︄
1− ε1

ε1A1
+

1

A1
+

1− ε2

ε2A2

)︄
+ 2

(︄
1− εs
εsAs

)︄
+

1

As⏞ ⏟⏟ ⏞
added by shield

(10.31)

assuming F1–s = Fs–2 = 1. Note that the radiation shield reduces Qnet1–2

more if its emittance is smaller, i.e., if it is highly reflective.

Specular surfaces. The electrical circuit analogy that we have developed
is for diffuse surfaces. If the surface reflection or emission has directional
characteristics, different methods of analysis must be used [10.4].

One important special case deserves to be mentioned. If the two
gray surfaces in Fig. 10.14 are diffuse emitters but are perfectly specular
reflectors—that is, if they each have only mirror-like reflections—then an
energy balance shows that the transfer factor is [10.8, §4.3.1]

F1–2 =
1(︃

1
ε1
+ 1
ε2
− 1

)︃ for specularly
reflecting bodies

(10.32)

Remarkably, this result is identical to eqn. (10.25) for parallel plates. Since
parallel plates are a special case of the situation in Fig. 10.14, it follows in
that case that eqn. (10.25) is true for either specular or diffuse reflection.
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Example 10.8

A physics experiment uses liquid nitrogen as a coolant. Saturated
liquid nitrogen at 80 K flows through a 6.35 mm O.D. stainless steel
line (εl = 0.2) inside a vacuum chamber. The chamber walls are at
Tc = 230 K and are at some distance from the line. Determine the
heat gain of the line per unit length. If a second thin stainless steel
tube, 12.7 mm in diameter, is placed around the line to act as radiation
shield, to what rate is the heat gain reduced? Find the temperature of
the shield.

Solution. The nitrogen coolant will hold the surface of the line at
essentially 80 K, since the thermal resistances of the tube wall and the
internal convection or boiling process are small. Without the shield,
we can model the line as a small object in a large enclosure, as in
Example 10.7:

Qgain = (πDl)εlσ
(︁
T 4
c − T 4

l
)︁

= π(0.00635)(0.2)
(︁
5.67× 10−8)︁(︁2304 − 804)︁ = 0.624 W/m

With the shield, eqn. (10.31) applies. Assuming that the chamber area
is large compared to the shielded line (Ac ≫ As ),

Qgain =
σ
(︁
T 4
c − T 4

l
)︁(︄

1− εl
εlAl

+
1

Al
+

1− εc
ε2Ac⏞ ⏟⏟ ⏞
neglect

)︄
+ 2

(︄
1− εs
εsAs

)︄
+

1

As

=
π(0.00635)

(︁
5.67× 10−8

)︁(︁
2304 − 804

)︁(︄
1− 0.2

0.2
+ 1

)︄
+ 0.00635

0.0127

[︄
2

(︄
1− 0.2

0.2

)︄
+ 1

]︄

= 0.328 W/m

The radiation shield would cut the heat gain by 47%.
The temperature of the shield, Ts , may be found using the heat

loss and considering the heat flow from the chamber to the shield,
with the shield now acting as a small object in a large enclosure:

Qgain = (πDs)εsσ
(︁
T 4
c − T 4

s
)︁

0.328 W/m = π(0.0127)(0.2)
(︁
5.67× 10−8)︁(︁2304 − T 4

s
)︁

Solving, we find Ts = 213 K.
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The electrical circuit analogy when more than two gray bodies
are involved in heat exchange

Let us first consider a three-body interaction, as pictured in at the bottom
and left-hand sides of Fig. 10.15. The triangular circuit for three bodies
is not so easy to analyze as the in-line circuits obtained in two-body
problems. The idea is to apply energy conservation at each radiosity node
in the circuit. We equate the net heat transfer from any one of the bodies
(which we designate as i)

Qneti =
ebi − Bi
1− εi
εiAi

(10.33a)

to the sum of the net radiation to each of the other bodies (call them j)

Qneti =
∑︂
j

⎛⎝ Bi − Bj
1
/︂
AiFi-j

⎞⎠ (10.33b)

For the three bodies shown in Fig. 10.15, this procedure leads to three
equations

Qnet1 , at node B1:
eb1 − B1

1− ε1

ε1A1

=
B1 − B2

1
A1F1–2

+
B1 − B3

1
A1F1–3

(10.34a)

Qnet2 , at node B2:
eb2 − B2

1− ε2

ε2A2

=
B2 − B1

1
A1F1–2

+
B2 − B3

1
A2F2–3

(10.34b)

Qnet3 , at node B3:
eb3 − B3

1− ε3

ε3A3

=
B3 − B1

1
A1F1–3

+
B3 − B2

1
A2F2–3

(10.34c)

If the temperatures T1, T2, and T3 are known (so that eb1 , eb2 , eb3

are known), these equations can be solved simultaneously for the three
unknowns, B1, B2, and B3. After solving, one can compute the net heat
transfer to or from any body i from either of eqns. (10.33).

Thus far, we have considered only cases in which the surface temper-
ature is known for each body involved in the heat exchange process. Let
us consider two other possibilities.
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Figure 10.15 The electrical circuit analogy for radiation among
three gray surfaces.

An insulated wall. If a wall is adiabatic, Qnet = 0 at that wall. For
example, if wall 3 in Fig. 10.15 is insulated, then eqn. (10.33b) shows
that eb3 = B3. We can eliminate one leg of the circuit, as shown on the
right-hand side of Fig. 10.15; likewise, the left-hand side of eqn. (10.34c)
equals zero. This means that all radiation absorbed by an adiabatic wall
is immediately reemitted. Such walls are sometimes called “refractory
surfaces” in discussing thermal radiation.

The circuit for an insulated wall can be treated as a series-parallel
circuit, since all the heat from body 1 flows to body 2, even if it does so
by travelling first to body 3. Then

Qnet1 =
eb1 − eb2

1− ε1

ε1A1
+

1

1

1 /(A1F1–3) + 1 /(A2F2–3)
+

1

1 /(A1F1–2)

+ 1− ε2

ε2A2

(10.35)
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A specified wall heat flux. The heat flux leaving a surface may be known,
for example, if it is an electrically powered radiant heater. In this case, the
left-hand side of one of eqns. (10.34) can be replaced with the surface’s
known Qnet, via eqn. (10.33b).

For the adiabatic wall case just considered, if surface 1 had a specified
heat flux, then eqn. (10.35) could be solved for eb1 and the unknown
temperature T1.

Example 10.9

Two very long strips, 1 m wide and 2.40 m apart, face each other as
shown in Fig. 10.16. (a) Find Qnet1–2 (W/m) if the surroundings are
black and at 250 K. (b) Find Qnet1–2 (W/m) if they are connected by an
insulated and isothermal diffuse reflector between the edges on both
sides. Also evaluate the temperature of the reflector in part (b).

Solution. From Table 10.2, case 1, we find F1–2 = 0.2 = F2–1. In
addition, F2–3 = 1 − F2–1 = 0.8, irrespective of whether surface 3
represents the surroundings or the insulated shield.

In case (a), surface 3 is the surroundings at T3 = 250 K. Evaluating
eb1 = σT 4

1 and eb2 = σT 4
2 , the nodal equations (10.34a) and (10.34b)

become

1451− B1

(1− 0.3)/0.3
= B1 − B2

1/0.2
+
B1 − B3

1/0.8

459.3− B2

(1− 0.5)/0.5
= B2 − B1

1/0.2
+
B2 − B3

1/0.8

Equation (10.34c) cannot be used directly for black surroundings, since
ε3 = 1 and the surface resistance in the left-hand side denominator
would be zero. But the numerator is also zero in this case, since

Figure 10.16 Illustration for
Example 10.9.
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eb3 = B3 for black surroundings. And since we now know B3 = σT 4
3 =

221.5 W/m2K, we can use it directly in the two equations above. Thus,

B1 − 0.14B2 − 0.56(221.5) = 435.6
−B1 + 10.00B2 − 4.00(221.5) = 2296.5

or

B1 − 0.14B2 = 559.6
−B1 + 10.00B2 = 3182.5

}︄
so

{︄
B1 = 612.1 W/m2

B2 = 379.5 W/m2

The net flow from surface 1 to surface 2 is quite small:

Qnet1–2 =
B1 − B2

1 /(A1F1–2)
= 46.53 W/m

Since each strip also loses heat to the surroundings, Qnet1 ≠ Qnet2 ≠
Qnet1–2 .

For case (b), with the adiabatic shield in place, eqn. (10.34c) can be
combined with the other two nodal equations:

0 =
B3 − B1

1/0.8
+
B3 − B2

1/0.8

The three equations can be solved manually, by the use of determinants,
or with matrix algebra software. The result is

B1 = 987.7 W/m2 B2 = 657.4 W/m2 B3 = 822.6 W/m2 (10.36)

In this case, because surface 3 is adiabatic, all net heat transfer from
surface 1 is to surface 2: Qnet1 = Qnet1–2 . Then, from eqn. (10.33b), we
get

Qnet1–2 =
[︃

987.7− 657.4
1/(1)(0.2)

+ 987.7− 822.6
1/(1)(0.8)

]︃
= 198 W/m (10.37)

Of course, because surface 3 is insulated,Qnet1–2 may be calculated
much more directly using eqn. (10.35):

Qnet1–2 =
5.67× 10−8

(︁
4004 − 3004

)︁
0.7
0.3

+
1

1

1/0.8+ 1/0.8
+ 0.2

+
0.5
0.5

= 198 W/m (10.38)
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The result, of course, is the same. We note that the presence of the
reflector significantly increases the net heat flow from surface 1 to
surface 2.

The temperature of the reflector (3) is obtained from eqn. (10.33a)
with Qnet3 = 0:

0 = eb3 − B3 = 5.67× 10−8T 4
3 − 822.6

so
T3 = 347 K

Algebraic solution of multisurface enclosure problems

An enclosure can consist of any number of surfaces that exchange radiation
with one another. The evaluation of radiant heat transfer amongst these
surfaces proceeds in essentially the same way as for three surfaces. For
multisurface problems, however, the electrical circuit approach is less
convenient than a formulation based on matrices. The matrix equations
are usually solved on a computer.

An enclosure formed by n surfaces is shown in Fig. 10.17. As before,
we will assume that:

• Each surface is diffuse, gray, and opaque, so that ε = α and ρ = 1−ε.

• The temperature and net heat flux are uniform over each surface
(more precisely, the radiosity must be uniform and the other prop-
erties are averages for each surface). Either the temperature or the
flux must be specified on every surface.

• The view factor, Fi-j , between any two surfaces i and j is known.

• Conduction and convection within the enclosure can be neglected,
and any fluid in the enclosure is transparent and nonradiating.

We are interested in determining the heat fluxes at the surfaces where
temperatures are specified, and vice versa.

The rate of heat loss from the ith surface of the enclosure can con-
veniently be written in terms of the radiosity, Bi, and the irradiation, Hi,
from eqns. (10.19) and (10.21)

qneti = Bi −Hi =
εi

1− εi

(︂
σT 4

i − Bi
)︂

(10.39)
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Figure 10.17 An enclosure composed of n diffuse, gray surfaces.

where
Bi = ρiHi + εiebi =

(︁
1− εi

)︁
Hi + εiσT 4

i (10.40)

However, AiHi, the irradiating heat transfer incident on surface i, is the
sum of the energies reaching i from all other surfaces, including itself

AiHi =
n∑︂
j=1

AjBjFj-i =
n∑︂
j=1

BjAiFi-j

where we have used the reciprocity rule, AjFj-i = AiFi-j . Thus

Hi =
n∑︂
j=1

BjFi-j (10.41)

It follows from eqns. (10.40) and (10.41) that

Bi = (1− εi)
n∑︂
j=1

BjFi-j + εiσT 4
i (10.42)

This equation applies to every surface, i = 1, . . . , n. When all the surface
temperatures are specified, the result is a system of n linear equations
for the n unknown radiosities.

For numerical purposes, it is convenient to introduce the Kronecker
delta,

δij =

⎧⎨⎩1 for i = j
0 for i ≠ j

(10.43)
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and to rearrange eqn. (10.42) as a system of linear equations

n∑︂
j=1

[︂
δij − (1− εi)Fi-j

]︂
⏞ ⏟⏟ ⏞

≡Cij

Bj = εiσT 4
i for i = 1, . . . , n (10.44)

The radiosities are then found by inverting the matrix Cij . The rate of
heat loss from the ith surface, Qneti = Aiqneti , can be obtained from
eqn. (10.39).

For those surfaces where heat fluxes are prescribed, we can eliminate
the εiσT 4

i term in eqn. (10.42) or (10.44) using eqn. (10.39). We again
obtain a matrix equation that can be solved for the Bi’s. Finally, eqn. (10.39)
is solved for the unknown temperature of surface in question.

In many cases, the radiosities themselves are of no particular interest.
The heat flows are what is really desired. With a bit more algebra (see
Problem 10.45), one can formulate a matrix equation for the n unknown
values of qneti , for i = 1, . . . , n:

n∑︂
j=1

[︄
δij
εi
−
(1− εj)
εj

Fi-j

]︄
qnetj =

n∑︂
j=1

(︂
δij − Fi-j

)︂
σT 4

j (10.45)

Example 10.10

Two sides of a long triangular duct, as shown in Fig. 10.18, are made
of stainless steel (ε = 0.5) and are maintained at 500◦C. The third
side is of copper (ε = 0.15) and has a uniform temperature of 100◦C.
Calculate the rate of heat transfer to the copper base per meter of
length of the duct.

Solution. Assume the duct walls to be gray and diffuse and that
convection is negligible. The view factors can be calculated from
configuration 4 of Table 10.2:

F1–2 =
A1 +A2 −A3

2A1
= 0.5+ 0.3− 0.4

1.0
= 0.4 (10.46)

Similarly, F2–1 = 0.67, F1–3 = 0.6, F3–1 = 0.75, F2–3 = 0.33, and
F3–2 = 0.25. The surfaces cannot “see” themselves, so F1–1 = F2–2 =
F3–3 = 0. Equation (10.42) leads to three algebraic equations for the
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Figure 10.18 Illustration for Example 10.10.

three unknowns, B1, B2, and B3.

B1 =
(︁
1− ε1

)︁⏞ ⏟⏟ ⏞
0.85

(︁
F1–1⏞ ⏟⏟ ⏞

0

B1 + F1–2⏞ ⏟⏟ ⏞
0.4

B2 + F1–3⏞ ⏟⏟ ⏞
0.6

B3
)︁
+ ε1⏞⏟⏟⏞

0.15

σT 4
1

B2 =
(︁
1− ε2

)︁⏞ ⏟⏟ ⏞
0.5

(︁
F2–1⏞ ⏟⏟ ⏞
0.67

B1 + F2–2⏞ ⏟⏟ ⏞
0

B2 + F2–3⏞ ⏟⏟ ⏞
0.33

B3
)︁
+ ε2⏞⏟⏟⏞

0.5

σT 4
2

B3 =
(︁
1− ε3

)︁⏞ ⏟⏟ ⏞
0.5

(︁
F3–1⏞ ⏟⏟ ⏞
0.75

B1 + F3–2⏞ ⏟⏟ ⏞
0.25

B2 + F3–3⏞ ⏟⏟ ⏞
0

B3
)︁
+ ε3⏞⏟⏟⏞

0.5

σT 4
3

This system can easily be solved numerically using matrix methods.
Alternatively, we can substitute the third equation into the first two to
eliminate B3, and then use the second equation to eliminate B2 from
the first. The result is

B1 = 0.232σT 4
1 + 0.319σT 4

2 + 0.447σT 4
3

Equation (10.39) gives the rate of heat loss by surface 1 as

Qnet1 = A1
ε1

1− ε1

(︁
σT 4

1 − B1
)︁

= A1
ε1

1− ε1
σ
(︂
T 4

1 − 0.232T 4
1 − 0.319T 4

2 − 0.447T 4
3

)︂
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= (0.5)
(︃

0.15
0.85

)︃(︁
5.67× 10−8)︁

×
[︁
(373)4 − 0.232(373)4 − 0.319(773)4 − 0.447(773)4

]︁
W/m

= −1294 W/m

The negative sign indicates that the copper base is gaining heat.

Enclosures with nonisothermal, nongray, or nondiffuse surfaces

The representation of enclosure heat exchange by eqn. (10.44) or (10.45)
is actually quite powerful. For example, if the primary surfaces in an
enclosure are not isothermal, they may be subdivided into a larger number
of smaller surfaces, each of which is approximately isothermal. Then
either equation may be used to calculate the heat exchange among the
set of smaller surfaces.

For those cases in which the gray surface approximation, eqn. (10.8c),
cannot be applied (owing to very different temperatures or strong wave-
length dependence in ελ), eqns. (10.44) and (10.45) may be applied on a
monochromatic basis, since the monochromatic form of Kirchhoff’s law,
eqn. (10.8b), remains valid. The results must, of course, be integrated over
wavelength to get the heat exchange. The calculation is usually simplified
by breaking the wavelength spectrum into a few discrete bands within
which radiative properties are approximately constant [10.4, Chpt. 6].

When the surfaces are not diffuse—when emission or reflection vary
with angle—a variety of other methods can be applied. Among them,
the Monte Carlo technique is probably the most widely used. The Monte
Carlo technique tracks emissions and reflections through various angles
among the surfaces and estimates the probability of absorption or re-
reflection [10.5, 10.9]. This method allows complex situations to be
numerically computed with relative ease, provided that one is careful to
obtain statistical convergence.

10.5 Gaseous radiation

We have treated every radiation problem thus far as though radiation
between the surfaces of interest is unobstructed by any fluid or particles
between them. This is clearly true if a vacuum separates the surfaces.
Liquids, on the other hand, simply absorb infrared radiation over a very
short distance, ending any radiant heat flow to other surfaces. Thus, we
do not consider radiation when heat is transferred across a liquid layer.
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Air normally allows most radiation to pass right through, and so far we
have treated all gases as if they are fully transparent. This approximation
is reasonable for air and other symmetrical molecules when the gases do
not contain many suspended particles or droplets. However, all gases
interact with photons to some extent. Gas molecules can absorb or deflect
photons, and can even emit additional photons. These interactions can be
especially important when more complex molecules, such as water vapor
or carbon dioxide, have a significant concentration, at high temperatures,
as in furnaces, or when long distances are involved, as in the earth’s
atmosphere. In those cases, gases may play a leading role in the heat
exchange process.

How gases interact with photons

The photons of radiant energy passing through a gaseous region can be
impeded in two ways. Some can be “scattered,” or deflected in various
directions, and some can be absorbed by the molecules. Scattering is a
fairly minor influence in most gases unless they contain foreign particles,
such as dust or fog. In cloudless air, for example, we are aware of the
scattering of sunlight only when it passes through many miles of the
atmosphere. The short, bluish wavelengths of sun light are scattered
most strongly by gas molecules, through a process known as Rayleigh
scattering. That scattered light gives the sky its blue hues.

At sunset, sunlight passes through the atmosphere at a shallow angle
for hundreds of miles. Radiation in the blue wavelengths has all been
scattered out before the sun’s light reaches us. Thus, we see only the
unscattered reddish hues that remain.

When particles suspended in a gas have diameters near the wavelength
of light, a more complex type of scattering can occur, known as Mie
scattering. Such scattering occurs from the water droplets in clouds
(often making them a brilliant white color). It also occurs in gases that
contain soot or in pulverized coal combustion. Mie scattering has a
strong angular variation that changes with both wavelength and particle
size [10.10].

The absorption or emission of radiation by molecules, rather than
by particles, will be our principal focus. The interaction of molecules
with radiation—photons, that is—is governed by quantum mechanics.
At this point, it’s helpful to recall a few facts from molecular physics.
Each photon has an energy hco/λ, where h is Planck’s constant, co is the
speed of light, and λ is the wavelength of light. Thus, photons of shorter
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Figure 10.19 Vibrational modes of carbon dioxide and of water.

wavelengths have higher energies: ultraviolet photons are more energetic
than visible photons, which are in turn more energetic than infrared
photons. At low temperature, objects emit mostly infrared photons; but
as they become hotter, objects emit more and more visible photons.

Molecules can store energy by rotation, by vibration (Fig. 10.19), or in
their electrons. Whereas the possible energy of a photon varies smoothly
with wavelength, the energies of molecules are constrained by quantum
mechanics to change only in discrete steps between the molecule’s allow-
able “energy levels.” The available energy levels depend on the molecule’s
chemical structure.

When a molecule emits a photon, its energy drops in a discrete step (a
quantum) from a higher energy level to a lower one. The energy given up is
carried away by the photon. As a result, the wavelength of that photon is
determined by the specific change in molecular energy level that caused it
to be emitted. Just the opposite happens when a photon is absorbed: the
photon’s wavelength must match a specific energy level change available
to that particular molecule. As a result, each molecular species can absorb
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only photons at, or very close to, particular wavelengths! Often, these
wavelengths are tightly grouped into so-called absorption bands, outside
of which the gas is essentially transparent to photons.

The fact that a molecule’s structure determines how it absorbs and
emits light has been used extensively by chemists as a tool for deducing
molecular structure. A knowledge of the energy levels in a molecule, in
conjunction with quantum theory, allows specific atoms and bonds to be
identified. This kind of measurement is called spectroscopy (see [10.11,
Chpt. 13 & 14] for an introduction; see [10.12] to go overboard).

At the wavelengths that correspond to thermal radiation at typical tem-
peratures, transitions in the vibrational and rotation modes of molecules
have the greatest influence on radiative absorptance. Such transitions
can be driven by photons only when the molecule has some asymmetry.4

Thus, for all practical purposes, monatomic and symmetrical diatomic
molecules are transparent to thermal radiation. The major components
of air—N2 and O2—are therefore nonabsorbing; so, too, are H2 and such
monatomic gases as argon.

Asymmetrical molecules like CO2, H2O, CH4, O3, NH3, N2O, and SO2, on
the other hand, each absorb thermal radiation of certain wavelengths. The
first two of these, CO2 and H2O, are always present in air. To understand
how the interaction works, consider the possible vibrations of CO2 and
H2O shown in Fig. 10.19. For CO2, the topmost mode of vibration is
symmetrical and has no interaction with thermal radiation at normal
pressures. The other three modes produce asymmetries in the molecule
when they occur; each is important to thermal radiation.

The primary absorption wavelength for the two middle modes of CO2

is 15 µm, which lies in the thermal infrared. The wavelength for the
bottommost mode is 4.3 µm. For H2O, middle mode of vibration interacts
strongly with thermal radiation at 6.3 µm. The other two both affect
2.7 µm radiation, although the bottom one does so more strongly. In
addition, H2O has a rotational mode that absorbs thermal radiation having
wavelengths of 14 µm or more. Both of these molecules show additional
absorption lines at shorter wavelengths, which result from the superpo-
sition of two or more vibrations and their harmonics (e.g., at 2.7 µm for
CO2 and at 1.38 and 1.87 µm for H2O, as seen in Fig. 10.2). Additional
absorption bands can appear at high temperature or high pressure.

4The asymmetry required is in the distribution of electric charge—the dipole moment.
A vibration of the molecule must create a fluctuating dipole moment in order to interact
with photons. A rotation interacts with photons only if the molecule has a permanent
dipole moment, as do CO2 and H2O.
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Figure 10.20 The attenuation of
radiation through an absorbing
and/or scattering gas.

Absorptance, transmittance, and emittance

Figure 10.20 shows radiant energy passing through an absorbing gas
with a monochromatic intensity iλ. As it passes through an element of
thickness dx, the intensity will be reduced by an amount diλ

diλ = −ρκλiλ dx (10.47)

where ρ is the gas density and κλ is called the monochromatic absorption
coefficient. If the gas scatters radiation out of the x-direction and into
another direction, we replace κλ with γλ, the monochromatic scattering
coefficient. If it both absorbs and scatters radiation, we replace κλ with
βλ ≡ κλ + γλ, the monochromatic extinction coefficient.5 The dimensions
of κλ, βλ, and γλ are all m2/kg.

Limiting our attention to gases that absorb and taking ρκλ to be
constant through the gas, we can integrate eqn. (10.47) from an initial
intensity iλ0 at x = 0

iλ(x) = iλ0 e
−ρκλx (10.48)

This result is called Beer’s law (pronounced “Bayr’s” law). For a gas layer
of a given depth x = L, the ratio of final to initial intensity defines that
layer’s monochromatic transmittance, τλ:

τλ ≡
iλ(L)
iλ0

= e−ρκλL (10.49)

Further, since nonscattering gases do not reflect radiant energy, τλ+αλ =
1. Thus, the monochromatic absorptance, αλ, is

αλ = 1− e−ρκλL (10.50)
5All three coefficients, κλ, γλ, and βλ, are expressed on a mass basis. They could,

alternatively, have been expressed in terms of the volumetric concentration of various
molecules within the gas.
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Figure 10.21 Monochromatic absorptance of a 53.9 cm thick
layer of steam at 1552 K, from 1.3 to 22 µm. (From the data of
Mancini et al. [10.13].)

Both τλ and αλ depend on the density and thickness of the gas layer. The
product ρκλL is sometimes called the optical depth of the gas. For very
small values of ρκλL, the gas is transparent to the wavelength λ.

The dependence of αλ on λ is normally very strong. As we have seen,
a given molecule will absorb radiation in certain wavelength bands, while
allowing radiation with somewhat higher or lower wavelengths to pass
almost unhindered. Figure 10.21 shows the absorptance of water vapor
as a function of wavelength for a fixed depth. We can see the absorption
bands at wavelengths surrounding 1.38, 1.87, 2.7, and 6.3 µm that we
mentioned before.

A comparison of Fig. 10.21 with Fig. 10.2 readily shows why radiation
from the sun, as viewed from the earth’s surface, shows a number of spiky
indentations at certain wavelengths. Several of those indentations occur
in bands where atmospheric water vapor absorbs incoming solar radiation,
in accordance with Fig. 10.21. The other indentations in Fig. 10.2 occur
where ozone and CO2 absorb radiation. The sun itself does not have these
regions of low emittance; instead, much of the radiation in these bands is
absorbed by gases in the atmosphere before it can reach the ground.

Just as αλ and ελ are equal to one another for a diffuse solid surface,
they are equal for a gas. We may demonstrate this by considering an
isothermal gas that is in thermal equilibrium with a black enclosure that
contains it. The radiant intensity within the enclosure is that of a black
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body, iλb , at the temperature of the gas and enclosure. Equation (10.47)
shows that a small section of gas absorbs radiation, reducing the intensity
by an amount ρκλiλb dx. To maintain equilibrium, the gas must therefore
emit an equal amount of radiation:

diλ = ρκλiλb dx (10.51)

Now, if radiation from some other source is transmitted through
a nonscattering isothermal gas, we can combine the absorption from
eqn. (10.47) with the emission from eqn. (10.51) to form an energy balance
called the equation of transfer

diλ
dx

= −ρκλiλ + ρκλiλb (10.52)

Integration of this equation yields a result similar to eqn. (10.48):

iλ(L) = iλ0 e
−ρκλL⏞ ⏟⏟ ⏞
=τλ

+iλb
(︂
1− e−ρκλL

)︂
⏞ ⏟⏟ ⏞

≡ελ

(10.53)

The first righthand term represents the transmission of the incoming
intensity, as in eqn. (10.48), and the second is the radiation emitted by
the gas itself. The coefficient of the second righthand term defines the
monochromatic emittance, ελ, of the gas layer. Finally, comparison to
eqn. (10.50) shows that

ελ = αλ = 1− e−ρκλL (10.54)

Again, we see that for very small optical depth (ρκλL≪ 1), the gas will
neither absorb nor emit radiation of wavelength λ.

Heat transfer from gases to walls

We now see that predicting the total emittance, εg , of a gas layer will be
complex. We have to account for the gases’ absorption bands as well
as the layer’s thickness and density. Such predictions can be done, but
the calculations are complicated. For making simpler (but less accurate)
estimates, correlations of εg have been developed.

Such correlations are based on the following model: An isothermal
gas of temperature Tg and thickness L is bounded by walls at the single
temperature Tw . The gas consists of a small fraction of an absorbing
species (say CO2) mixed into a nonabsorbing species (say N2). If the
absorbing gas has a partial pressure pa and the mixture has a total
pressure p, the correlation takes this form:

εg = fn
(︁
paL, Tg, p

)︁
(10.55)
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The parameter paL is a measure of the layer’s optical depth. The pa-
rameters Tg and p account for changes in the absorption bands with
temperature and pressure.

Hottel and Sarofim [10.14] provided correlations for CO2 and H2O, built
from research done by Hottel and others before 1960. Later, additional
data were obtained by many other investigators; and, in 2015 and 2016,
Alberti et al. [10.15, 10.16] published more accurate correlations. Those
correlations follow Hottel’s framework and take the form

εg
(︁
paL, Tg, p

)︁
= ε0(︁paL, Tg)︁× C(︁p,paL, Tg)︁ (10.56)

The function ε0 is the standard emissivity for a total pressure of p =
1 atm with a very small partial pressure, pa, of the absorbing species. This
function is plotted in Figs. 10.22 and 10.23 for CO2 and H2O, respectively.

The second function, C, is the pressure correction factor, which ac-
counts for different values of pa or p (see Figs. 10.24 and 10.25 on
pages 591 and 592). The pressure correction factor is greatest at low
temperatures and has a value closer to one at high temperatures.

When both CO2 and H2O are present in the same mixture, we can add
their emissivities. However, the absorption bands of the two gases overlap.
For example, both gases absorb strongly around 2.7 µm. As a result, the
emissivity is a bit less than obtained by addition, and a correction must be
subtracted (see [10.17] for details). When the optical depth is ❲ 10 bar-cm
and the total pressure is ❲ 10 atm, the correction is ❲ 0.01

To find the net heat transfer between the gas and the walls, we must
also find the total absorptance, αg , of the gas for radiation from the walls.
Despite the equality of the monochromatic emittance and absorptance,
ελ and αλ, the total values, εg and αg , will not generally be equal because
the absorbed radiation may come from a wall at a different temperature
than the gas and with a different wavelength distribution. Hottel and
Sarofim show that αg may be estimated from the correlation for εg as
follows:6

αg = εg
(︄
paL

Tw
Tg
, p, Tw

)︄
×
(︃ Tg
Tw

)︃1/2
(10.57)

Finally, we need an appropriate value of L for a given enclosure. The
preceding correlations for εg and αg are based a one-dimensional path
of length L through the gas. Even for a pair of flat plates a distance ℓ
apart, the choice of length is not obvious since radiation can travel much
farther than ℓ if it follows a path that is not perpendicular to the plates.

For enclosures that have black walls at a uniform temperature, we can
use an effective path length, L0, called the geometrical mean beam length,

6Hottel originally recommended replacing the exponent ½ by 0.65 for CO2 and
0.45 for H2O. Both theory, and later work on scaling rules, suggest keeping the value
½ [10.18].
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Figure 10.22 Standard emissivity, ε0, of CO2 in N2 or air at
1 atm [10.15].

to represent both the volume and shape of a gaseous region.

L0 ≡
4 (volume of gas)

boundary area that is irradiated
(10.58)

Thus, for two infinite parallel plates a distance ℓ apart, L0 = 4Aℓ/2A = 2ℓ.
Some other values of L0 for gas volumes exchanging heat with all points
on their boundaries are in Table 10.4.

These values of L0 are appropriate when the gas has a small optical
depth. For cases where the gas is more strongly absorbing, better accuracy
can be obtained by replacing the constant 4 in eqn. (10.58) by 3.6, which
lowers the mean beam length by 10% [10.5].
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Figure 10.23 Standard emissivity, ε0, of H2O in N2 or air at
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Figure 10.24 Pressure correction factor C for CO2 as a function
of pCO2L for various pressures [10.15]. The effective pressure
for CO2 is calculated as: PE = p + 0.28pCO2 . (Reprinted with
permission of Elsevier.)

591



Figure 10.25 Pressure correction factor C for H2O as a function
of pH2OL for various pressures [10.16]. The effective pressure
for H2O is calculated as: PE = p(1+ 5xH2O) where xH2O is the
mole fraction of water vapor. (Reprinted with permission of
Elsevier.)
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Table 10.4 Mean beam length, L0, for several geometries

Configuration L0

Cube of side ℓ 2ℓ/3
Sphere of diameter D 2D/3
Infinite cylinder of diameter D D
Cylinder with length equal to

diameter D
2D/3

We are now in position to treat a problem in which hot gases (say
the products of combustion) radiate to a black container. Consider the
following example.

Example 10.11

A long cylindrical combustor 40 cm in diameter contains a gas at
1200◦C consisting of 0.8 atm N2 and 0.2 atm CO2. The combustor
walls are black. What is the net heat radiated to the walls if they are
at 300◦C?

Solution. Let us first obtain εg . From Table 10.4, L0 = D = 40 cm. We
have a total pressure of p = 1.0 atm, pa = pCO2 = 0.2 atm = 0.203 bar,
and Tg = 1473 K. With paL = (0.203)(40) = 8.11 bar-cm, Fig. 10.22a
gives ε0 as 0.084 and Fig. 10.24 gives C ≊ 1, so εg = 0.085.

Next, we use eqn. (10.57) to obtain αg. With Tw = 573, and
paL(Tw/Tg) = 3.16 bar-cm, the appropriate value of εg is 0.073:

αg = (0.073)
(︃

1200+ 273
300+ 273

)︃0.5
= 0.12

The optical depth of the gas is low, so αg and εg are small.
Now we can calculate Qnetg-w . For problems in which one wall

surrounds one gas, the mean beam length accounts for all geometrical
effects, and no separate view factor is required. The net heat transfer
to the wall is calculated using the surface area of the wall:

Qnetg-w = Aw
(︂
εgσT 4

g −αgσT 4
w

)︂
= π(0.4)

(︁
5.67× 10−8)︁[︂(0.084)(1473)4 − (0.12)(573)4

]︂
= 27 kW/m
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Total the mean beam length and the scaling rule for αg , eqn. (10.57),
are simple but crude tools for dealing with gas radiation. They were intro-
duced in the mid-twentieth century to facilitate engineering calculations
without using numerical methods. They oversimplify both the geometry
and the wavelength dependence of radiation in molecular gases.

Much more accurate tools are available [10.4, 10.5, 10.19]. Band models
of radiation efficiently account for wavelength dependence by considering
only discrete “bands” of wavelength. The zonal method for gas-filled
enclosures is similar to the approach of Sect. 10.4: the enclosure is divided
into isothermal volumes and surfaces, and pairwise energy balances
formed among the zones. The most versatile technique is the previously-
mentioned Monte Carlo method, which tracks a statistical ensemble of
photons as they travel from point-to-point. The Monte Carlo method can
tackle nongray, nondiffuse, and nonisothermal walls that contain nongray,
scattering, and nonisothermal gases.

And finally, gaseous radiation can be less important than we might first
think. Consider a bright orange candle flame and a “cold-blue” hydrogen
flame. Both have a lot of water vapor in them, as a result of burning
oxygen. But the candle warms our hands while the hydrogen flame does
not, even though the temperature in the hydrogen flame is higher. It turns
out that what radiates both heat and light from the candle is not gas, but
soot—small solid particles of almost black-body carbon. The CO2 and
H2O in the candle flame actually radiate relatively little heat.

10.6 Solar energy

The sun

The sun continually irradiates the earth at a rate of about 1.74×1014 kW.
If we imagine this energy to be distributed over a circular disk with the
earth’s diameter, the solar irradiation is about 1361 W/m2, as measured
by satellites above the atmosphere [10.20]. Much of this energy reaches
the ground, where it sustains the processes of life.

The temperature of the sun varies from tens of millions of kelvin in
its core to between 4000 and 6000 K at its surface, where most of the
sun’s thermal radiation originates. The wavelength distribution of the
sun’s energy is not quite that of a black body, but it may be approximated
as such. A straightforward calculation (see Problem 10.49) shows that a
black body of the sun’s size and distance from the earth would produce
the same irradiation as the sun if its temperature were 5772 K.
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The solar radiation reaching the earth’s surface is always less than that
above the atmosphere owing to atmospheric absorption and the earth’s
curvature. Solar radiation usually arrives at an angle of less than 90◦ to
the surface because the sun is rarely directly overhead. We have seen that
a radiant heat flux arriving at an angle less than 90◦ is reduced by the
cosine of that angle (Fig. 10.4). The sun’s angle varies with latitude, time
of day, and day of year. Trigonometry and data for the earth’s rotation
can be used to find the appropriate angle.

Figure 10.2 shows the reduction of solar radiation by atmospheric
absorption for one particular set of atmospheric conditions. In fact,
when the sun’s rays pass through the atmosphere at a low angle (near
the horizon), the path of radiation through the atmosphere is longer,
providing relatively more opportunity for atmospheric absorption and
scattering. Additional moisture in the air can increase the absorption by
H2O, and, of course, clouds can dramatically reduce the solar radiation
reaching the ground.

The consequence of these various effects is that the solar radiation
received on the ground is almost never more than 1200 W/m2 and is often
only a few hundred W/m2. Extensive data are available for estimating the
ground level solar irradiation at a given location, time, and date [10.21].

The distribution of the Sun’s energy and atmospheric
irradiation

Figure 10.26 shows what becomes of the solar energy that impinges on
the earth if we average it over the year and the globe, taking account of
all kinds of weather. Only 45% of the sun’s energy actually reaches the
earth’s surface. The mean energy received is about 235 W/m2 if averaged
over the surface and the year. The lower left-hand portion of the figure
shows how this energy is, in turn, all returned to the atmosphere and
to space.

The solar radiation reaching the earth’s surface includes direct radia-
tion that has passed through the atmosphere and diffuse radiation that
has been scattered, but not absorbed, by the atmosphere. Atmospheric
gases also irradiate the surface. This gas irradiation is quite important to
maintaining the temperature of objects on the surface.

In Section 10.5, we saw that the energy radiated by a gas depends upon
the depth of the gas, its temperature, and the molecules present in it.
The emittance of the atmosphere has been characterized in detail [10.22–
10.24]. For practical calculations, however, the sky may conveniently be
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Figure 10.26 The approximate distribution of the flow of the
sun’s energy to and from the earth’s surface [10.22].

treated as a black radiator having some appropriate temperature. This
effective sky temperature usually lies between 5 and 30 K below the ground
level air temperature.

The sky temperature decreases as the amount of water vapor in the
air goes down. For cloudless skies, the sky temperature may be estimated
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using the dew-point temperature, Tdp, and the hour past midnight, t:

Tsky = Tair

[︂
0.711+ 0.0056Tdp

+ 7.3× 10−5 T 2
dp + 0.013 cos(2πt/24)

]︂1/4
(10.59)

where Tsky and Tair are in kelvin and Tdp is in ◦C. This equation applies
for dew points between −20◦C and +30◦C [10.25].

It is fortunate that sky temperatures are relatively warm. In the absence
of an atmosphere, not only would more of the sun’s radiation reach the
ground during the day, but at night heat would radiate directly into the
bitter cold of outer space. Such conditions prevail on the Moon, where
average daytime surface temperatures are about 110◦C while average
nighttime temperatures plunge to about −150◦C.

Selective emitters, absorbers, and transmitters

We have noted that most of the sun’s energy lies at wavelengths near
the visible region of the electromagnetic spectrum and that most of the
radiation from objects at temperatures typical of the earth’s surface is
on much longer, infrared wavelengths (see pg. 554). One result is that
materials may be chosen or designed to be selectively good emitters or
reflectors of both solar and infrared radiation.

Table 10.5 shows the infrared emittance and solar absorptance for
several materials. Among these, we identify several particularly selective
solar absorbers and solar reflectors. The selective absorbers have a high
absorptance for solar radiation and a low emittance for infrared radiation.
Consequently, they do not strongly reradiate the solar energy that they
absorb. The selective solar reflectors, on the other hand, reflect solar
energy strongly and also radiate heat efficiently in the infrared. Solar
reflectors stay much cooler than solar absorbers in bright sunlight.

A comprehensive review of selective absorber materials has been
given by Kennedy [10.26]. Coatings with solar absorptance above 90%
and infrared emittance below 10% are commercially available. Materials
that radiate strongly between 8 and 13 µm take advantage of the higher
atmospheric transmissivity in that band to further cool surfaces [10.27].
In fact, certain aerogel coatings with high solar reflectivity, high infrared
transmittance, and low thermal conductivity can radiately cool surfaces
to below ambient temperature [10.28].
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Table 10.5 Solar absorptance and infrared emittance for several
surfaces near 300 K [10.5, 10.21].

Surface αsolar εIR

Aluminum, pure 0.09 0.1
Carbon black in acrylic binder 0.94 0.83

Copper, polished 0.3 0.04

Selective Solar absorbers

Black Cr on Ni plate 0.95 0.09

CuO on Cu (Ebanol C) 0.90 0.16

Nickel black on steel 0.81 0.17

Sputtered cermet on steel 0.96 0.16

Selective Solar Reflectors

Magnesium oxide 0.14 0.7
Snow 0.2–0.35 0.82

White paint

Acrylic 0.26 0.90

Zinc Oxide 0.12–0.18 0.93

Example 10.12

In Section 10.2, we discussed white paint on a roof as a selective solar
absorber. Consider now a barn roof under a sunlit sky. The solar
radiation on the plane of the roof is 600 W/m2, the air temperature is
35◦C, and a light breeze produces a convective heat transfer coefficient
of h = 8 W/m2K. The sky temperature is 18◦C. Find the temperature
of the roof if it is painted with a non-selective black paint having
ε = 0.9. By how much would the roof temperature be lowered if it
were repainted with white acrylic paint?

Solution. Heat loss from the roof to the inside of the barn will lower
the roof temperature. Since we don’t have enough information to
evaluate that loss, we can make an upper bound on the roof tempera-
ture by assuming that no heat is transferred to the interior. Then, an
energy balance on the roof must account for radiation absorbed from
the sun and the sky and for heat lost by convection and reradiation:

αsolarqsolar + εIRσT 4
sky = h(Troof − Tair)+ εIRσT 4

roof
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Rearranging and substituting the given numbers,

8
[︁
Troof − (273+ 35)

]︁
+ εIR

(︁
5.67× 10−8)︁ [︂T 4

roof − (273+ 18)4
]︂

= αsolar(600)

For the non-selective black paint, αsolar = εIR = 0.90. Solving by
iteration, we find

Troof = 338 K = 65◦C

For white acrylic paint, from Table 10.5, αsolar = 0.26 and εIR = 0.90.
We find

Troof = 312 K = 39◦C

The white painted roof is only a few degrees warmer than the air. The
roof temperature would be lowered by 24◦C if it were repainted.

Ordinary window glass is a very selective transmitter of solar radiation.
Glass is nearly transparent to wavelengths below 2.7 µm or so. More than
90% of the incident solar energy passes through. At longer wavelengths,
in the infrared, glass is virtually opaque to radiation. Thus, solar energy
passing through a window cannot pass back out as infrared reradiation.
This is precisely why we make greenhouses out of glass.

A greenhouse is a structure in which we use glass to capture solar
energy in the interior of a lower temperature space. The glass lets sunlight
enter the space, it stops cool air from flowing into the space, and it absorbs
infrared reradiation from the interior rather than letting it pass directly
back to the sky. All these factors help make the interior warmer than
the outside.

The atmospheric greenhouse effect and global warming

The atmosphere creates a greenhouse effect on the earth’s surface that
is very similar to that caused by a pane of glass. Solar energy passes
through the atmosphere, and most of it arrives on wavelengths between
0.3 and 3 µm. The earth’s surface, having a mean temperature of 15◦C or
so, radiates mainly on infrared wavelengths between 4 and 40 µm.

Certain atmospheric gases have strong absorption bands at these
longer wavelengths. Those gases absorb energy radiated from the surface,
then reemit it toward both the surface and outer space. That reduces
the net rate of radiative heat loss from the surface to outer space. The
result is that the surface stays some 30 K warmer than the atmosphere.

http://www.uh.edu/engines/epi1609.htm
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In effect, the atmosphere functions as a radiation shield against infrared
heat loss to space.

The gases mainly responsible for this atmospheric greenhouse effect
are CO2, H2O, CH4, N2O, O3, and some chlorofluorocarbons and hydroflu-
orocarbons that are used as refrigerants [10.29]. If the concentration of
these gases rises or falls, the strength of the greenhouse effect will change
and the surface temperature will also rise or fall. All but the fluorocar-
bons are partly generated by natural processes: H2O by evaporation, CO2

by animal and microbial respiration, CH4 through decay processes, and
so on.

Human activities, however, have significantly increased the concen-
trations of all of these gases. Fossil fuel combustion increased the CO2

concentration by more than 30% during the twentieth century. Methane
concentrations have risen through leakage of hydrocarbon fuels, rice
agriculture, and livestock production. In fact, CO2 levels for the 800,000
years prior to the industrial age fluctuated between 160 and 300 ppm;
but, as of May 2019, the CO2 level had reached 415 ppm and was still
rising steadily [10.30].

Earth’s surface temperature has risen along with the concentrations
of these gases. An increase of about 0.8 K occurred during the twentieth
century, with 0.5 K of that change coming between 1950 and 2000 (see
Fig. 10.27). This trend has continued to accelerate. Data showing this rise
are extensive. They are derived from multiple sources. And they have
been the subject of very detailed scrutiny [10.31–10.33].

The question of how much of the rise is the result of anthropogenic
greenhouse gases was, for a long time, the focus of an important, al-
though often heated, public debate. And indeed, many factors must be
considered in examining the causes of Earth’s temperature rise because
of the complex coupling between the atmosphere, the oceans, and the
land. Some illustrations follow.

The concentration of water vapor in the atmosphere rises with in-
creasing surface temperature, amplifying any warming trend by blocking
more infrared radiation. Increased cloud cover has both warming and
cooling effects. Atmospheric aerosols (two-thirds of which result from
sulfate and carbon pollution from fossil fuels) significantly offset the
warming effect of greenhouse gases [10.34]. The melting of polar ice caps
as temperatures rise reduces the planet’s reflectance, or albedo, allowing
more solar energy to be absorbed. And the melting of arctic permafrost is
likely to release vast amounts of CO2, CH4, and N2O into the atmosphere,
accelerating warming. The oceans have absorbed both energy and CO2,
slowing the rates of change up to now. All of these factors must be built
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Figure 10.27 Global surface temperature change relative to
the mean temperature from 1951–1980 (Courtesy of the NASA
Goddard Institute for Space Studies [10.31, 10.32]).

into an accurate assessment of gas emission and climate change (see, for
example, [10.35]).

Notice that many of these effects are examples of positive feedback—
processes that result in their own amplification. Melting polar ice reduces
solar reflectance and thawing tundra releases more greenhouse gases,
both then increasing the rates of warming and accelerating melting…

The data and the associated scientific research overwhelmingly show
that the temperature rise in Fig. 10.27 is caused by human activity, mainly
through burning fossil fuels [10.33]. And, despite claims by some that we
cannot pin down the reason for this global change, the mechanism of cause
and effect is simple: the earth’s infrared cooling is impeded by greenhouse
gases, so earth’s temperature rises to keep radiative equilibrium with the
sun and deep space.
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Computer simulations project a continuing temperature rise in the
present century, based on various scenarios for future fossil fuel use
and future government policies to reduce greenhouse gas emissions. The
outlook is not very positive, with best estimates of twenty-first century
warming ranging from roughly 1.8–4.0 K. The likely impacts vary around
the planet, but they include: impaired food crop production; rising sea
levels; more frequent droughts, storms, fires, and floods; and less reliable
water supply, especially for densely populated areas [10.36–10.38].

The use of solar power

Solar energy offers a clean alternative to fossil fuels, available in all parts
of the world. Since the middle of the 20th century, intensive research and
development has greatly increased the efficiency, and lowered the costs,
of solar technology.

Large-scale solar electricity production is challenging. Suppose that we
aim to replace an 800 MW fossil power plant with photovoltaic electricity.
If the average intensity of sunlight over an 8 hr day is 615 W/m2 and a
representative photovoltaic panel has 15% efficiency, we need roughly
26 square kilometers (10 square miles) of collector area to match the
steady, 24-hour output of the power plant. Yet, plants of this scale have
been built in sunny parts of the world.

To provide steady power—day and night, rain or shine—we would also
need to store energy, perhaps with an array of batteries or a system that
pumps water to a higher elevation during the day and then releases it
through a turbine at night. But even without storage, solar electricity can
help meet daytime needs, with other power sources kicking in at night.

Apart from electricity generation, solar energy is used directly to
heat water or air. The energy efficiency increases to as much as 60–70%
for direct thermal collection, versus 10–20% for the photovoltaic panels
widely deployed for electrical power. Solar water heating, to moderate
temperatures (50 to 90°C), is most often used in houses or buildings.

Figure 10.28 shows a representative water-heating solar collector.
Solar radiation passes through one or more glass plates and impinges on
a metal plate that absorbs the solar wavelengths. The absorber plate is
usually a selective solar absorber, perhaps blackened copper. The glass
plates might be treated with anti-reflective coatings, raising their solar
transmissivity to 98% or more. The absorber plate reemits some heat as
long-wavelength infrared radiation, but the glass, which is nearly opaque
to these wavelengths, traps the reradiated heat in the collector. Multiple
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Figure 10.28 A flat-plate solar collector.

layers of glass reduce both convective and reradiative and losses from
the absorber plate to the surrounding environment.

Water flowing through tubes brazed to the absorber plate carries the
energy away for use. The flow rate is chosen to give a temperature rise
appropriate to the end use.

In another configuration, a narrow absorber plate sits inside an evacu-
ated cylindrical tube. The vacuum eliminates convective loss from the
absorber, raising thermal efficiency. A row of tubes form a single collector.
Due to the space between the tubes, part of the frontal area of the collector
does not absorb sunlight, offsetting the advantage of the vacuum.

If the working fluid is to be brought to a fairly high temperature, the
direct radiation from the sun must be focused from a large area down to
a much smaller one, using reflecting mirrors. Collectors equipped with
a small parabolic or Fresnel reflector, focused on a water pipe, can heat
the water to between 100 and 200◦C. Large arrays of mirrors focused
onto a central receiving tower can achieve temperatures of 500◦C or more,
suitable for driving a Rankine cycle to generate electricity. In any scheme
intended to produce electrical power with a conventional thermal cycle,
energy must be concentrated with an area ratio on the order of 1000 : 1 to



604 Chapter 10: Radiative heat transfer

achieve a practical cycle efficiency. Solar energy systems, and their design
and deployment, are discussed in detail in Refs. [10.21] and [10.39].

A question of overriding concern for the 21st century is “How much
of the renewable energy that reaches Earth can we safely utilize?” Of
the 1.74×1014 kW arriving from the sun, 33% is simply reflected back
into outer space. If we were able to collect and use the remainder,
1.16×1014 kW, before it too was reradiated to space, each of the 7.7
billion or so people on the planet would have 15 MW at his or her disposal.
The vast majority of that power must obviously be used to sustain the
natural world around us, but some comparisons can provide a perspective.

Total power consumption in the USA averaged roughly 3.2×109 kW in
2015. Dividing by that year’s population of 320 million people gives a per
capita consumption of roughly 10 kW. Worldwide, energy was consumed
at a rate about 1.7× 109 kW. That means that world energy consumption
was near 0.01% of the renewable energy passing into and out of Earth’s
ecosystem. This consumption has increased steadily for many years, at
an average annual rate of 2%, because many countries that once used very
little energy are rapidly developing to use far more.

We must also bear in mind two aspects of this 0.01% figure. First, it is
low enough that we could conceivably aim to get all of our energy from
renewable sources. Second, while 0.01% seems small, the absolute amount
of power it represents is enormous. Just how much renewable energy we
can claim without creating new ecological problems is unknown.

Fossil fuels account for most of the world’s energy consumption. But
gas emissions from the production and use of those fuels are a major
contributor to climate change. Our long-term hope for a sustainable
energy supply will depend, in considerable measure, on increasing our
use of solar power, wind power, and other low carbon energy sources.
Nuclear fission remains an important option, if we are willing to adopt
some means of nuclear waste disposal. Nuclear fusion—the process by
which we might create mini-suns upon the earth—is also a hope for the
future. And under any scenario, we serve our best interests by raising the
efficiency of all our energy consuming technologies.

Problems

10.1 What will ελ of the sun appear to be to an observer on the
earth’s surface for λ = 0.2 µm and 0.65 µm? Refer to Fig. 10.2.
[ε0.65 µm ≃ 0.77]
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10.2 Plot eλb against λ for T = 300 K and 10,000 K with the help of
eqn. (1.30). About what fraction of the energy from each black
body is visible? [41% at 10,000 K]

10.3 A 0.6 mm diameter wire, with ε = 0.85, is drawn out through a
mandril at 950◦C. The wire then passes through a long cylindrical
shield of commercial aluminum sheet, 7 cm in diameter. The
shield is horizontal in still air at 25◦C. What is the temperature of
the shield? Is it reasonable to neglect natural convection inside
or radiation outside the shield? [Tshield = 153◦C]

10.4 A 1 ft2 shallow pan with adiabatic sides is filled to the brim with
water at 32◦F. It radiates to a night sky whose temperature is
−18◦F, while a 50◦F breeze blows over it at 1.5 ft/s. Will the water
freeze or warm up?

10.5 An alcohol-in-glass thermometer is held vertically, with bulb down,
in a room with air at 10◦C and walls at 27◦C. What temperature
will the thermometer read if everything can be considered black?
State your assumptions.

10.6 Rework Problem 10.5, taking the room to be wallpapered and
considering the thermometer to be nonblack. [Not much change]

10.7 Two thin aluminum plates, the first polished and the second
painted black, are placed horizontally outdoors, where they are
cooled by air at 10◦C. The heat transfer coefficient is 5 W/m2K
on both the top and the bottom. The sun irradiates the top with
750 W/m2, and the top radiates to the sky at 250 K. The earth below
the plates is black and at 10◦C. Find the equilibrium temperature
of each plate. [One plate is at 12◦C]

10.8 An instrument holder of 98% pure aluminum, 1 cm in diameter
and 16 cm in length, protrudes from a small housing on an orbital
space vehicle. The holder “sees” almost nothing but outer space at
an effective temperature of 30 K. The base of the holder is 0◦C and
you must find the temperature of the sample at its tip. It will help
if you note that aluminum is used, so that the temperature of the
tip stays quite close to that of the root. Hint : Recall Section 4.5.
[Ttip = −0.7◦C]

10.9 The bottom of the box shown in Fig. 10.29 is a radiant heater. The
top of the box is open to the surroundings. What percentage of
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Figure 10.29 Configuration for
Problem 10.9.

the heat goes out the top? What fraction impinges on each of the
four sides? Hint : The percentages must add up to 100.

Figure 10.30 Configuration for
Problem 10.11.

10.10 Consider Fig. 10.11. Find F1–(2+4) and F(2+4)–1. [F(2+4)–1 = 0.087]

10.11 Find F2–4 for the surfaces shown in Fig. 10.30. [0.255]

10.12 What is F1–2 for the squares shown in Fig. 10.31?

10.13 A particular internal combustion engine has an exhaust manifold
at 600◦C running parallel to a coolant line at 20◦C. If both the
manifold and the coolant line are 4 cm in diameter, their centers
are 7 cm apart, and if both are approximately black, how much
heat will be transferred to the coolant line by radiation? [383 W/m]

Figure 10.31 Configuration for
Problem 10.12.



Problems 607

Figure 10.32 Configuration for
Problem 10.14.

Figure 10.33 Configuration for
Problem 10.15.

10.14 Prove that F1–2 for any pair of two-dimensional plane surfaces, as
shown in Fig. 10.32, is equal to [(a+ b)− (c + d)]

/︁
2L1. This is

called the string rule because we can imagine that the numerator
equals the difference between the lengths of a set of crossed
strings (a and b) and a set of uncrossed strings (c and d).

10.15 Find F1–5 for the surfaces shown in Fig. 10.33. [0.035]

10.16 Find F1–(2+3+4) for the surfaces shown in Fig. 10.34.

10.17 A cubic box, 1 m on each edge, is black except for one side, which
has an emittance of 0.2 and is kept at 300◦C. An adjacent side is
kept at 500◦C. The other sides are insulated. Find Qnet inside the
box. [2.5 kW]

10.18 Rework Problem 10.17, but this time set the emittance of the
insulated walls equal to 0.6. Compare the temperature of the
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Figure 10.34 Configuration for
Problem 10.16.

insulated walls to the value you would get if the walls were black.
[479◦C]

10.19 An insulated black cylinder, 10 cm in length and with an inside
diameter of 5 cm, has a black cap on one end and a cap with an
emittance of 0.1 on the other. The black end is kept at 100◦C and
the reflecting end is kept at 0◦C. Find Qnet inside the cylinder and
the temperature of the insulated wall.

10.20 Rework Example 10.3 if the shield has an inside emittance of 0.34
and the room is at 20◦C. How much cooling must be provided to
keep the shield at 100◦C? [551 W]

10.21 A smooth gray object of emittance ε1 and area A1 and does not
view itself and sits in a much larger isothermal environment, A2.
Suppose that the object is roughened by making many small cav-
ities covering its entire surface, without changing the radiative
properties of the material. The rough surface now has an area
Ar > A1. The projected area of the rough surface is a smooth
surface that just touches the peaks of the cavities, and it has
the same area, A1, as the original smooth surface. Starting with
eqn. (10.26), show that the roughened surface emits radiation to
the surroundings as if the original smooth surface had become
“blacker”. Further show that the effective emittance after roughen-
ing is bounded between ε1 and 1. Hint: Because the surroundings
are effectively black, the value of A2 does not affect the heat
transfer: shrink A2 until it reaches the projected surface.

10.22 A 30 ft by 40 ft house has a conventional sloping roof with a 30.3◦

pitch and the peak running in the 40 ft direction. Calculate the
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temperature of the roof in 20°C still air when the sun is overhead:
(a) if the roof is made of wooden shingles; and (b) if it is commercial
aluminum sheet. The incident solar energy is 670 W/m2, the
effective sky temperature is 22°C, the roofing materials are gray
radiators, and the roof is very well insulated.

10.23 Use the electrical circuit analogy to calculate the radiant heat
transfer from a 0.2 m diameter stainless steel hemisphere (εss =
0.4) to a copper floor (εCu = 0.15) that forms its base. The
hemisphere is kept at 300◦C and the base at 100◦C. [21.24 W]

10.24 A hemispherical indentation in a smooth wrought-iron plate has
an 8 mm radius. How much heat radiates from the 40◦C dent to
the −20◦C surroundings? [48% increase relative to a flat surface]

10.25 A conical hole in a block of metal for which ε = 0.5 is 5 cm in
diameter at the surface and 5 cm deep. By what factor will the
radiation from the area of the hole be changed by the presence
of the hole? (This problem can be done to a close approximation
using the methods in this chapter if the cone is not very deep and
slender. If it is, then the fact that the apex is receiving far less
radiation makes it incorrect to use the network analogy.)

10.26 A single-pane window in a large room is 4 ft wide and 6 ft high.
The room is kept at 70◦F, but the pane is at 67◦F owing to heat loss
to the colder outdoor air. Find: (a) the heat transfer by radiation
to the window; (b) the heat transfer by natural convection to the
window; and (c) the fraction of heat transferred to the window by
radiation. [(c) 80%]

10.27 Suppose that the window pane temperature is unknown in Prob-
lem 10.26. The outdoor air is at 40◦F and h is 62 W/m2K on
the outside of the window. It is nighttime and the effective tem-
perature of the sky is 15◦F. Assume Fwindow−sky = 0.5. Take the
rest of the surroundings to be at 40◦F. Find Twindow and draw
the analogous electrical circuit, giving numerical values for all
thermal resistances. Discuss the circuit. Hint: Your calculation
may be simplified by noting that the window is opaque to infrared
radiation but offers very little resistance to conduction. Thus, the
window temperature is almost the same on the inside and outside.

10.28 A very effective low-temperature insulation is made by evacuating
the space between parallel metal sheets. Convection is eliminated,
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conduction occurs only at spacers, and radiation is responsible
for what little heat transfer occurs. Calculate q between 150 K and
100 K for three cases: (a) two sheets of highly polished aluminum;
(b) three sheets of highly polished aluminum; and (c) three sheets
of rolled sheet steel. Assume that the design minimizes heat
conduction.

10.29 Three identical, long black walls, 1 m wide, form an equilateral
triangular tube. One wall is held at 400 K, one is at 300 K, and
the third is insulated. Find Q W/m and the temperature of the
third wall. [T3rd = 360 K]

10.30 Two 1 cm diameter rods run parallel, with centers 4 cm apart.
One is held at 1500 K and is black. The other is unheated, and
ε = 0.66. They are both encircled by a cylindrical black radiation
shield at 400 K. Evaluate the heat loss from the rod, and find the
temperature of the unheated rod. [281 W/m]

10.31 A small-diameter heater is centered in a large cylindrical radiation
shield. Discuss the relative importance of the emittance of the
shield during specular and diffuse radiation.

10.32 Two 1 m wide commercial aluminum sheets are joined at a 120◦

angle along one edge. The back (or 240◦ angle) sides are insulated.
The plates are both held at 120◦C. The 20◦C surroundings are
distant. What is the net radiant heat transfer from the left-hand
plate to the right-hand side and to the surroundings? [83 W/m]

10.33 Two parallel disks of 0.5 m diameter are separated by an infinite
parallel plate, midway between them, with a 0.2 m diameter hole
in it. The disks and the hole are on the same centerline. What is
the view factor between the two disks if they are 0.6 m apart?

10.34 An evacuated spherical cavity, 0.3 m in diameter in a zero-gravity
environment, is kept at 300◦C. Saturated steam at 1 atm is then
placed in the cavity. (a) What is the initial radiant heat flux to the
steam? (b) Determine how long it will take for qconduction to become
less than qradiation. Correct for the rising steam temperature if it
is necessary to do so. [(b) 0.35 s]

10.35 Verify cases (1), (2), and (3) in Table 10.2 using the string method
described in Problem 10.14.

10.36 Two long parallel heaters consist of 120◦ segments of 10 cm di-
ameter parallel cylinders whose centers are 20 cm apart. The
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convex surfaces face each other, symmetrically placed on the
plane connecting their centers. Find F1–2 using the string method
described in Problem 10.14. [F1–2 = 0.2216]

10.37 Two long parallel strips of rolled sheet steel lie along sides of an
imaginary 1 m equilateral triangular cylinder. One piece is 1 m
wide and kept at 20◦C. The other is 1/2 m wide, centered in an
adjacent leg, and kept at 400◦C. The surroundings are distant and
they are insulated. Find Qnet. Hint : You will need a shape factor;
it can be found using the method described in Problem 10.14.
[2930 W]

10.38 Find the shape factor from the hot to the cold strip in Prob-
lem 10.37 using Table 10.2, not the string method. If your in-
structor asks you to do so, complete Problem 10.37 after you
have F1–2.

10.39 Prove that the view factor for the second case in Table 10.3 reduces
to that given for the third case in Table 10.2 when the figure
becomes very long.

10.40 Show that F1–2 for the first case in Table 10.3 reduces to the
expected result when plates 1 and 2 are extended to infinity.

10.41 In Problem 2.26 you were asked to neglect radiation in showing
that q was equal to 8227 W/m2 as the result of conduction alone.
Discuss the validity of the assumption quantitatively.

10.42 A 100◦C sphere with ε = 0.86 is centered within a second sphere
at 300◦C with ε = 0.47. The outer diameter is 0.3 m and the inner
diameter is 0.1 m. What is the radiant heat flux? [433 W/m2]

10.43 Verify F1–2 for case 4 in Table 10.2. Hint: This can be done without
integration.

10.44 Consider the approximation made in eqn. (10.30) for a small gray
object in a large isothermal enclosure. How small must A1/A2

be in order to introduce less than 10% error in F1–2 if the small
object has an emittance of ε1 = 0.5 and the enclosure is: a) com-
mercial aluminum sheet; b) rolled sheet steel; c) rough red brick;
d) oxidized cast iron; or e) polished electrolytic copper. Assume
that both the object and its environment have temperatures in
the range of 40 to 90◦C.

10.45 Derive eqn. (10.45), starting with eqns. (10.39–10.41).
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Table 10.6 Monochromatic absorption coefficient for water

λ (µm) ρκλ (cm−1) Color

0.3 0.0067
0.4 0.00058 violet
0.5 0.00025 green
0.6 0.0023 orange
0.8 0.0196
1.0 0.363
2.0 69.1

2.6–10.0 > 100.

10.46 (a) Derive eqn. (10.31), which is for a single radiation shield be-
tween two bodies. Include a sketch of the radiation network. (b)
Repeat the calculation in the case when two radiation shields lie
between body 1 and body 2, the second just outside the first.

10.47 Use eqn. (10.32) to find the net heat transfer from between two
specularly reflecting bodies that are separated by a specularly
reflecting radiation shield. Compare the result to eqn. (10.31).
Does specular reflection reduce the heat transfer?

10.48 Some values of the monochromatic absorption coefficient for
liquid water, as ρκλ (cm−1), are listed in Table 10.6 [10.5]. For each
wavelength, find the thickness of a layer of water for which the
monochromatic transmittance is 10%. On this basis, discuss the
colors one might see underwater and water’s infrared emittance.

10.49 The sun has a diameter of 1.3914×106 km. The earth has a mean
diameter of 12,742 km and lies at a mean distance of 1.496 ×
108 km from the center of the sun. (a) If the earth is treated as a
flat disk normal to the radius from sun to earth, determine the
view factor Fsun–earth. (b) Use this view factor and the measured
solar irradiation of 1361± 0.5 W/m2 to show that the effective
black body temperature of the sun is 5772 K [10.20].

10.50 A long, section of cylindrical shell has a radius R, but it does not
form a complete circle. Instead, the cylindrical shell forms an arc
spanning an angle θ less than 180◦. Because the shell is curved,
the inside surface of the shell (surface 1) views itself. Derive an
expression for the view factor F1-1, and evaluate F1-1 for θ = 30◦.

10.51 Solve Problem 1.46, finding the Stefan-Boltzmann constant in
terms of other fundamental physical constants.
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Table 10.7 λT in µm·K as a function of f

f λT f λT f λT

0.0500 1884 0.4000 3583 0.8000 6864
0.1000 2195 0.5000 4107 0.9000 9376
0.2000 2676 0.6000 4745 0.9500 12461
0.3000 3119 0.7000 5590

10.52 The fraction of blackbody radiation between wavelengths of 0 and
λ is given by the radiation fractional function, f :

f = 1
σT 4

∫︂ λ
0
eλ,b dλ (10.60)

a. Work Problem 1.46.

b. Show that

f(λT) = 1− 15
π4

∫︂ c2/λT

0

t3

et − 1
dt (10.61)

where c2 is the second radiation constant, hc/kB , equal to
14387.8 µm·K.

c. Use the software of your choice to plot f(λT) and check that
your results match Table 10.7.

10.53 Read Problem 10.52. Then find the central range of wavelengths
that includes 80% of the energy emitted by blackbodies at room
temperature (300 K) and at the solar temperature (5772 K).

10.54 Read Problem 10.52. A crystalline silicon solar cell can convert
photons to conducting electrons if the photons have a wavelength
less than λband = 1.11 µm, the bandgap wavelength. Longer
wavelengths do not produce an electric current, but simply get
absorbed and heat the silicon. For a solar cell at 320 K, make a
rough estimate of the fraction of solar radiation on wavelengths
below the bandgap? Why is this important?

10.55 Two stainless steel blocks have surface roughness of about 10 µm
and ε ≈ 0.5. They are brought into contact, and their interface is
near 300 K. Ignore the points of direct contact and make a rough
estimate of the conductance across the air-filled gaps, approximat-
ing them as two flat plates. Is radiation important? Considering
Table 2.2, what is the relative importance of direct contact?
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10.56 A 0.8 m long cylindrical combustion chamber is 0.2 m in diameter.
The hot gases within it are at a temperature of 1200°C and a
pressure of 1 atm, and the absorbing components consist of 12%
by volume of CO2 and 18% CO2. Determine how much cooling
is needed to hold the walls at 730°C if they are black. Hints: For
this small optical depth, the emissivities of CO2 and CO2 may be
added without correction. The gas mixture is approximately ideal,
with vol% of a = mole fraction, xa = pa/p.
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11. An introduction to mass transfer

The edge of a colossal jungle, so dark-green as to be almost black, fringed
with white surf, ran straight, like a ruled line, far, far away along a blue
sea whose glitter was blurred by a creeping mist. The sun was fierce, the
land seemed to glisten and drip with steam.

Heart of Darkness, Joseph Conrad, 1902

11.1 Introduction

We have, so far, dealt with heat transfer by convection, radiation, and
conduction. Conduction is the diffusion of heat by random molecular
action. Heat is transported as hotter molecules mix with or agitate colder
ones. A similar process occurs in mixtures of different molecules: mass
diffuses as molecules of one kind randomly penetrate regions occupied
by molecules of another kind. Up to this point, we have limited our
attention to media of unvarying composition in which mass diffusion is
meaningless. Many heat transfer processes, however, occur in mixtures
where composition differences can drive heat transport, thereby coupling
heat diffusion to mass diffusion.

When water vapor condenses out of moist air onto a cold drinking
glass, the latent heat of condensation is transferred from the vapor to the
glass, warming it. When water evaporates from our skin, as sweat, the
latent heat is transferred from our bodies to the vapor, which then carries
it away. In both of these examples heat and vapor diffuse simultaneously.
A small amount of diffusing water vapor can transport a large amount of
energy because water’s latent heat is quite large.

During mass transfer processes, an individual chemical species travels
from points of high concentration to points of low concentration. Warm
water on sweating skin has a higher vapor pressure than surrounding,
drier air. This concentration difference drives the diffusion of vapor away
from the skin, leading to evaporation and a welcome cooling effect. 621
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Figure 11.1 Schematic diagram of a natural-draft cooling tower
at the Rancho Seco nuclear power plant. (From [11.1], courtesy
of W. C. Reynolds.)

We have harnessed evaporative cooling in large-scale industrial equip-
ment. Figure 11.1 shows a huge cooling tower used to cool the water leav-
ing a power plant’s condensers. The tower is essentially an empty shell, the
bottom of which is packed with plates or plastic louvres. The hot water to
be cooled is sprayed onto the packing and showers downward as droplets
that provide a large surface area for evaporation. A small portion of the
water vaporizes into the cool, dry air that enters the tower from below. The
remaining water, having been cooled by evaporation, falls to the bottom,
where it is collected and recirculated. Moist air flows out of the top, and
white plumes of water droplets may form as it mixes with cool air outside.

The temperature of the air rises as it absorbs the warm vapor and, in
the natural-draft form of cooling tower shown above, the upper portion
of the tower acts as an enormous chimney through which the warm,
moist air buoys, pulling in cool air at the base. In a mechanical-draft
cooling tower (Fig. 11.2), fans are used to draw air through the packing.
Mechanical-draft towers are much shorter and can sometimes be seen on
the roofs of buildings.
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Figure 11.2 A mechanical-draft cooling tower. The fans are
located within the cylindrical housings at the top. Air is drawn
in through the louvres on the side.

A dilute species diffusing through another species, such as water vapor
in air, behaves very much like heat diffusing from high temperature to low
temperature. The rate at which a species moves from high concentration
to low concentration is given by Fick’s law, eqn. (2.19), which is analogous
to Fourier’s law, eqn. (2.2). Like energy, the mass of a species is conserved.
The equation that describes species conservation is analogous to the
energy equation, eqn. (6.37). When a moving fluid transfers mass, a mass
transfer coefficient, like a heat transfer coefficient, serves to simplify the
analysis of convection. And, if the mass flow rates are low enough that
they do not change the velocity field, our previous results for heat transfer
coefficients provide mass transfer coefficients in the same configuration,
through a simple change of variables. With these tools, we can solve
many important mass transfer problems, such as calculating rates of
evaporative cooling.

In later sections of this chapter, 11.8–11.10, we introduce more com-
plex aspects of mass transfer. We will see that, when mass transfer rates
are high, boundary layers can thicken or thin depending on the direction
of mass flow. This phenomenon changes both the mass and heat trans-
fer coefficients. Such behavior is critical in steam condensers with air
leaks and outside spacecraft reentering the atmosphere. Further, because
the physical properties of mixtures are often unknown, we will study
elementary means of estimating their values.



624 An introduction to mass transfer §11.2

Most of this chapter deals with two-component, or binary, mixtures.
In the last section, 11.11, we introduce multicomponent mass transfer
theory. We also introduce the chemical potential, whose gradient is
the true thermodynamic driving force for mass diffusion. The chemical
potential gradient can be replaced by the concentration gradient in ideal
gas mixtures and in dilute liquid solutions. In other kinds of mixtures,
the chemical potential itself must be considered.

We begin our study of mass transfer by learning to describe concen-
tration and mass flux in mixtures.

11.2 Mixture compositions and species fluxes

The composition of mixtures

A mixture of chemical species has definite physical properties, such as
a density, as if the mixture were a single substance. Air is a familiar
example. The properties of a mixture depend on the relative amount of
each component, as well as the temperature and pressure. To determine
the properties of a mixture, we must identify the proportion of each
species present.

The amount of species i in a mixture might be described by its mass
per unit volume, the partial density in kg of i per m3, ρi. The composition
of the entire mixture may be described by stating the partial density of
each of its components. The mass density of the mixture itself, ρ, is
simply the total mass of all species per unit volume:

ρ =
∑︂
i
ρi (11.1)

The proportion of species i in the mixture can be described by the
mass of i per unit mass of the mixture, which is simply ρi/ρ. This ratio
is called the mass fraction, mi:

mi ≡
ρi
ρ
= mass of species i

mass of mixture
(11.2)

The mass fraction is obviously equivalent to the percent-by-weight of i.
From eqn. (11.1), we see that∑︂

i
mi =

∑︂
i
ρi/ρ = 1 and 0 ⩽mi ⩽ 1 (11.3)
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IfMi is the molar mass of species i in kg/kmol, the molar concentration
of species i, ci in kmol/m3, is just

ci ≡
ρi
Mi

= moles of i
volume

(11.4)

Molar concentration is often stated in units of mol/L, in which case it is
called molarity.

The molar concentration of the entire mixture, c, is the total number
of moles for all species per unit volume. Thus,

c =
∑︂
i
ci. (11.5)

The mole fraction of species i, xi, is the number of moles of i per mole
of mixture:

xi ≡
ci
c
= moles of i

mole of mixture
(11.6)

Like a mixture’s mass fractions, a mixture’s mole fractions sum to one:∑︂
i
xi =

∑︂
i
ci/c = 1 and 0 ⩽ xi ⩽ 1 (11.7)

The effective molar mass of a mixture is the number of kg of mixture
per kmol of mixture: M ≡ ρ/c. Expressions forM in terms of mole or mass
fraction follow from eqns. (11.1), (11.4), and (11.6) or from eqns. (11.5),
(11.4), and (11.2):

M =
∑︂
i
xiMi or

1
M
=
∑︂
i

mi
Mi

(11.8)

We can easily derive the following relations to convert mole fraction to
mass fraction (Problem 11.1) :

mi =
xiMi
M

= xiMi∑︁
k xkMk

and xi =
Mmi
Mi

= mi/Mi∑︁
kmk/Mk

(11.9)

Ideal gases

The definitions above apply to any substance, but they say nothing about
temperature or pressure dependence. For an ideal gas mixture, however,
we can relate the concentrations to T and p.

For each component i of an ideal gas mixture, the partial pressure, pi,
exerted by species i is:

pi = ρiRiT (11.10)
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In eqn. (11.10), Ri is the ideal gas constant for species i

Ri ≡
R◦

Mi
(11.11)

where R◦ is the universal gas constant, 8314.46 J/kmol· K. The partial
pressure is directly related to the partial molar concentration ci:

pi = ρiRiT =
(︁
Mici

)︁(︃R◦
Mi

)︃
T

= ciR◦T (11.12)

Remarkably, c is a function of p and T only

c =
∑︂
i
ci =

∑︂
i

pi
R◦T

= p
R◦T

(11.13)

The last two terms of eqn. (11.13) reveal Dalton’s law of partial pressures1:

p =
∑︂
i
pi (11.14)

Finally, we combine eqns. (11.6), (11.12), and (11.13) to obtain a very
useful relationship between xi and pi:

xi =
ci
c
= pi
c R◦T

= pi
p

(11.15)

The last two equalities are restricted to ideal gases.

Example 11.1 Composition of air

The mixture that we deal with most often is air. The composition of
dry air by mass and mole fraction is listed below. Determine xO2 , pO2 ,
cO2 , and ρO2 for air at 1 atm.

Species Mass Fraction Mole Fraction

N2 0.7552 0.7808
O2 0.2314 find this
Ar 0.01288 0.00934
trace gases < 0.001 < 0.001

1John Dalton offered his “law” as an empirical principle in 1801. But we can deduce
it for ideal gases using molecular principles. We obtain it here from eqn. (11.10), which
is true for ideal gas molecules because they occupy mixtures without influencing one
another. While Dalton’s law is strictly true only for ideal gases, it happens to be quite
accurate even when gases deviate greatly from ideality. This fact lets us simplify many
calculations.
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Solution. To make these calculations, we need the molar mass of
each species, which are given in Table 11.3 on page 689. We can start
by checking the value of Mair, using the second of eqns. (11.8):

Mair =
(︄
mN2

MN2

+ mO2

MO2

+ mAr

MAr

)︄−1

=
(︄

0.7552
28.01 kg/kmol

+ 0.2314
32.00 kg/kmol

+ 0.0128
39.95 kg/kmol

)︄−1

= 28.97 kg/kmol

We may calculate the mole fraction of oxygen using the second of
eqns. (11.9)

xO2 =
mO2M
MO2

= (0.2314)(28.97 kg/kmol)
32.00 kg/kmol

= 0.2095

The partial pressure of oxygen in 1 atm air is, by eqn. (11.15),

pO2 = xO2 p = (0.2095)(101,325 Pa) = 2.123× 104 Pa

We may now obtain cO2 from eqn. (11.12):

cO2 =
pO2

R◦T
= (2.123× 104 Pa)

/︁
(300 K)(8314.5 J/kmol·K)

= 0.008510 kmol/m3 = 8.510 mol/m3

Finally, eqn. (11.4) gives the partial density of oxygen

ρO2 = cO2MO2 = (0.008510 kmol/m3)(32.00 kg/kmol)

= 0.2723 kg/m3

Velocities and fluxes

Molecules in a gas or liquid constantly collide with other molecules, caus-
ing them to bounce randomly from place to place. If species A is concen-
trated in one region of a fluid, with species B concentrated in an adjacent
region, this random molecular motion will cause species A to diffuse into
the region of species B, and vice versa. On average, then, molecules of
species A will have a velocity v⃗A toward the region of species B, with
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Figure 11.3 Species A diffuses into the
region occupied by species B, and vice
versa. Each species has a different average
velocity.

new figures Oct 2023.auxlock

vAvB

mBmA

Species A Species B

Figure 11.4 The mixture composed of
species A and B moves rightward at
velocity V⃗ . The convective velocity V⃗ adds
to the diffusive velocites v⃗A and v⃗B .

new figures Oct 2023.auxlock

vA + V

vB − V V

mBmA

Species A Species B

species B having an average velocity v⃗B toward the region of species A
(Fig. 11.3). We see that each species in a mixture can have a different
species average velocity, v⃗i.

The entire mixture might also be flowing. The mixture’s velocity
would add to the velocity of every individual species in the mixture, even
while individual species might diffuse past one another (Fig. 11.4). The
movement of an individual species is then a sum of convection by the
moving mixture and diffusion along its own concentration gradient.

To connect the mixture’s mass average velocity, v⃗ , to the average
velocity of each species in the mixture, we write the mixture’s momentum
per unit volume as a sum over the species that compose the mixture:

ρv⃗ =
∑︂
i
ρiv⃗i (11.16)

The vector ρv⃗ is also the mixture’s mass flux, n⃗, in units of kg/m2s.2

2The mass average velocity, v⃗ , given by eqn. (11.16) is identical to the fluid velocity,
u⃗, used in previous chapters—imagine applying eqn. (11.16) to a “mixture” composed
of only one species. We use the symbol v⃗ here simply because v⃗ is the more common
notation in the mass transfer literature.
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Likewise, the mass flux of a single species i is

n⃗i = ρiv⃗i (11.17)

and, from eqn. (11.16), we see that the mixture’s mass flux equals the
sum of all species’ mass fluxes

n⃗ =
∑︂
i
n⃗i = ρv⃗ (11.18)

The average velocity difference between a species and the mixture,
v⃗i − v⃗ , is a result of diffusion. Thus, we identify the diffusional mass flux,
j⃗i, of a species relative to the mixture as:

j⃗i ≡ ρi
(︁
v⃗i − v⃗

)︁
(11.19)

The species’ total mass flux, n⃗i, includes both this diffusional mass flux
and bulk convection by the mean flow, as is easily shown:

n⃗i = ρiv⃗i = ρiv⃗ + ρi
(︁
v⃗i − v⃗

)︁
= min⃗⏞ ⏟⏟ ⏞

convection

+ j⃗i⏞ ⏟⏟ ⏞
diffusion

(11.20)

The relative contributions of convection and diffusion are fixed as soon
as we know the velocity field and the partial densities. But the causes of
diffusion need further discussion, which we defer to Section 11.3.

Combining eqns. (11.18) and (11.20), we find that

n⃗ =
∑︂
i
n⃗i =

∑︂
i
ρiv⃗ +

∑︂
i
j⃗i = ρv⃗ +

∑︂
i
j⃗i = n⃗+

∑︂
i
j⃗i

Hence ∑︂
i
j⃗i = 0 (11.21)

Diffusional mass fluxes must sum to zero because they are each defined
relative to the mean mass flux.

Fluxes and velocities may also be stated in molar terms. The mole flux
of species i is N⃗i = civ⃗i, in kmol/m2s. The mixture’s mole flux, N⃗ , is the
sum over all species

N⃗ =
∑︂
i
N⃗i =

∑︂
i
civ⃗i = cv⃗∗ (11.22)
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where we define the mole-average velocity, v⃗∗, as shown. The last flux we
define is the diffusional mole flux, J⃗i:

J⃗i = ci
(︁
v⃗i − v⃗∗

)︁
(11.23)

By putting the definitions of N⃗ and N⃗i into eqn. (11.23), we find that

N⃗i = xiN⃗ + J⃗i (11.24)

Finally, substituting eqn. (11.24) into eqn. (11.22) gives

N⃗ =
∑︂
i
N⃗i = N⃗

∑︂
i
xi +

∑︂
i
J⃗i = N⃗ +

∑︂
i
J⃗i

so that ∑︂
i
J⃗i = 0 (11.25)

Thus, the diffusional mole fluxes also sum to zero.

Example 11.2

A small carbon particle oxidizes in air at 1300 K through a surface
reaction that produces carbon monoxide gas: C + 1

2 O2 ⎯→ CO. Fig-
ure 11.5 shows the carbon-air interface in coordinates that move with
the interface. In these coordinates, the solid carbon appears to flow
toward the surface, rather than the surface slowly moving into the
carbon, as it actually does. Oxygen flows toward the carbon surface
and carbon monoxide flows away.

If carbon is consumed at a rate of 20 g/m2s, find the mass fluxes
and mass-average velocity through an imaginary surface, s, that stays
close to the gas side of the interface. The estimated CO concen-
tration near the surface is mCO,s ≊ 0.05, and the gas density is
ρs = 0.27 kg/m3. Under these conditions, oxygen is consumed as fast
as it diffuses to the surface, so that mO2,s remains very low.

Solution. The mass balance for the reaction is

12.0 kg C+ 32.0
2

kg O2 ⎯→ 28.0 kg CO

The carbon flows through a second imaginary surface, u, just below
the interface, and the mass fluxes are related by

nC,u = −
12
16
nO2,s =

12
28
nCO,s
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Figure 11.5 Carbon oxidation in air.

The minus sign arises because the O2 flow is opposite the C and CO
flows. With the given value, nC,u = 20 g/m2s, we find

nO2,s = −
16
12
(20 g/m2s) = −26.7 g/m2s

nCO,s =
28
12
(20 g/m2s) = 46.7 g/m2s

The total mass flux at the s-surface, from eqn. (11.18), is

ns = nCO,s +nO2,s = 46.7− 26.7 = 20.0 g/m2s

as was expected since mass conservation requires thatns = nu = nC,u.
Note the nitrogen and other gases in air have no mass flux at the surface
because they do not react.

The net mass flux away from the surface causes a convective
velocity in the gas near the surface. From eqn. (11.20), the mass-
average velocity is

vs =
ns
ρs
= 0.020 kg/m2s

0.27 kg/m3 = 0.0741 m/s

The speed at which the carbon interface recedes is approximately
−nC,u/ρC ≊ −10 µm/s, where the density of solid carbon is ρC ≊
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2200 kg/m3. This speed is utterly negligible relative to the gas velocity,
as if the interface were in fact at rest.

To find the diffusional mass fluxes, we can again use eqn. (11.20)

nCO,s =mCO,sns + jCO,s

nO2,s =mO2,sns + jO2,s

which gives us

jCO,s = nCO,s −mCO,sns = 46.7− (0.05)(20.0) = 45.7 g/m2s

jO2,s = nO2,s −mO2,s⏞ ⏟⏟ ⏞
≊0

ns ≊ −26.7− 0 = −26.7 g/m2s

Note that jO2,s and jCO,s do not sum to zero because the nonreacting
species in air, particularly nitrogen, diffuse against the convective ve-
locity, vs . We discuss this very important phenomenon in Section 11.5.

To find the mass fluxes and concentration of nitrogen at the s-
surface, work Problem 11.4. For more information on the oxidation
and combustion of carbon particles, see Refs. [11.2, 11.3].

11.3 Fick’s law of diffusion in binary mixtures

A binary mixture contains only two species. Each species will diffuse from
regions where its concentration is high toward regions where its concen-
tration is low—just as heat diffuses from a region of high temperature
toward a region of low temperature. We have already noted in Section 2.1
that mass diffusion obeys Fick’s law

j⃗1 = −ρD12∇m1 (11.26)

and that Fick’s law is analogous to Fourier’s law.
The constant of proportionality, ρD12, includes a physical prop-

erty called the diffusion coefficient, D12, for species 1 diffusing through
species 2. Like the thermal diffusivity, α, or the kinematic viscosity, ν
(which is a momentum diffusivity), the mass diffusivity D12 has units of
m2/s. These three diffusivities form three dimensionless groups:

The Prandtl number Pr ≡ ν/α
The Schmidt number3 Sc ≡ ν/D12 (11.27)

The Lewis number4 Le ≡ α/D12 = Sc/Pr
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Each group compares the strength of two diffusive processes. We make
considerable use of the Schmidt number later in this chapter.

We can write Fick’s law for the flux of species 2 as well

j⃗2 = −ρD21∇m2 (11.28)

A simple calculation shows that species 2 has the same diffusivity through
species 1 as species 1 has through species 2, if the mixture is binary
(Problem 11.7):

D21 = D12 (11.29)

Fick’s law may alternatively be written in terms of the molar diffusion
flux, J⃗1, and the mole fraction, x1:

J⃗1 = −cD12∇x1 (11.30)

The mole-based and mass-based forms of Fick’s law are identical: one form
can be derived from the other form using the definitions of concentration
and flux (Problem 11.8).

In some cases, the binary form of Fick’s law can be adapted to multi-
component mixtures to find the diffusion flux of one species, i, relative
to the rest of the mixture, m:

j⃗i = −ρDim∇mi (11.31)

A mixture of air and water vapor is a very important example. Air itself
is mixture, but it is mostly composed of the very similar molecules N2

and O2 (Example 11.1). As a result, air can be treated as if it were a single
species, and we can write Fick’s law using a binary diffusion coefficient
for water and air, DH2O,air. More generally, suppose that a mixture is
dominated by one species with very low concentrations of several other

3Ernst Schmidt (1892–1975) served successively as the professor of thermodynamics
at the Technical Universities of Danzig, Braunschweig, and Munich (see Chapter 6,
footnote 3). His many contributions to heat and mass transfer include the introduction of
aluminum foil as radiation shielding, the first measurements of velocity and temperature
fields in a natural convection boundary layer, and a once widely-used graphical procedure
for solving unsteady heat conduction problems. He was among the first to develop the
analogy between heat and mass transfer.

4Warren K. Lewis (1882–1975) was a professor of chemical engineering at M.I.T. from
1910 to 1975. He defined the original paradigm of chemical engineering, that of “unit
operations”; and, through his textbook with Walker and McAdams, Principles of Chemical
Engineering, he laid the foundations of the discipline. He was a prolific inventor in the
area of industrial chemistry. He also did important early work on simultaneous heat
and mass transfer in connection with evaporation problems.
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Figure 11.6 One-dimensional diffusion.
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species. Then the other species primarily interact with the dominant
species and not with each other, and eqn (11.31) is applicable to each of
those other species. Section 11.10 provides a formula to calculate Dim in
that situation.

A kinetic model of diffusion

The diffusion coefficient depends on composition, temperature, and pres-
sure. Equations that predict D12 and Dim are given in Section 11.10. For
now, let us see how Fick’s law arises from the same elementary molecular
kinetics that led to Fourier’s and Newton’s laws in Section 6.4.

Consider diffusion in a gas composed of two species, A and A′, where
A′ is very similar to A as if some of the molecules in a pure gas had merely
been labeled without changing their properties. The resulting diffusion
process is called self-diffusion. Assume that the temperature and pressure
of the mixture are uniform and that the mass-average velocity is zero.

Figure 11.6 shows a one-dimensional concentration distribution, in
which molecules of A diffuse down their concentration gradient in the
x-direction. This process is entirely analogous to the transport of energy
and momentum shown in Fig. 6.13.

Individual molecules move at a speed C , which varies randomly from
molecule to molecule as they travel between collisions with one another.
The average speed of the molecules is C. The average mass flux of A
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molecules crossing the plane x = x0, in either direction, is proportional to
(ρmA)C . Call this flux η(ρmA)C , where η is a constant of proportionality.
The molecules travel a distance of about one mean free path, ℓ, prior to
crossing the x0-plane. Call this distance aℓ, where a is a number close to
one.

We can now calculate the net mass flux across the x0-plane:

jA
⃓⃓⃓
x0
=
(︂
ηρCmA

)︂
x0−aℓ⏞ ⏟⏟ ⏞

flux traveling left

−
(︂
ηρCmA

)︂
x0+aℓ⏞ ⏟⏟ ⏞

flux traveling right

= ηρC
(︂
mA

⃓⃓
x0−aℓ − mA

⃓⃓
x0+aℓ

)︂
(11.32)

where ρC is independent of x because the mixture temperature and
pressure are uniform. We can approximate the difference using the
derivative at x0 (Problem 11.9):

jA
⃓⃓⃓
x0
= ηρC

(︄
−2aℓ

dmA

dx

⃓⃓⃓⃓
x0

)︄

= −ρ
(︁
2ηaCℓ

)︁ dmA

dx

⃓⃓⃓⃓
x0

(11.33)

Thus, we identify the self-diffusion coefficient as

DAA′ = (2ηa)Cℓ (11.34)

and obtain Fick’s law

jA = −ρDAA′
dmA

dx
(11.35)

The constant, 2ηa, in eqn. (11.34) can be found with a more detailed
kinetic theory calculation, the result of which is given in Section 11.10.

Typical values of the binary diffusion coefficient

Table 11.1 lists some experimental values of the diffusion coefficient in
binary gas mixtures and dilute liquid solutions. For gases, the diffusion
coefficient is typically on the order of 10−5 m2/s near room tempera-
ture. For liquids, the diffusion coefficient is much smaller, on the order
of 10−9 m2/s near room temperature. For both liquids and gases, the
diffusion coefficient rises with increasing temperature. In solids, typi-
cal diffusion coefficients range from about 10−20 to about 10−9 m2/s,
depending upon what substances are involved and the temperature [11.4].
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Table 11.1 Typical diffusion coefficients for binary gas mixtures
at 1 atm and dilute liquid solutions [11.5, 11.6].

Gas mixture T (K) D12 (m2/s)

air-carbon dioxide 276 1.42×10−5

air-ethanol 313 1.45

air-helium 276 6.24

air-naphthalene 303 0.86

air-water 313 2.88

argon-helium 295 8.3
628 32.1

1068 81.0

(dilute solute, 1)-(liquid solvent, 2) T (K) D12 (m2/s)

ethanol-benzene 288 2.25×10−9

benzene-ethanol 298 1.81

water-ethanol 298 1.24

carbon dioxide-water 298 2.00

ethanol-water 298 1.05

methane-water 275 0.85
333 3.55

The diffusion of water vapor through air is of particular technical
importance. An empirical correlation for that mixture is

DH2O,air = 1.87× 10−10

(︄
T 2.072

p

)︄
for 282 K ⩽ T ⩽ 450 K (11.36)

where DH2O,air is in m2/s, T is in kelvin, and p is in atm [11.7]. This
correlation fits measured data to about ±10%.

Applicability of Fick’s Law

Fick’s law works well for binary gases at low density and for dilute solutes
in liquid or solid solutions. When the solute is not dilute, but instead
concentrated, the diffusion coefficient can vary with the solute’s concen-
tration. This variation occurs because the solute molecules interact with
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each other when they are not dilute. In chemical terms, we no longer have
an ideal solution. These complex intermolecular forces affect the flux,
making it dependent on both the concentration and the concentration
gradient (see Sections 11.10 and 11.11).

Fick’s law employs just one species’ concentration gradient. That’s
appropriate for a binary mixture in which the two species’ gradients
are equal and opposite: ∇m1 = ∇(1 −m2) = −∇m2. However, when
three species diffuse, two gradients must be independently known. The
flux of any one species will depend on both those gradients through
a pair of diffusion coefficients. As a result, the binary forms of Fick’s
law, eqns. (11.26) and (11.31), are insufficient. In fact, multicomponent
diffusion can be counter-intuitive. For example, a strong gradient in one
species’ concentration may cause another species to move in opposition
to its own gradient. We discuss such phenomena in Section 11.11.

Coupled diffusion phenomena

Mass diffusion can be driven by factors other than concentration gradients,
although the latter are of primary importance. For example, temperature
gradients can induce mass diffusion in a process known as thermal diffu-
sion or the Soret effect. The diffusional mass flux resulting from combined
temperature and concentration gradients is [11.8]

j⃗i = −ρD12

[︃
∇m1 +

M1M2

M2
kT∇ ln(T)

]︃
(11.37)

where kT is called the thermal diffusion ratio and is generally quite small.
Thermal diffusion is occasionally used in chemical separation processes.

A pressure gradient that acts unequally on different species can also
cause diffusion. This effect is normally small, but it can be harnessed for
centrifuge separations. Electric fields can force the diffusional separation
of species that have different charges, an effect used to desalinate brackish
water by electrodialysis.

A related phenomenon is the generation of a heat flux by a concentra-
tion gradient (as distinct from heat convected by diffusing mass), called
the diffusion-thermo or Dufour effect.

In this chapter, we deal only with mass transfer produced by concen-
tration gradients. Transport problems involving coupled phenomena are
explored in the book by Kjelstrup et al. [11.9].
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11.4 The equation of species conservation

Conservation of species

Just as we formed an equation of energy conservation in Chapter 6,
we now form an equation of species conservation—one that applies to
each substance in a mixture. This equation should account not only for
the convection and diffusion of each species: it should also allow the
possibility that a species is created or destroyed by chemical reactions
within mixture.5

We again begin withan arbitrary control volume, R, with boundary,
S, as shown in Fig. 11.7. The control volume is fixed in space, and fluid
might move through it. Species i may accumulate in R, it may travel in
and out of R by bulk convection and diffusion through S, and it may be
created within R by chemical reactions. The rate of creation of species i
is ṙi (kg/m3s); and, because the total mass is conserved during a chemical
reaction,

∑︁
ṙi = 0. The rate of change of the mass of species i in R is then

described by the following balance:

d
dt

∫︂
R
ρi dR⏞ ⏟⏟ ⏞

rate of increase
of i in R

= −
∫︂
S
n⃗i · dS⃗ +

∫︂
R
ṙi dR

= −
∫︂
S
ρiv⃗ · dS⃗⏞ ⏟⏟ ⏞

rate of convection
of i out of R

−
∫︂
S
j⃗i · dS⃗⏞ ⏟⏟ ⏞

diffusion of i
out of R

+
∫︂
R
ṙi dR⏞ ⏟⏟ ⏞

rate of creation
of i in R

(11.38)

This species balance is identical to our energy balance, eqn. (6.36), except
that the partial density of i has taken the place of energy and diffusional
mass flux has taken the place of heat flux.

We convert the surface integrals to volume integrals using Gauss’s
theorem, eqn. (2.8), and rearrange the result:∫︂

R

[︃
∂ρi
∂t

+∇ ·
(︁
ρiv⃗

)︁
+∇ · j⃗i − ṙi

]︃
dR = 0 (11.39)

The control volume R was chosen arbitrarily, so the integral can only
equal zero if the integrand itself is identically zero. Thus, we obtain the

5Reactions within the mixture are called homogeneous reactions. Reactions on
surfaces surrounding the mixture are called heterogeneous reactions. Heterogeneous
reactions will appear in the boundary conditions of the species equation, but not in the
equation itself.
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Figure 11.7 Control volume in a
fluid-flow and mass-diffusion field.

general form of the species conservation equation:

∂ρi
∂t

+∇ ·
(︁
ρiv⃗

)︁
= −∇ · j⃗i + ṙi (11.40)

We can obtain a mass conservation equation for the entire mixture by
summing eqn. (11.40) over all species, applying eqns. (11.1), (11.16), and
(11.21) and requiring that there be no net creation of mass:

∑︂
i

[︃
∂ρi
∂t

+∇ ·
(︁
ρiv⃗

)︁]︃
=
∑︂
i

(︂
−∇ · j⃗i + ṙi

)︂
= −∇ ·

∑︂
i
j⃗i +

∑︂
i
ṙi = 0

so that
∂ρ
∂t
+∇ · (ρv⃗) = 0 (11.41)

This equation applies to any mixture, including those with varying density
(see Problem 6.36).

Incompressible mixtures. For an incompressible mixture, ∇· v⃗ = 0 (see
Section 6.2 or Problem 11.12). The convective term in eqn. (11.40) may
therefore be rewritten as

∇ ·
(︁
ρiv⃗

)︁
= v⃗ · ∇ρi + ρi ∇ · v⃗⏞ ⏟⏟ ⏞

=0

= v⃗ · ∇ρi (11.42)
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The resulting, incompressible species equation is very similar to the
incompressible energy equation, eqn. (6.37)

∂ρi
∂t

+ v⃗ · ∇ρi = −∇ · j⃗i + ṙi (11.43)

ρcp
(︃
∂T
∂t
+ v⃗ · ∇T

)︃
= −∇ · q⃗ + q̇ (6.37)

The reaction term, ṙi, is analogous to the heat generation term, q̇; the
diffusional mass flux, j⃗i, is analogous to the heat flux, q⃗; and dρi is
analogous to ρcpdT . We exploit this analogy in Section 11.6.

We can further simplify eqn. (11.43) if the product ρDim is spatially
uniform, by eliminating j⃗i using Fick’s law, eqn. (11.31), for effectively
binary diffusion (Problem 11.13):

∂mi
∂t

+ v⃗ · ∇mi = Dim∇2mi + ṙi/ρ (11.44)

The equation of species conservation may also be stated in molar
variables, using ci or xi, Ni, and Ji (Problem 11.14.) Molar analysis
sometimes has advantages over mass-based analysis (see pg. 653).

Interfacial boundary conditions

To solve the heat conduction equation for a temperature distribution, the
temperature or heat flux must be specified at each boundary of the domain
of interest (Section 4.1). Likewise, to solve the species conservation
equation for a concentration distribution, the concentration or mass flux
must be given at the boundaries.

Temperature and concentration behave differently at the interface
between two regions. The temperature changes continuously across an in-
terface, so that the media on either side have the same temperature where
they meet. Concentration, on the other hand, need not be continuous
across an interface, even in a state of thermodynamic equilibrium. Water
in a cup, for example, has a discontinuous change in the concentration
of water at the air-water interface, going from nearly 100% water in the
liquid phase to only a few percent in the gas phase. The concentration of
oxygen in the air above the water is 23% by mass while the concentration
of oxygen in the water is only about 10 ppm.

Ammonia, unlike oxygen, is highly soluble in water. The liquid can
contain more than 40% ammonia by mass at 10°C and a pressure slightly
above 1 atm. The solubility decreases rapidly with temperature. In fact,
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Figure 11.8 Absorption of ammonia into water.

the absorption of ammonia into water is exothermic, so that an ammonia
absorber must be actively cooled to stabilize the temperature and maintain
solubility. Conversely, heating can be used to drive ammonia vapor out
of water. An absorption refrigeration cycle applies both processes.

Absorption refrigeration pulls heat from a cooled space by vaporizing
liquid ammonia. The vapor is then absorbed into water in a direct contact
exchanger (Fig. 3.2), after which the liquid mixture is pumped to higher
pressure and separated in a distillation column. Absorption eliminates
the vapor compressor needed by other refrigeration systems.6

Figure 11.8 illustrates a liquid-vapor surface in the absorber. The
absorbed ammonia diffuses from the surface into the bulk liquid. Suppose
that surfaces s and u are very close to either side of the interface. The
mass fraction of ammonia on the vapor side of the interface, mNH3,s , is
quite different from that on the liquid side, mNH3,u.

The value of mNH3,u is a boundary condition for mass transfer into
the water. Data for phase equilibrium set mNH3,u as a function of mNH3,s

6Ammonia absorption refrigeration was invented and patented by Ferdinand Carré in
France in 1859. Ammonia refrigeration cycles, both absorption and vapor-compression,
have seen wide use ever since. Unlike many synthetic refrigerants, ammonia neither
damages the ozone layer nor contributes to climate change.
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Figure 11.9 Partial and total
vapor-pressure above a binary liquid
solution, showing the regimes of Raoult’s
and Henry’s laws for species i or the other
species.

for a given temperature and pressure. Phase equilibrium is immensely
important in chemical engineering, but the topic is complex [11.10, 11.11].
Here, we introduce only the very simplest equilibrium relationships.

Gas-liquid interfaces. For a gas mixture in contact with a liquid mixture,
two simplified rules set the vapor composition (Fig. 11.9). When the liquid
is rich in species i, the partial pressure of species i in the gas phase, pi,
can be characterized approximately with Raoult’s law, which says that

pi = psat,i xi for xi ≈ 1 (11.45)

where psat,i is the saturation pressure of pure i at the interface tempera-
ture and xi is the mole fraction of i in the liquid. When the species i is
dilute in the liquid, Henry’s law applies. It says that

pi = H xi for xi≪ 1 (11.46)

whereH is a temperature-dependent constant available in data tabulations
(see [11.12]). The literature reports H in a regrettable variety of units!
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Figure 11.9 shows how the vapor pressure varies over a liquid mixture
of species i and another species, and it indicates the regions of validity
of Raoult’s and Henry’s laws. For example, when xi is near one, Raoult’s
law applies to species i; when xi is near zero, Raoult’s law applies to the
other species.

If the vapor pressure were to obey Raoult’s law over the entire range
of liquid composition, the solution is called an ideal solution, shown with
dashed lines in Fig. 11.9. Most solutions approach ideality only when xi
is near one. In this case, the other species is a dilute solute.

Example 11.3 Mass fraction of vapor above liquid water

A pot of water at 100◦C sits in air at 1 atm total pressure and cools
toward room temperature. What is the mass fraction of water vapor
above the surface of the water as a function of the surface temperature?

Solution. Raoult’s law applies almost exactly in this situation, since
the concentration of air in water is very small: < 25 ppm at room
temperature and less as temperature rises. Thus, xH2O ≊ 1, and by
eqn. (11.45), the vapor pressure is pH2O,s ≊ psat,H2O(T). Data for the
saturation pressure as a function of temperature can be taken from
a steam table or from Table A.5 on pg. 754. (Table A.5 also includes
an equation for psat,H2O(T).) With pH2O,s and eqn. (11.15), the mole
fraction is

xH2O,s = pH2O,s
/︁
patm = psat,H2O(T)

/︁
(101,325 Pa) (11.47)

The mass fraction can be calculated from eqn. (11.9), noting that
xair = 1 − xH2O and substituting MH2O = 18.02 kg/kmol and Mair =
28.96 kg/kmol

mH2O,s =
(xH2O,s)(18.02)[︁

(xH2O,s)(18.02)+ (1− xH2O,s)(28.96)
]︁ (11.48)

The result is plotted in Fig. 11.10. Note that the mass fraction is less
than 10% if the surface temperature is below about 54◦C.

Example 11.4 Boiling point elevation of seawater

Bromley et al. [11.13] analyzed a sample of Pacific Ocean seawater.
They found that it contained 3.45% by weight of dissolved salts,
amounting to 1.137 mole of salts per kg of H2O. Determine the boiling
point of this seawater.
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Figure 11.10 Mass fraction of water vapor in air adjacent to a
liquid water surface as a function of surface temperature (1 atm
total pressure).

Solution. 1 kg of H2O contains (1/18.02)× 103 = 55.49 mol H2O.
The mole fraction of salt in the seawater is then

xsalts =
1.137

1.137+ 55.49
= 0.0201

From Raoult’s law, the vapor pressure of water over seawater will be
1 atm when the saturation pressure of water is

psat, H2O(TBP) =
pH2O

xH2O
= 101,325

1− 0.0201
= 103,403 Pa

A steam table (or software) gives TBP = 100.54°C. In other words,
the dissolved salts produce a boiling point elevation of 0.54 K. Although
this value seems small, seawater distillation systems use a cascade
of vaporization stages, with stage-to-stage temperature differences
of about 4 K and progressively rising salinity. Boiling point elevation
cannot be neglected in the stage-to-stage design.
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Example 11.5 Carbonated drink

Carbonated drinks contain about 7 g of CO2 per liter of water. If a
drink is in an unopened can at 25°C, what is the partial pressure of
CO2 in the space above the liquid in the can? What happens to the
CO2 when the can is opened?

Solution. The Henry’s law constant for CO2 in water is H = 1.63×
108 Pa [11.12]. With MCO2 = 44.01 g/mol, MH2O = 18.02 g/mol, and
ρH2O = 997 g/L, eqn. (11.9) gives

xCO2 =
7/44.01

7/44.01+ 997/18.02
= 0.00287

Henry’s law, eqn. (11.46), then provides

pCO2 = HxCO2 = (1.63× 108)(0.00287) = 468 kPa

The partial pressure of CO2 accounts for almost all of the total pressure
in the can.7

When the can is opened, the pressure drops to 1 atm, and the drink
is supersaturated with CO2. The CO2 bubbles out until equilibrium is
reached. At that point, the drink is “flat”.

Gas-solid interfaces. When a solid is exposed to a gas, some of it will
vaporize. Camphor, for example, produces an aromatic vapor that has
been used for centuries in medicine and religious rites. Naphthalene
produces a toxic vapor once used to keep moths away from wool clothing.
Dry ice (solid CO2), which vaporizes rapidly in room temperature air, often
appears in science experiments for children. For most solid materials,
however, vaporization is undetectably tiny.

We call a direct solid-to-vapor phase transition sublimation. The con-
centration of sublimed solid material in an adjacent gas is usually stated
as a vapor pressure, pv , which may be correlated from data as [11.14]

lnpv = A−
B

C + T (11.49)

7The drink contains dissolved sugar and favorings, so Raoult’s law shows that
pH2O < psat,H2O(25°C) = 3.17 kPa, which is negligible. If some air is also present in the
can, the pressure will be slightly higher. The gauge pressure in an unopened can be
measured by attaching a strain gauge to the can and opening it, as is done in some
undergraduate classes. The calculated pCO2 is quite consistent with such experiments.
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where T is the solid’s surface temperature, and A, B, and C are constants.8

A gas can also be absorbed into an adjacent solid. Only very small
amounts of gas are absorbed into most inorganic solids, but the conse-
quences may sometimes be significant. For example, gas absorption is
used to case-harden steel in a process called carburization. A low-carbon
steel is exposed to a hot carbon-rich gas mixture, typically containing CO
and a hydrocarbon. That causes carbon to be absorbed into the surface
of the metal. Carbon diffuses inward from the surface. A typical goal is
to raise the carbon mass fraction to 0.8% over a depth of about 2 mm (see
Problem 11.18). Carburization increases the surface hardness and wear
resistance of the steel.

Similarly, hydrogen gas stored in a steel-walled pressure vessel can
leak when it is absorbed into the wall. Upon absorption, molecular hy-
drogen dissociates into hydrogen atoms, which readily diffuse through
the steel. The hydrogen atoms recombine on the opposite surface of
the wall where they are desorbed [11.16]. Hydrogen absorption can lead
to embrittlement of steel containers and to leakage from a wide range
of container vessels. The light-weight composite storage tanks used in
hydrogen fuel-cell vehicles, for example, are protected from leakage with
polymer liners.

Example 11.6

Ice at −10◦C is exposed to 1 atm air. What is the mass fraction of
water vapor above the surface of the ice?

Solution. To begin, we need the vapor pressure, pv , of water above
ice. A typical curve-fit of vapor pressure data is

lnpv (kPa) = 21.99− 6141
/︁
(T K) for 243 K ⩽ T ⩽ 273 K

At T = −10◦C = 263.15 K this yields pv = 0.260 kPa. The remainder
of the calculation follows exactly the approach of Example 11.3.

xH2O,s = 0.260/101.325 = 0.00257

mH2O,s =
(0.00257)(18.02)

[(0.00257)(18.02)+ (1− 0.00257)(28.96)]

= 0.00160

8The Antoine equation, eqn. (11.49), was proposed in 1888 by the French naval
engineer Louis Charles Antoine (1825–1898). The case C = 0 follows directly from the
Clausius-Clapeyron equation, dp/dT = phsf /(R◦T 2), if hsf varies negligibly with T .
The Antoine equation also applies to the vapor pressure of liquids [11.15].
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While this amount is small, it leads to a steady loss of mass. An ice
cube left in the freezer will sublime away over a period of months
(Problem 11.33).

11.5 Mass transfer through a stationary medium

When a species dissolves into a solid layer, or a stagnant layer of a different
fluid, the concentration gradient formed will cause the species to diffuse
from one side of the layer to the other. The resulting mass transfer
process resembles a heat conduction process when the concentration of
the dissolved species is not too high. Let us first examine this process in
the steady state.

Steady mass diffusion in a stationary medium

The species conservation equation, (11.40), simplifies greatly for steady
mass transfer without reactions

∇ · (ρiv⃗)+∇ · j⃗i = ∇ · n⃗i = 0 (11.50)

In one dimension, this is just

dni
dx

= d
dx

(︁
ρiv + ji

)︁
= d
dx

(︁
min+ ji

)︁
= 0 (11.51)

In other words, the mass flux of species i, ni, is independent of x.
When the convective mass flux of i, ρiv =min, is small, the transport

of i is mainly by the diffusional flux, ji. The following pair of examples
show how this situation might arise.

Example 11.7

A slab, made of species 1, separates two volumes of gas. On one
side, the pressure of species 2 is high, and on the other it is low.
Species 2 two is soluble in the slab material and thus has different
concentrations at each inside face of the slab, as shown in Fig. 11.11.
What is the mass transfer rate of species 2 through the slab if the
concentration of species 2 is low?

Solution. The mass transfer rate in the slab satisfies eqn. (11.51)

dn2

dx
= 0



648 An introduction to mass transfer §11.5

Figure 11.11 One-dimensional, steady
diffusion of a dilute species through a
stationary slab.

If species 2 is dilute, with m2 ≪ 1, the convective transport will be
small

n2 =m2n+ j2 ≊ j2

With Fick’s law, we have

dn2

dx
≊ dj2

dx
= d
dx

(︃
−ρD21

dm2

dx

)︃
= 0

If ρD21 ≊ constant, the mass fraction satisfies

d2m2

dx2
= 0

Integrating and applying the boundary conditions, m2(x = 0) =m2,0
and m2(x = L) =m2,L, we obtain the concentration distribution:

m2(x) =m2,0 +
(︁
m2,L −m2,0

)︁(︃x
L

)︃
The mass flux is then

n2 ≊ j2 = −ρD21
dm2

dx
= ρD21

L
(︁
m2,0 −m2,L

)︁
(11.52)

This, in essence, is the same calculation as made in Example 2.2 in
Chapter 2.
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An interesting subtlety underlies this calculation. The diffuisional
fluxes sum to zero, j1 + j2 = 0, so the slab itself must have a nonzero
diffusional flux, j1. However, because the slab is at rest, its total mass flux,
n1, is zero. Both conditions are met because the net mass flow through
the slab (n = n2) creates a non-zero mass average velocity, v . Thus

n1 = 0 = ρ1v + j1 (11.53)

The velocity v is sometimes called the counterdiffusion velocity ; how-
ever, v is simply the mass-average speed at which the mixture flows when
the net mass flux is not zero.

Example 11.8

Suppose that the concentration of species 2 in the slab were not small
in the preceding example. How would the total mass flux of species 2
differ from the diffusional flux?

Solution. The counterdiffusion velocity in the slab, by eqn. (11.53), is

v = − j1

ρ1
= j2

ρ1

The mass flux for species 2 is

n2 = ρ2v + j2 = j2

(︄
ρ2

ρ1
+ 1

)︄

= j2

(︃
m2

m1
+ 1

)︃
= j2

(︃
1

1−m2

)︃
(11.54)

When m2 ≪ 1, j2 ≊ n2 and convection is negligible. On the other
hand, if m2 = 0.5 at some point, then n2 = 2j2! In that case, the
convective transport ρ2v is equal to the diffusive transport j2.

From these two examples, we see that steady mass diffusion is directly
analogous to heat conduction only if the convective transport is negligible.
That condition is met when the transferred species is dilute, with the other
medium at rest. When the transferred species has a high concentration,
significant convective transport can occur, even in a solid medium.

As a practical example, many desalination plants separate fresh water
from salt water using polymeric reverse-osmosis membranes. These mem-
branes absorb a considerable volume fraction of water—7 to 35% in one
study [11.17]. The membranes are often modeled as nonporous, but with
the water transported through by both diffusion and convection [11.18].
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Unsteady mass diffusion in a stationary medium

Similar conclusions apply to unsteady mass diffusion. Consider a medium
at rest through which a dilute species i diffuses. From the species conser-
vation equation, (11.40) with ṙi = 0,

∂ρi
∂t

= −∇ ·
(︂
ρiv⃗ + j⃗i

)︂
= −∇ ·

(︂
min⃗+ j⃗i

)︂
(11.55)

Ifmi≪ 1,min is negligible so that only diffusion contributes significantly
to the mass flux of i. With Fick’s law, eqn. (11.31),

∂ρi
∂t

≈ −∇ · j⃗i = ∇ · (ρDim∇mi)

For smallmi, the density ρ and the diffusion coefficientDim will not vary
much, and we can factor both through the derivatives. The result is

∂mi
∂t

= Dim∇2mi (11.56)

which is called the mass diffusion equation. The equation has the same
form as the heat conduction equation. Solutions for the unsteady diffusion
of a dilute species in a stationary medium are thus analogous to those for
heat conduction when the boundary conditions are the same.

Example 11.9

A semi-infinite stationary medium (1) has an initially uniform concen-
tration, mi,0 of species i. At time t = 0, the end plane at x = 0 is
placed in contact with a second medium (2) that has a concentration
mi,s . What is the distribution of species i in medium 1 for t > 0 if
species i remains dilute?

Solution. The mass fraction just inside the solid surface, mi,u,
can be calculated from mi,s and solubility data (see Fig. 11.12). This
concentration is the boundary condition at x = 0 for t > 0. We have

∂mi
∂t

= Dim1

∂2mi
∂x2

(11.57)

with

mi =mi,0 for t = 0 (all x)
mi =mi,u for x = 0 (t > 0)
mi →mi,0 for x →∞ (t > 0)
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Figure 11.12 Mass diffusion into a
semi-infinite stationary medium.

This problem is mathematically identical to that for transient heat
conduction into a semi-infinite region (Section 5.6), and its solution is
analogous to eqn. (5.50):

mi −mi,u

mi,0 −mi,u
= erf

⎛⎝ x
2
√︂
Dim1t

⎞⎠
The reader can solve all sorts of unsteady mass diffusion problems by

direct analogy to the methods of Chapters 4 and 5 when the concentration
of the diffusing species is low.

At high concentrations of the diffusing species, counterdiffusion ve-
locities can be induced as in Example 11.8. Counterdiffusion may be
significant in concentrated metallic alloys, as for example, during an-
nealing of a butt-welded junction between dissimilar metals. In those
situations, eqn. (11.56) is sometimes modified to use a concentration-
dependent, spatially varying interdiffusion coefficient [11.4].

Steady diffusion of a non-dilute species

Let us now find the mass flux when the diffusing species is not dilute, as
in Example 11.8. We substitute Fick’s law for j2 in to eqn. (11.54)

n2 =
(︃
−ρD12

dm2

dx

)︃(︃
1

1−m2

)︃
= constant in x (11.58a)
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Figure 11.13 Steady mass transfer through a stagnant layer.
Species 2 enters at x = 0 and leaves at x = L. Species 1 is at
rest. The mass flux n2 and the counterdiffusion (mass average)
velocity v are constant, but the concentrations,m1 andm2, and
the diffusive fluxes, j1 and j2, are functions of x.

then rearrange and integrate from one side to the other (Fig. 11.13),
assuming that ρD12 does not vary much and that m2 < 1:

n2

ρD12

∫︂ L
0
dx = −

∫︂m2,L

m2,0

dm2

1−m2

Upon performing the integration

n2 =
ρD12

L
ln

(︄
1−m2,L

1−m2,0

)︄

With the two mass fractions, we may calculate the mass flux.
We can write eqn. (11.58) as

n2 =
ρD12

L
ln
(︃

1+ m2,0 −m2,L

1−m2,0

)︃
= ρD12

L
ln
(︁
1+ Bm,2

)︁
(11.59)

where we define Bm,2, the mass transfer driving force, as shown. The
driving force can be either positive or negative.

When Bm,2 is small, the mass flow is purely diffusive with negligible
counterdiffusion. For instance, m2 was small in Example 11.7, and so the
mass flow was purely diffusive, withn2 ≈ j2. In terms of the mass transfer
driving force, when m2 is small, 1 −m2,0 ≈ 1 so Bm,2 ≈ m2,L −m2,0.
Further, the concentration difference itself is small when m2 is small.
Therefore, |Bm,2| ≪ 1 and ln(1 + Bm,2) ≈ Bm,2 ≈ m2,L −m2,0. Hence,
eqn. (11.59) reduces to eqn. (11.52), the pure mass diffusion case that is
analogous to the heat conduction problem of Example 2.2.
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The counterdiffusion velocity corresponding to eqn. (11.59) is

v = n
ρ
= n2

ρ
= D12

L
ln(1+ Bm,2) (11.60)

When Bm,2 is small, v → 0, so that counterdiffusion will not be important
if species 2 is dilute.

Additional calculations show that the concentration profile generally
is not a straight line (except when Bm,2 ≪ 1 as in Example 11.7):

1−m2(x)
1−m2,0

=
(︄

1−m2,L

1−m2,0

)︄x/L
=
(︁
1+ Bm,2

)︁x/L (11.61)

Molar formulation. Equation (11.58) could have been obtained in molar
form by starting with the mole flux, eqn. (11.24), and using the molar form
of Fick’s law, eqn. (11.30), with the assumption that cD12 is constant:

N2 =
cD12

L
ln

(︄
1− x2,L

1− x2,0

)︄
(11.62)

For an ideal gas, c = p/R◦T , according to eqn. (11.13). Thus, the product
cD12 does not depend on the local mole fractions. In contrast, ρD12

varies with the local composition. As a result the molar formulation is
more broadly accurate than the mass formulation (see Problems 11.19
and 11.47).

Example 11.10 Stefan tube measurement of D12

In 1873, Josef Stefan9 derived a form of eqn. (11.62), which he applied
for measuring diffusion coefficients in binary gas mixtures [11.21]. A
long slender tube contained a pool of volatile liquid below a column
of a different gas which was insoluble in the liquid. As the volatile
liquid evaporated, its vapor would diffuse through the gas to the open
top of the tube, where it would be swept away by the flowing gas
above (Fig. 11.14). By observing the fall of the liquid level, Stefan could
determine D12. How was he able to do this?

9Josef Stefan (1835–1893) was an Austrian physicist and a professor at the University
of Vienna. He made seminal contributions to several areas of heat and mass transfer,
including the Stefan-Boltzmann law of radiation, the Maxwell-Stefan equations of dif-
fusion, the discovery of counterdiffusion in mass transfer, and the theory of moving
boundaries during phase change [11.19]. Ludwig Boltzmann was his student. Stefan
also analyzed the transient behavior of the Stefan tube in 1889 (see Mitrovíc [11.20]).

https://en.wikipedia.org/wiki/Josef_Stefan
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Figure 11.14 Schematic drawing of
Stefan’s evaporation tube. The molar flow
rate of vapor is N2.

new figures Oct 2023.auxlock
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psat,2
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Solution. Let the gas be species 1 and the vapor species 2. The
mole fraction of vapor above the liquid, x2,0 is the liquid’s vapor
pressure, psat,2, divided by the total pressure, p (Example 11.3). The
mole fraction drops to x2,L = 0 at the top of the tube. If the liquid
evaporates slowly, the length of gas-filled tube above the liquid, L(t),
increases only slowly, and we may assume that the evaporation rate
is quasi-steady and given by eqn (11.62) at any time. Then, if ρliq,2 is
the liquid’s density and M2 the liquid’s molar mass,

ρliq,2
dL
dt⏞ ⏟⏟ ⏞

liquid evaporation
rate per unit area

= M2N2 =
M2cD12

L
ln

(︄
p

p − psat,2

)︄
⏞ ⏟⏟ ⏞

mass flux of vapor
per unit area

(11.63)

By integrating from the initial length, L0, and initial time, t0,∫︂ L(t)
L0

LdL = M2cD12

ρliq,2
ln

(︄
p

p − psat,2

)︄∫︂ t
t0
dt

L2(t)− L2
0

2
= M2cD12

ρliq,2
ln

(︄
p

p − psat,2

)︄(︁
t − t0

)︁
Finally, we solve for D12 and substitute for c using eqn. (11.13)

D12 =
[︁
L2(t)− L2

0

]︁
2
(︁
t − t0

)︁ (︃ρliq,2

M2

)︃(︃
R◦T
p

)︃[︄
ln

(︄
p

p − psat,2

)︄]︄−1

(11.64)
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Stefan tube measurements have provided diffusion coefficients for
hundreds of gas pairs. A typical laboratory tube is 5–10 mm in diameter
and 10–20 cm long. The evaporation rates are low, and a single measure-
ment can take half a day. Measurements are possible only over fairly
narrow temperature intervals within which the vapor pressure is suitable.
Note that a volatile solid can be used in place of a liquid. Marrero and
Mason discuss Stefan tube measurements in detail [11.7].

11.6 Convective mass transfer at low rates

Figure 11.15 shows a flat-plate boundary layer in which species i is trans-
ferred from the wall to the free stream. Free stream values, at the edge of
the b.l., are labeled with the subscript e, and values just above the wall
are labeled with the subscript s. The mass fraction of species i varies
from mi,s to mi,e across a concentration boundary layer.

Figure 11.15 Concentration boundary layer on a flat plate.

In the previous section, we saw that mass diffusion is analogous to
heat conduction if the mass fraction of the diffusing species is low. Under
what conditions is mass convection analogous to heat convection? Put
differently, heat convection is the process of heat conduction through a
moving fluid. When is mass convection simply mass diffusing through a
moving fluid, without changing the velocity profile?

Two questions must be answered. First, is the concentration of the
transferred species low enough that mass transfer normal to the wall is
purely diffusive? And second, is the mass transfer rate through the wall
low enough that the velocity profile in the boundary layer is the same as
for the analogous heat convection problem?

The answer to the first question follows Section 11.5. If the diffusing
species has a low concentration, so that mi is small, its mass flux in the
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y-direction is mainly by diffusion:10

ni =min+ ji ≃ ji

For the second question, we note that when the mass transfer driving force
Bm,i is small, the counterdiffusion velocity normal to the wall is small, as
suggested by eqn. (11.60). Thus, the velocity profile is negligibly affected
by mass transfer.11 In fact, a sufficiently small value of Bm,i ensures that
both the first and the second conditions are met (see Section 11.8):

⃓⃓
Bm,i

⃓⃓
=
⃓⃓⃓⃓
⃓mi,s −mi,e

1−mi,s

⃓⃓⃓⃓
⃓ ❲ 0.2

condition for low-rate
mass convection

(11.65)

This criterion applies when only one species, species i, is transferred
through the s-surface. The evaporation of water into air is typical example
of single-species transfer: only water vapor crosses the s-surface. For
water surface temperatures below about 65°C (149◦F), Fig. 11.10 and
simple calculations show that Bm,H2O ⩽ 0.2.

The mass transfer coefficient. In the notation of Fig. 11.15, the wall
heat flux is

qs = h(Ts − Te) (1.17)

where h is the convective heat transfer coefficient. At the wall, where
the fluid is at rest by virtue of the no-slip condition, the heat flux is
carried entirely by conduction. The flow field controls the steepness of
the fluid’s temperature gradient at the wall, and thereby sets the value of
h (eqn. (6.35)).

Similarly, in convective mass transfer, the diffusional mass flux from
a surface, ji,s , is the product of a mass transfer coefficient and the con-
centration difference

ji,s ≡ gm,i
(︁
mi,s −mi,e

)︁
(11.66)

where gm,i (kg/m2·s) is the mass transfer coefficient for species i. Like
h, gm,i depends on the velocity, the fluid, and the configuration.

10In situations like catalysis, where no net mass flows through the wall, mass transfer
near the wall is purely diffusive at any concentration (Problem 11.6.)

11Advanced boundary layer theory, taking account of the velocity of the transferred
species through the wall, provides a fuller description of this flow [11.22].
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The analogy to convective heat transfer. The species conservation
equation and the energy equation are very similar for incompressible flow,
as seen in Section 11.4. With no chemical reactions or heat generation,
those equations are

∂ρi
∂t

+ v⃗ · ∇ρi = −∇ · j⃗i (11.43)

ρcp
(︃
∂T
∂t
+ v⃗ · ∇T

)︃
= −∇ · q⃗ (6.37)

The equations state that changes in mass or energy per unit volume result
from convection by a velocity field v⃗ and from diffusion under either
Fick’s or Fourier’s law.

What are the quantities are analogous in these equations? For the
mass or energy change per unit volume

dρi is analogous to ρcpdT (11.67a)

or, since density is nearly constant when species i is dilute

ρ dmi is analogous to ρcpdT (11.67b)

Fourier’s law and Fick’s law (for effectively binary diffusion) may be
rewritten to display the mass and energy per unit volume

j⃗i = −ρDim∇mi = −Dim
(︁
ρ∇mi

)︁
q⃗ = −k∇T = − k

ρcp

(︂
ρcp∇T

)︂
Hence, the analogy for the diffusivities is:

Dim is analogous to
k
ρcp

= α (11.67c)

It follows that the Schmidt number and the Prandtl number are analogous:

Sc = ν
Dim

is analogous to Pr = ν
α

(11.67d)

Thus, for example, a high Schmidt number signals a thin concentration
boundary layer, just as a high Prandtl number signals a thin thermal
boundary layer.
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Table 11.2 Analogous quantities in convective heat and mass
transfer. For incompressible flow with

⃓⃓
Bm,i

⃓⃓
❲ 0.2.

Analogous quantity Heat convection Mass convection

diffusivity α Di,m

Pr = ν
α

Sc = ν
Di,m

transfer coefficient
h
cp

gm,i

Nux =
hx
k

Num,x =
gm,ix
ρDi,m

functional relationship Nux = fn(Rex,Pr) Num,x = fn(Rex, Sc)

Finally, the transfer coefficients written in terms of the amounts per
unit volume are

ji,s = gm,i
(︁
mi,s −mi,e

)︁
=
(︄
gm,i
ρ

)︄
ρ
(︁
mi,s −mi,e

)︁

qs = h(Ts − Te) =
(︄
h
ρcp

)︄
ρcp (Ts − Te)

from which we see that

gm,i is analogous to
h
cp

(11.67e)

Thus, the solution of a heat convection problem becomes the solution
of a low-rate mass convection problem upon replacing the heat transfer
variables by the analogous mass transfer variables, using eqns. (11.67).

The Nusselt number for heat transfer is a function of the Reynolds
and Prandtl numbers

Nux =
hx
k
= (h/cp)x
ρ(k/ρcp)

= fn(Rex,Pr) (11.68)

The Nusselt number for mass transfer follows by making the substitutions
of the analogy. Specifically, by replacing h/cp by gm,i, k/ρcp by Di,m,
and Pr by Sc, we obtain

Num,x ≡
gm,ix
ρDim

= fn
(︁
Rex, Sc

)︁
(11.69)
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where Num,x is the Nusselt number for mass transfer. Num is often called
the Sherwood number12, Sh.

Table 11.2 summarizes analogy between convective heat transfer and
low-rate mass transfer.

Example 11.11 Naphthalene sublimation

A naphthalene model of a printed circuit board (PCB) is placed in a
wind tunnel. The naphthalene slowly sublimes as a result of forced
convection mass transfer. If the first 5 cm of the naphthalene model
is a flat plate, calculate the average rate of loss of naphthalene from
that part of the model. The conditions are isothermal at 303 K, and
the air speed is 5 m/s.

Solution. Let us first find the mass fraction of naphthalene just
above the model surface. A relationship for the vapor pressure of
naphthalene (in mmHg) is log10 pv = 11.450−3729.3

/︁
(T K). At 303 K,

this gives pv = 0.1387 mmHg = 18.49 Pa. The mole fraction of
naphthalene is thus xnap,s = 18.49/101325 = 1.825× 10−4, and with
eqn. (11.9) and Mnap = 128.2 kg/kmol, the mass fraction is

mnap,s =
(1.825× 10−4)(128.2)

(1.825× 10−4)(128.2)+ (1− 1.825× 10−4)(28.96)

= 8.074× 10−4

The mass fraction of naphthalene in the free stream, mnap,s , is zero.
Is the mass transfer rate is low enough to use the analogy of heat and
mass transfer? From eqn. (11.65):

Bm,nap =
(︄

8.074× 10−4 − 0
1− 8.074× 10−4

)︄
= 8.081× 10−4 ≪ 0.2

The analogy therefore applies.
For forced convection in a flat plate boundary layer, the Reynolds

number is

ReL =
u∞L
ν

= (5)(0.05)
1.867× 10−5

= 1.339× 104 (laminar)

12Thomas K. Sherwood (1903–1976) obtained his doctoral degree at MIT in 1929 under
the supervision Warren K. Lewis, and he served as a professor of Chemical Engineering
at MIT from 1930 to 1969. His research dealt with mass transfer and related industrial
processes. Sherwood wrote the first significant textbook on mass transfer, Absorption
and Extraction, published in 1937.
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Here, we used the viscosity of pure air because the concentration of
naphthalene is very low. For laminar flow, eqn. (6.68) is appropriate:

NuL =
hL
k
= 0.664 Re1/2

L Pr1/3 (6.68)

Under the analogy, the Nusselt number for mass transfer is

Num,L =
gm,i L
ρDim

= 0.664 Re1/2
L Sc1/3

The diffusion coefficient for naphthalene in air, from Table 11.1, is
Dnap,air = 0.86×10−5 m/s, and thus Sc = 1.867×10−5/0.86×10−5 =
2.17. Hence,

Num,L = 0.664 (1.339× 104)1/2 (2.17)1/3 = 99.5

Using the density of pure air,

gm,nap =
ρDnap,air

L
Num,L

= (1.166)(0.86× 10−5)
0.05

(99.5) = 0.0200 kg/m2s

The average mass flux from this part of the model is

nnap,s = gm,nap
(︁
mnap,s −mnap,e

)︁
= (0.0200)(8.074× 10−4 − 0)

= 1.61× 10−5 kg/m2s = 58.0 g/m2h

Naphthalene sublimation is an experimental technique for inferring
heat transfer coefficients. The mass of naphthalene lost from an object
over a length of time defines the sublimation rate and, thus, the mass
transfer coefficient. The analogy to heat transfer then yields the heat
transfer coefficient. Experiments at several air speeds numbers will reveal
the dependence on Reynold number. However, the Schmidt number of
naphthalene in air is not equal to the Prandtl number of air. To correct
for this difference, an educated guess for the Prandtl number dependence
of the Nusselt number is needed, e.g., Nu ∝ Prn for 1/3 ⩽ n ⩽ 0.4 [11.23].

Boundary conditions. Two wall conditions are common in convective
heat transfer: uniform temperature and uniform heat flux. The analogous
mass transfer wall conditions are uniform concentration and, infrequently,
uniform mass flux. Example 11.11 used the mass transfer analog of
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the uniform wall temperature solution because the mass fraction of
naphthalene was uniform over the surface of the model. Had the mass
flux been uniform, we would have used the analog of the uniform heat
flux solution (see Problem 11.29).

Natural convection in mass transfer. A density difference caused by
a temperature difference can create flow and convection, as discussed
in Chapter 8. Density differences can also be caused by composition
differences, resulting in natural convection mass transfer. Equation (8.4)
still governs the buoyancy-driven flow

u
∂u
∂x

+ v ∂u
∂y

=
(︁
1− ρ∞/ρ

)︁
g + ν ∂

2u
∂y2

(8.4)

but now the species equation, not the energy equation, governs the density
variation. To avoid solving these equations, we may apply the analogy
between heat and mass transfer.

For natural convection heat transfer, the buoyancy term in eqn. (8.4)
is (1− ρ∞/ρ) = β(T − T∞). The Grashof and Rayleigh numbers depend
on β∆T , but that factor simply equals ∆ρ/ρ. So, in terms of density

GrL =
g∆ρL3

ρν2
and RaL =

g∆ρL3

ραν
= g∆ρL

3

µα
(11.70)

The analogy between heat transfer and mass transfer is straightfor-
ward when Gr or Ra use the density difference. As before, Num and Sc
replace Nu and Pr. Equation (11.70) gives GrL and

RaL = GrLSc = g∆ρL
3

µD12
(11.71)

We compute the density difference using the concentration difference.
If both temperature and concentration vary, the density difference

depends on both mi and T . The Grashof or Rayleigh number based on
density is still correct for the analogy, provided that the Prandtl and
Schmidt numbers are approximately equal (that is, for Lewis numbers
near one).13 This condition is usually met by gas mixtures. We look at an
example like that in the next section.

13When the Lewis number is far from one, the concentration and thermal boundary
layers may have very different thicknesses, which complicates their relationship to the
buoyancy-driven velocity field.
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11.7 Simultaneous heat and mass transfer at
low rates

Cooling towers, dehumidifiers, and combustors are just three important
examples of equipment in which heat and mass transfer occur simultane-
ously. A common situation involves evaporation, as when warm water
vaporizes into cool, dry air. The enthalpy of water vapor is much higher
than that of liquid water at the same temperature. As a result, water
evaporated from the surface has a powerful cooling effect, equal to the
product of the latent heat of vaporization and the evaporation rate. The
cooling effect becomes stronger as the water surface temperature rises
because the vapor pressure of water increases rapidly with temperature
(see Example 11.3).

In the carbon oxidation problem of Example 11.2, heat is released
as carbon is oxidized, and the rate of oxidation increases with surface
temperature. The rate at which the surface is cooled by convection and
radiation also increases with temperature. The steady temperature of the
burning carbon is set by a balance between the rate of cooling and the
rate of heat release.

As an example of simultaneous heat and mass transfer, let’s think
about coffee.

Example 11.12 Heat loss from a coffee cup

Many engineering students have come to appreciate the value of hot
coffee. But coffee is never hot for long! Evaporation is the main source
of heat loss. Let’s estimate the rate of cooling from the top of a 9 cm
diameter cup of coffee at 60°C (140◦F), if the cup is in a room at 25°C,
50% RH, and 1 atm. The diffusion coefficient of water vapor in air at
the film temperature is DH2O,air = 2.82× 10−5 m2/s.

Solution. Heat is removed by evaporative cooling, natural convection,
and thermal radiation. We’ll first find the partial density of water
vapor and the density of the mixture, so that we can compute the
mass fraction of water vapor and the Grashof number. If we treat the
coffee as nearly pure water, eqn. (11.45) shows that the vapor partial
of water is

pH2O,s = psat(Ts) = psat(333 K) = 19,940 Pa

with the saturation pressure taken from a steam table and the s-
surface located just above the coffee. Relative humidity is defined as
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RH = pH2O,e/psat(Te) so

pH2O,e = (0.50)psat(298 K) = (0.50)(3,169 Pa) = 1,585 Pa

The densities can be found with eqns. (11.1), (11.10), and (11.11)

ρmixture = ρH2O + ρair =
pH2OMH2O

R◦T
+ pairMair

R◦T

with pair = (101325 Pa− pH2O) by Dalton’s law, eqn. (11.14). At the
s-surface,

ρmix,s =
(19940)(18.02)
(8314.5)(333)

+ (101325− 19940)(28.96)
(8314.5)(333)

= 0.1298⏞ ⏟⏟ ⏞
=ρH2O,s

+0.8513 = 0.9810 kg/m3

and in the environment,

ρmix,e =
(1585)(18.02)
(8314.5)(298)

+ (101325− 1585)(28.96)
(8314.5)(298)

= 0.01153⏞ ⏟⏟ ⏞
=ρH2O,e

+1.166 = 1.177 kg/m3

The mass fractions of water vapor, with eqn. (11.2), are

mH2O,s = ρH2O,s
/︁
ρmix,s = (0.1298)/(0.9810) = 0.1323

mH2O,e = ρH2O,e
/︁
ρmix,e = (0.01153)/(1.177) = 0.00980

Checking Bm,H2O shows that low mass transfer rates prevail:

Bm,H2O =
(︄
mH2O,s −mH2O,e

1−mH2O,s

)︄
= 0.1323− 0.00980

1− 0.1323
= 0.1412 < 0.2

To find the natural convection heat and mass transfer coefficients,
we need the Grashof number. With eqn. (11.70),

GrD =
g∆ρD3

ρfν2
air,f

= (9.806)(0.1323− 0.00980)(0.09)3

(1.079)(1.716× 10−5)2
= 2.756× 106

using the film density ρf = (ρs + ρe)/2 and the viscosity of pure air
at the film temperature, Tf = 316 K. The Schmidt number is

Sc = ν
DH2O,air

= 1.716× 10−5

2.82× 10−5
= 0.609
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The Nusselt number is approximated by eqn. (8.37a), where L∗ =
A/P = D/4. Written terms of D and GrD, that correlation is

NuD =
0.560

√
2 Gr1/4

D Pr1/4[︁
1+ (0.492/Pr)9/16

]︁4/9
and with Pr = 0.708, NuD = 22.7. Analogously, for mass transfer

Num,D =
0.560

√
2 Gr1/4

D Sc1/4[︁
1+ (0.492/Sc)9/16

]︁4/9 = 21.5

The heat and mass transfer coefficients are then

h = kNuD
D

= (0.0273)(22.7)
0.09

= 6.89 W/m2K

gm,H2O =
ρfDH2O,airNum,D

D

= (1.079)(2.82× 10−5)(21.5)
0.09

= 7.27× 10−3 kg/m2s

We now calculate the heat losses. For natural convection,

Qnc =
(︃
πD2

4

)︃
h(Ts − Te) = · · · = 1.53 W

For radiation, with εH2O = 0.9,

Qrad =
(︃
πD2

4

)︃
εH2Oσ

(︁
T 4
s − T 4

e
)︁
= · · · = 1.43 W

The evaporative loss, with hfg = 2.359 MJ/kg, is

Qevap =
(︃
πD2

4

)︃
hfggm,H2O(mH2O,s −mH2O,e) = · · · = 13.4 W

The evaporative loss is largest by an order of magnitude. Putting a lid
on your coffee cup will ensure that it stays warm much longer!

The wet bulb temperature

A sling psychrometer is used to measure the humidity of air. As shown in
Fig. 11.16, the device consists of two thermometers mounted side-by-side
on a swivel handle. A wet cloth is wrapped about the bulb of one while
the other remains dry. The pair are “slung” in a rotary motion until they
reach steady state.
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Figure 11.16 The wet bulb of a sling psychrometer.

The wet-bulb thermometer cools as the latent heat of evaporating
water is given up, until its temperature drops enough that the rate of
evaporative cooling just balances the rate of convective heating by the
warmer air. This final temperature, called the wet-bulb temperature, is
directly related to the concentration of water in the surrounding air.

The highest ambient air temperatures normally encountered are low
enough that the mass transfer rate remains modest. We can show this by
computing an upper bound on Bm,H2O, using conditions that maximize
the evaporation rate: the highest likely air temperature and the lowest
humidity. Let us set those values, say, at 130◦F (54◦C) and zero humidity
(mH2O,e = 0).14 The vapor pressure on the wet bulb will be less than the
saturation pressure at 130◦F because evaporation will keep the bulb at a
lower temperature. So, with eqn. (11.15)

xH2O,s < psat(130◦F)/patm = (15,347 Pa)/(101,325 Pa) = 0.152

and, with eqn. (11.48),
mH2O,s < 0.100

14In July 2023, Death Valley, California had temperatures above 125◦F (51.7°C) with
relative humidities around 5%.
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Thus, the criterion for low-rate mass transfer, eqn. (11.65), is met:

Bm,H2O =
(︄
mH2O,s −mH2O,e

1−mH2O,s

)︄
< 0.111 < 0.2

To form an energy balance on the wick, consider theu, s, and e surfaces
shown in Fig. 11.16. At the steady temperature, no heat is conducted past
the u-surface (into the wet bulb), but liquid water flows through it to the
surface of the wick where it evaporates. An energy balance on the region
between the u and s surfaces gives

nH2O,sĥH2O,s⏞ ⏟⏟ ⏞
enthalpy of water

vapor leaving

− qs⏞ ⏟⏟ ⏞
heat convected
to the wet bulb

= nH2O,uĥH2O,u⏞ ⏟⏟ ⏞
enthalpy of liquid

water entering

(11.72a)

Since mass is conserved, nH2O,s = nH2O,u; and ĥH2O,s − ĥH2O,u = hfg.
Hence,

nH2O,s hfg⃓⃓ Twet-bulb
= h(Te − Twet-bulb)

The mass fraction of water vapor is low, so that nH2O,s ≊ jH2O,s , and jH2O,s
can be written in terms of the mass transfer coefficient

gm,H2O
(︁
mH2O,s −mH2O,e

)︁
hfg⃓⃓ Twet-bulb

= h(Te − Twet-bulb) (11.72b)

The heat and mass transfer coefficients depend on the shape and flow
rates of the psychrometer, so it would appear that Twet-bulb depends on
the device used to measure it. The two coefficients are not independent,
however, owing to the analogy between heat and mass transfer.

For forced convection in cross flow (Section 7.6), the heat transfer
coefficient follows the approximate form

hD
k
= C ReaPrb

where C is a constant and typical values of a and b are a ≊ 1/2 and
b ≊ 1/3. From the analogy,

gm,iD
ρDH2O,air

= C ReaScb

and, by dividing the second expression into the first,

h
gm,icp

DH2O,air

α
=
(︃

Pr
Sc

)︃b
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Both α/Dm,i and Sc/Pr are equal to the Lewis number, Le. Hence,

h
gm,icp

= Le1−b ≊ Le2/3 (11.73)

Equation (11.73) shows that the ratio of h to gm,i depends only on
two physical properties of the gas mixture, Le and cp, and not the shape
or flow rate. The Lewis number for air–water systems is about 0.847, and,
because the concentration of water vapor is usually very low, cp can often
be approximated by cpair .

The relationship between h and gm,i was identified by Warren K. Lewis
in 1922 for the case Le = 1 [11.24]. (Lewis approximated Le as one for the
air–water system he studied.) The more general form, eqn. (11.73), was
proposed by Chilton and Colburn in 1934 [11.25]. That form is another
Reynolds-Colburn style analogy, like eqn. (6.77).

Substituting eqn. (11.73) into eqn. (11.72b) gives our final result:

Te − Twet-bulb =
(︄
hfg⃓⃓ Twet-bulb

cpair Le2/3

)︄(︁
mH2O,s −mH2O,e

)︁
(11.74)

In this equation, mH2O,s depends on the vapor pressure at Ts = Twet-bulb.
Consequently, we need data (or an equation) for the vapor pressure to
calculate mH2O,e function of the wet and dry bulb temperatures. Such
calculations closely approximate the psychrometric charts found in ther-
modynamics textbooks (see Problem 11.31).15

The wet-bulb temperature is a helpful concept in many phase-change
processes. When a small body without internal heat sources evaporates or
sublimes, it cools to a steady “wet-bulb” temperature at which convective
heating is balanced by latent heat removal. The body will stay at that
temperature until the phase-change process is complete. Consequently,
the wet-bulb temperature appears in the evaporation of water droplets,
the sublimation of dry ice, and the combustion of fuel sprays.

Example 11.13

What is the dry-bulb temperature if the wet-bulb temperature is 15°C
(59◦F) and the relative humidity is: a) 0%; b) 100%? Take p = 1 atm.

15The wet-bulb temperature for air–water systems is very close to the adiabatic
saturation temperature of the air–water mixture—the temperature reached by a mixture
if it is brought to saturation with water by adding water vapor without adding heat. The
adiabatic saturation temperature is a thermodynamic property of an air–water mixture,
and its value is shown on psychrometric charts as the “wet-bulb” temperature.
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Solution. At 15°C, cp,air = 1006 J/kg·K, hfg = 2.466 MJ/kg, and
xH2O,s = psat,H2O/patm = (1,705)/(101,325) = 0.01683. With eqn.
(11.48), mH2O,s = 0.01054. (a) Substituting into eqn. (11.74) with
mH2O,e = 0,

Te − 15 =
(︄

(2.466× 106)
(1006)(0.847)2/3

)︄
(0.01054− 0) = 28.86

so Te = 43.9°C (111◦F). (b) When the relative humidity is 100%, the air is
saturated with water vapor. The air can absorb no additional moisture,
so evaporation cannot occur. The wet and dry bulb temperatures are
equal, at 15°C.

Evaporative cooling (sweating!) helps our bodies avoid overheating in
hot weather. If the humidity is high, however, sweating is produces less
evaporation, and we are at greater risk of heat stroke (see Problem 11.34).

Sweating is very effective for heat removal, and the process has been
adapted industrially. For example, a porous wall exposed to hot gases can
be cooled by bleeding liquid water through its surface, where the water
evaporates and offsets convective heating by the hot gas. Unsurprisingly,
this technique is called sweat cooling. See Section 11.9 for more details.

Example 11.14 D2 law of droplet evaporation

A very small water droplet sprayed into a gas comes to its wet-bulb
temperature quickly, and then evaporates until it is gone. How does
the droplet diameter change in time?

Solution. The mass balance for an evaporating droplet of diameter
D(t) and density ρl is

d
dt

(︃
ρlπD3

6

)︃
⏞ ⏟⏟ ⏞

rate of mass increase

= −
(︁
πD2)︁gm,H2O(mH2O,s −mH2O,e)⏞ ⏟⏟ ⏞

rate of evaporation

Because the droplet is very small, the Grashof (or Reynolds) number
will be small, and from eqn. (8.31), Num,D = gm,H2OD/ρDH2O,gas = 2.
Substituting and rearranging

πD2ρl
2

dD
dt

= −2πDρDH2O,gas(mH2O,s −mH2O,e)
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D
dD
dt

= −4ρDH2O,gas

ρl
(mH2O,s −mH2O,e)

Integration from an initial diameter D0 gives

D2
0 −D2(t) =

[︃
8ρDH2O,gas

ρl
(mH2O,s −mH2O,e)

]︃
t (11.75)

The droplet diameter squared drops as a straight line in time and
reaches zero after a finite evaporation time. This result is called the
D2 law. The law has been studied extensively in the combustion and
aerosol literatures [11.26–11.28].

Dew-point temperature and dehumidification

A cool surface in warm, moist air will condense water vapor if the satura-
tion pressure of water at the surface’s temperature is below the partial
pressure of water in the air. Such dew formation is familiar: for instance,
it causes droplets to form on a glass of ice water. The temperature at
which saturation is reached is called the dew-point temperature.

Engineers harness dew formation to remove moisture from humid air,
often to make living spaces more comfortable. In a typical dehumidifier
design, a fin-tube heat exchanger with refrigerant in the tubes is cooled
below the dew point temperature, causing water to condense on the fins
and drying the air. The mass fraction of water vapor decreases near the
liquid surface, and the concentration of air rises (Fig. 11.17).

The net mass flux toward the liquid is only the mass flux of condens-
ing water vapor: the air, which does not condense, is stationary. The
bulk velocity (counterdiffusion velocity) toward the surface opposes the
diffusion of air away from the surface. As a result, the concentration
gradient of air at the surface is not zero even though the mass flux of
air is zero. The presence of air greatly impedes condensation, and mass
transfer process is low rate.

The heat released by condensation at the liquid surface and the heat
convected to the surface are removed by heat transfer into the liquid film:

nH2O,shfg + h
(︁
Te − Ts

)︁
= hcond

(︁
Ts − Tc

)︁
(11.76a)

Here

nH2O,s = gm,H2O
(︁
mH2O,e −mH2O,s

)︁
(11.76b)

where mH2O,s must be calculated from vapor pressure at Ts , as in Exam-
ple 11.3. The local film condensation heat transfer coefficient, hcond, may
be calculated using the methods of Section 8.5.
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Figure 11.17 Air and water concentration profiles adjacent to
a dehumidifier plate.

11.8 The Couette flow, or stagnant film, model

A Couette flow occurs when a plane layer of fluid is subjected to a uniform
shear stress, without streamwise gradients. Such a flow occurs in a fluid
between two parallel plates if one moves relative to the other.16 If the
plates align with the x-direction, the velocity changes only in the the y-
direction, perpendicular to the plates. Similarly, if one plate were hot and
the other cold, temperature gradients would occur only in the y-direction
(Problem 11.37).

Couette flow is the simplest model for a boundary layer. As we saw in
Chapter 6, the gradients in a boundary layer are strong in the y-direction
and weak in the x-direction. This behavior is especially pronounced in the

16Named for the French physicist Maurice Marie Alfred Couette (1858–1943). He
developed the rotating cylinder viscometer, in which a fluid layer between concentric
cylinders experiences a uniform shear stress when one cylinder rotates.
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Figure 11.18 Couette flow b.l. model with one species trans-
ferred, showing turbulent mean velocity and concnetration pro-
files with negligible mean gradients in the x-direction.

near-wall part of a turbulent boundary layer, and we exploited that fact to
neglect x derivatives when modeling turbulent friction and heat transfer.
In eqns. (6.88) and (6.106), shear stress and heat flux were presumed be
independent of x, which rendered them constant in the y-direction as
well. In effect, we treated the near-wall turbulent boundary layer as a
Couette flow, subject to a uniform shear stress and uniform heat flux.

Heat transfer in a Couette flow behaves much like heat transfer across
a stagnant layer: the heat flux, from Fourier’s law in laminar flow or
eqn. (6.107) in turbulent flow, is constant in the y-direction. The tem-
perature changes only in the y-direction. For that reason, Couette flow
models of boundary layers are sometimes called stagnant film models.17

The Couette flow model also applies to the mass transfer boundary
layer. Suppose that species 2 is transferred from the s-surface above a
wall, through a boundary layer containing species 1, to the e-surface at the
b.l.’s outside edge (Fig. 11.18). Species 1 does not move in the direction
perpendicular to the wall, and the boundary may be approximated to
have negligible gradients in the x-direction. We studied this problem in
Section 11.5. If the effective thickness of this concentration boundary is
δc , the mass flux of species 2 is given by eqn. (11.59):

n2 =
ρD12

δc
ln
(︃

1+ m2,s −m2,e

1−m2,s

)︃
= ρD12

δc
ln
(︁
1+ Bm,2

)︁
(11.77)

We can make this model equation more broadly useful with three
modifications. First, we can write n2,s in terms of the mass transfer
coefficient, without assuming that m2 is small. Starting with eqn. (11.20)

17Here, “film” refers to the b.l. as if it were a film of fluid stuck to the wall.
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at the s-surface,
n2,s =m2,sns + j2,s (11.78a)

we note that ns = n2,s and rearrange, substituting eqn. (11.66) for j2,s :

n2,s(1−m2,s) = j2,s = gm,2
(︁
m2,s −m2,e

)︁
Thus,

n2,s = gm,2
(︄
m2,s −m2,e

1−m2,s

)︄
= gm,2Bm,2 (11.78b)

Second, we extend analysis leading to eqn. (11.77) to allow for turbulent
flow. In eqn. (11.58a), we used Fick’s law for pure diffusion. If the
boundary layer is turbulent, we can proceed by analogy to eqn. (6.103),
assuming an eddy diffusivity for species 2, ε2, and calling the time-average
mass fraction m2

j2 = −ρ(D12 + ε2)
∂m2

∂y
(11.79a)

With n2 =m2n+ j2 and n = n2 = n2,s

n2,s(1−m2) = −ρ(D12 + ε2)
∂m2

∂y
(11.79b)

Rearranging and integrating, as in Section 11.5,

ln
(︃

1+ m2,s −m2,e

1−m2,s

)︃
= n2,s

∫︂ δc
0

dy
ρ(D12 + ε2)

Then, with eqn. (11.78b) the definition of Bm,2:

ln
(︁
1+ Bm,2

)︁
= gm,2Bm,2

∫︂ δc
0

dy
ρ(D12 + ε2)

gm,2 =
ln
(︁
1+ Bm,2

)︁
Bm,2

[︄∫︂ δc
0

dy
ρ(D12 + ε2)

]︄−1

(11.79c)

The third and final modification connects eqn. (11.79c), which depends
on Bm,2 and therefore on the rate of mass transfer, to the low-rate mass
transfer coefficient discussed in Section 11.6. In the limit of small Bm,2

g∗m,2 ≡ limit
Bm,2→0

gm,2

=
[︄∫︂ δc

0

dy
ρ(D12 + ε2)

]︄−1

limit
Bm,2→0

ln
(︁
1+ Bm,2

)︁
Bm,2

=
[︄∫︂ δc

0

dy
ρ(D12 + ε2)

]︄−1

(11.80)
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where we define g∗m,i as the mass transfer coefficient at a low rate of mass
transfer. We have assumed that the integral is approximately independent
of Bm,2, following [11.22].

Equations (11.79c) and (11.78b) now reduce to

gm,2 = g∗m,2
ln
(︁
1+ Bm,2

)︁
Bm,2

(11.81)

and

n2,s = g∗m,2

[︄
ln
(︁
1+ Bm,2

)︁
Bm,2

]︄
Bm,2 (11.82)

These equations apply when species 2 is transferred while other compo-
nents are stationary. Note that the result is the same for laminar flow, as
seen simply by setting ε2 = 0. Because the Couette flow model neglects
streamwise gradients, we expect better accuracy for turbulent flows than
for laminar flows.

The blowing factor. The group ln(1+ Bm,2)/Bm,2 is called the blowing
factor. When Bm,2 > 0, mass flows away from the wall (that’s called
blowing.) For positive Bm,2, the blowing factor is a positive number less
than one, so gm,2 < g∗m,2. In physical terms, blowing adds species 2 near
the wall, reducing the near wall concentration gradient and lowering the
mass flux. When Bm,2 < 0, mass flows toward the wall (which is called
suction). The blowing factor is greater than one, and gm,2 > g∗m,2. Suction
removes species 2 at the wall, making the concentration gradient steeper
and increasing the mass flux.

The blowing factor has experimental and numerical validation for
turbulent b.l.s when the flowing and transferred fluids have similar prop-
erties. Other correction factors should be used when properties differ
widely, or with strong streamwise gradients, or for high transfer rates in
laminar flow [11.29, 11.30].

When
⃓⃓
Bm,2

⃓⃓
❲ 0.2, the blowing factor is within about 10% of one. For

that range, mass transfer is low rate—meaning gm,2 ≊ g∗m,2—as claimed
in eqn. (11.65).

Concentration polarization in reverse osmosis

In reverse osmosis desalination, pressurized salty water flows through
a planar channel between semipermeable membranes. The membranes
allow water to pass through, but not salts. The water flow convects salts
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Figure 11.19 Concentration profiles of
salt and water during reverse osmosis
desalination. The salt is at rest:
nsalt = ρsaltv + jsalt = 0.
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toward the membrane, where their concentration builds up until salt
diffusion away from the membrane balances its convection toward the
membrane. The steady-state salt concentration is higher at the membrane
surface than in the bulk liquid (Fig 11.19).

The difference between salt concentration at the membrane and in the
bulk liquid is called concentration polarization. The increased concentra-
tion at the membrane surface raises the osmotic pressure, which reduces
the water flux through the membrane. High concentration polarization
also increases the risk that low-solubility salts will precipitate onto the
membrane, reducing the passage of water.18

Desalination membranes are rolled into cylindrical modules, typically
20 cm in diameter and 1 m in length for seawater systems. A set of
modules are inserted end-to-end in a pressure vessel 6 to 8 m long.
The membranes are held apart by mesh spacers, which cause heavy
mixing of the flow in the channels between them. Over the length of the
membrane pressure vessel, about 50% of the water is withdrawn through
the membranes, leaving increasing salty and slow-moving brine in the
channels. As a result of these complications, membrane mass transfer
coefficient is known only empirically. The coefficient will change with the
local flow speed, the spacer design, and the channel cross-section.

Example 11.15 Seawater reverse osmosis desalination

In one seawater reverse-osmosis membrane module, the low-rate mass
transfer coefficient is g∗m,H2O = 4× 10−2 kg/m2s with a seawater salt

18Seawater, and most groundwater, contain a mixture of salts. Typical seawater
includes Cl – , Na+, SO4

2 – , Mg2+, Ca2+, K+, HCO3
– , Br – , and smaller amounts of other

ions. These ions precipitate in various forms, such as CaCO3 (calcite) and CaSO4 ·2 H2O
(gypsum).
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concentration of 3.5 wt% [11.31]. Find the concentration polarization
for both a typical water flux of 15 L/m2h and a high water flux of 35
L/m2h.

Solution. From eqn. (11.82)

nH2O,s = g∗m,H2O

[︄
ln
(︁
1+ Bm,H2O

)︁
Bm,H2O

]︄
Bm,H2O = g∗m,H2O ln

(︁
1+ Bm,H2O

)︁
Rearranging

Bm,H2O =
mH2O,s −mH2O,e

1−mH2O,s
= exp

(︁
nH2O,s/g∗m,H2O

)︁
− 1

and solving for mH2O,s

mH2O,s = 1− (1−mH2O,e) exp
(︁
−nH2O,s/g∗m,H2O

)︁
Since msalts = 1−mH2O,

msalts,s =msalts,e exp
(︁
−nH2O,s/g∗m,H2O

)︁
so that the concentration polarization, CP, is

CP ≡ msalts,s −msalts,e

msalts,e
= exp

(︃−nH2O,s

g∗m,H2O

)︃
− 1 = exp

(︄⃓⃓
nH2O,s

⃓⃓
g∗m,H2O

)︃
− 1

where nH2O,s < 0, since water flows toward the membrane. Concentra-
tion polarization is greater for lower mass transfer coefficients.

The water mass flux is the product of the volume flux and the
density. At 15 L/m2h

nH2O,s = −
(998 kg/m3)(15 L/m2h)(10−3 m3/L)

3600 s/h

= −4.16× 10−3 kg/m2s

and at 35 L/m2h, nH2O,s = −9.71 × 10−3 kg/m2s. With the mass
transfer coefficient, CP at each flux is

CP = exp

(︄⃓⃓
nH2O,s

⃓⃓
g∗m,H2O

)︃
− 1 =

⎧⎨⎩10.9% at 15 L/m2h

27.5% at 35 L/m2h

Designers would avoid the high flux condition to limit the crystalliza-
tion of low-solubility salts on the membrane. Further calculations show
Bm,H2O = −0.217 at the higher flux, slightly exceeding the criterion
for low-rate mass transfer, eqn. (11.65).
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11.9 Heat transfer at high mass transfer rates

The heat transfer coefficient, like the mass transfer coefficient, can be
increased or decreased by mass transfer at the wall. In this section,
we provide a highly simplified model for the effect of mass transfer on
the heat transfer coefficient, and we explore several typically high-rate
scenarios.

The multicomponent energy equation. Each species in a mixture carries
its own enthalpy, ĥi. In a flow with mass transfer, different species have
different velocities, and so the enthalpy transport of each species must
be summed when writing the energy equation. For steady, low-speed flow
without internal heat generation or chemical reactions, the energy balance
on the surface S of a region R, eqn. (6.36), becomes

−
∫︂
S
(−k∇T) · n⃗ dS⏞ ⏟⏟ ⏞

net heat conduction
rate out of R

−
∫︂
S

(︄∑︂
i
ρiĥiv⃗i

)︄
· n⃗ dS

⏞ ⏟⏟ ⏞
rate of all species’

enthalpy flow out of R

= 0

Applying Gauss’s theorem to the volume R and requiring the resulting
integrand to vanish gives

∇ ·
(︄
−k∇T +

∑︂
i
ρiĥiv⃗i

)︄
= 0 (11.83)

This equation shows that the total energy flux—the sum of heat conduction
and enthalpy transport—is conserved in steady flow.19

A Couette flow model for heat transfer. Suppose that a single species i
is transported across a boundary layer that has a temperature difference.
Both the temperature and the concentration have gradients in the y-
direction, which complicates a turbulent flow analysis. Consequently, we
limit this discussion to a laminar Couette flow model.

19The multicomponent energy equation becomes much more complicated when kinetic
energy, body forces, and thermal and pressure diffusion are taken into account. The
complexities are such that many published derivations of the multicomponent energy
equation are incorrect, as discussed by Mills [11.32]. A key problem has been the
assignment of an independent kinetic energy to the ordinary diffusion velocity. Such an
assignment is wrong because diffusion results from the ordinary thermal motion of the
fluid: the kinetic energy of diffusing molecules is merely part of the thermodynamic
internal energy of the gas.
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Figure 11.20 Energy and mass transport in a thermal boundary
layer. Species i flows from the wall (s) to the freestream (e).

Mass and energy transport across the thermal boundary layer are
shown in Fig. 11.20. For Couette flow, eqn. (11.83) simplifies to

d
dy

(︄
−kdT
dy

+ ρiĥivi
)︄
= 0 (11.84)

For a constant specific heat capacity and negligible pressure dependence
(as in Section 6.3), the enthalpy of species i may be written as ĥi =
cp,i(T − Tref). In a Couette flow, as in Section 11.8, ni is constant in y
and equals ni,s . Equation (11.84) becomes

d
dy

(︄
−kdT
dy

+ni,scp,iT
)︄
= 0

Integrating twice and applying the boundary conditions

T(y = 0) = Ts and T(y = δt) = Te

we obtain the temperature profile:

T − Ts
Te − Ts

=
exp

(︃ni,scp,i
k

y
)︃
− 1

exp
(︃ni,scp,i

k
δt
)︃
− 1

(11.85)

The heat transfer coefficient, by its definition, eqn. (6.5), is:

h ≡
−kdT
dy

⃓⃓⃓⃓
⃓
s

Ts − Te
=

ni,scp,i

exp
(︃ni,scp,i

k
δt
)︃
− 1

(11.86)
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Defining h∗ as the value of h in the limit of zero mass transfer

h∗ ≡ lim
ni,s→0

h = k
δt

(11.87)

Substitution of eqn. (11.87) into eqn. (11.86) yields

h
h∗

=
(ni,scp,i/h∗)

exp
(︁
ni,scp,i/h∗

)︁
− 1

(11.88)

We can calculate h∗ as if there were no mass transfer, using the methods
of Chapters 6 through 8.20

Equation (11.88) shows that when ni,s is large and positive—the blow-
ing case (recall pg. 673)—h is smaller than h∗: blowing decreases the heat
transfer coefficient, just as it decreases the mass transfer coefficient. Like-
wise, when ni,s is large and negative—the suction case—h is larger than
h∗: suction increases the heat transfer coefficient. If ni,scp,i/h∗ ❲ 0.2,
then h is within about 10% of h∗, which is less than the uncertainty of
most correlations for h∗. In gases, if Bm,i is small, ni,scp,i/h∗ is also
small.

Properties can be evaluated at the film temperature and film composi-
tion. If the composition does not vary much, it’s fine to use the freestream
composition. For large variations in density or specific heat capacity, more
sophisticated corrections to h and gm,i should be used, as described by
Mills [11.29].

Further examples of simultaneous heat and mass transfer

Transpiration cooling. Transpiration cooling is illustrated in Fig. 11.21.
A wall exposed to a high temperature gas flow is kept cool by injecting a
gas into the flow through a porous section of the surface. Some of the
heat transfer to the wall is absorbed when by raising the temperature
of the gas as it flows from the coolant reservoir to the surface. The gas
blowing of the wall thickens the boundary layer and reduces h, as well.

Transpiration is applied in high heat flux aerospace systems, such as
hypersonic wings or scramjet combustion chambers [11.33]. In a similar
process, film cooling, gas is injected through small holes in the surface.
Film cooling is commonly used to protect gas turbine blades [11.34] and
the throats of liquid-fueled rocket engines [11.35].

20With eqn. (11.87), the calculated value of h∗ defines the effective film thickness δt .
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Figure 11.21 Transpiration cooling. The coolant, species i,
flows from the reservoir, through the porous wall, and into the
hot gas.

Let us construct a steady-state energy balance for a porous wall. The
temperatures and the enthalpy and heat fluxes are as shown in Fig. 11.21.
The coolant reservoir is far enough behind the surface that temperature
gradients at its edge (the r -surface) are negligible with a conductive heat
flux, qr , of zero. An energy balance between the r - and u-surfaces gives

ni,r ĥi.r = ni,uĥi,u − qu (11.89)

Between the u- and s-surfaces

ni,uĥi,u − qu = ni,sĥi,s − qs (11.90)

Since the enthalpy of the transpired species does not change when it
passes out of the wall,

ĥi,u = ĥi,s (11.91)

and steady-state mass conservation gives

ni,r = ni,u = ni,s (11.92)

Thus, eqn. (11.90) reduces to

qs = qu (11.93)
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The flux qu is the conductive heat flux into the wall, while qs is the
convective heat transfer from the gas stream:

qs = h(Te − Ts) (11.94)

Combining eqns. (11.89) through (11.94), we obtain

ni,s
(︂
ĥi,s − ĥi,r

)︂
= h(Te − Ts) (11.95)

This equation shows that heat convected to the wall is absorbed by the
enthalpy rise of the transpired gas. To find the wall temperature, we write
the enthalpy as ĥi = cp,i(Ts − Tref)

ni,scp,i(Ts − Tr ) = h(Te − Ts) (11.96)

and rearrange

Ts =
hTe +ni,scp,iTr
h+ni,scp,i

(11.97)

Further calculation (Problem 11.40) shows that

Ts = Tr + (Te − Tr ) exp
(︁
−ni,scp,i/h∗

)︁
(11.98)

The wall temperature decreases exponentially toward Tr as the mass flux
of the transpired gas increases. Transpiration cooling is most effective
when injecting a gas with a high specific heat capacity (Problem 11.40).

Sweat Cooling. Sweat cooling, mentioned in Section 11.7, is a variant of
transpiration cooling in which a liquid is bled through a porous wall. The
liquid is vaporized by convective heat flow to the wall, and the latent heat
of vaporization acts as a powerful heat sink. Figure 11.21 also represents
this process. The energy balances, eqns. (11.89) and (11.90), and mass
conservation, eqn. (11.92), are unchanged, but the enthalpies at the s- and
u-surfaces are now differ by the latent heat of vaporization:

ĥi,u + hfg = ĥi,s (11.99)

Thus, eqn. (11.93) becomes

qs = qu + hfgni,s

and eqn. (11.95) takes the form

ni,s
[︂
hfg + cp,if (Ts − Tr )

]︂
= h(Te − Ts) (11.100)
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where cp,if is the specific heat of liquid i. Since the latent heat is generally
much larger than the sensible heat, a comparison of eqn. (11.100) to
eqn. (11.96) shows that sweat cooling has a much greater efficiency per
unit mass of coolant. As discussed in Section 11.7, sweat cooling has
substantial importance at low mass transfer rates, as well.

Combustion and catalysis. When chemical reactions occur, both the
mass and energy balances must be changed. If the reactions occur in
the bulk (homogeneous reactions), the mass flux of a reactant will vary
across the boundary layer. Similarly, the energy equation will need to
incorporate the enthalpy change caused by the reaction. A burning fuel
droplet is an example. Liquid fuel vaporizes and diffuses into the gas
phase, where it reacts with oxygen that is supplied by diffusion toward the
droplet. The reaction products diffuse away. The flame sits in a reaction
zone surrounding the droplet, and if enough soot forms, the flame will
glow yellow-orange as the soot radiates heat [11.26, 11.27].

When reactions occur only on a boundary (heterogeneous reactions),
the reaction stoichiometry relates the mole fluxes to and from the surface.
The heat of reaction appears in the energy balance at the surface, and
eqn. (11.88) for high-rate h must be modified to account for the transfer
of more than one species. For example, in a gasoline engine’s catalytic
converter, oxygen, nitrogen oxides, and carbon compounds diffuse to the
catalyst surface where a combination of reactions produce water, carbon
dioxide, and nitrogen that diffuse away and are carried out the tail pipe.
No mass is transferred through the catalyst surface.

Mills [11.29] discusses mass transfer with chemical reactions.

Ablating heat shield for spacecraft reentry. In lunar exploration mis-
sions, the crew returns to Earth in a small crew module. The module
encounters the atmosphere about 100 km above Earth at a speed of about
11 km/s (25,000 mph). The module slows to 0.13 km/s (300 mph) in only
a few minutes. During deceleration, the module’s immense kinetic energy
is dissipated by friction and drag, heating the gases around the module.

Air approaches the blunt end of the capsule with a Mach number
greater than 30 (Fig. 11.22a). A strong shock wave forms upstream of
the capsule, called a bow shock. Air passing through the bow shock
is heated by compression and friction to temperatures on the order of
11,000 K [11.36]. The high temperature causes gas molecules to dissociate
and ionize, and the ionized gas blacks-out radio communication during
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a. Thermofluid conditions during reentry b. NASA’s heat shield for the Orion crew module

Figure 11.22 (a) Flow field around crew module during reentry
(NASA image); (b) Technicians at the NASA Kennedy Space Center
preparing the heat shield of the Orion crew module for Artemis II
lunar mission (NASA: Isaac Watson, July 2020).

part of the reentry. At these hypersonic conditions, the shock wave and
the heated gases are very close to the module’s surface.

The gases heat the surface of the crew module by convection, gas ra-
diation, and catalytic recombination reactions between the gas molecules
and the surface. This aerodynamic heating creates convective heat fluxes
that can reach 400 W/cm2. The radiative heat fluxes are similarly large
in the earliest part of reentry, when the shock wave is strongest and the
gases behind it are hottest. To protect the crew, a heat shield is placed on
the bottom of the capsule, where heating is most intense (Fig. 11.22b). In
NASA’s Apollo and Artemis missions, the heat shield has been made from
AVCOAT, an epoxy novolac resin with silica fibers filled into a fiberglass
matrix [11.37, 11.38].

The heat shield is designed to burn away, or ablate, during reentry. The
ablation process involves sublimation, melting, and charring of the surface
and pyrolysis of the material deeper within the shield. Numerical models
are necessary to analyze these complex conditions [11.39]. Pyrolysis
within the heat shield generates gases that blow outward through the
surface, reducing the convective and catalytic heat fluxes. The overall
cooling process is similar to transpiration cooling and sweat cooling.

In NASA’s Artemis missions, ablation limits surface temperature of the
heat shield to around 2800°C. Detailed analysis of the similar aerodynamic
heating during Mars landings can be found in the open literature [11.40].



§11.9 Heat transfer at high mass transfer rates 683

Noncondensable gases in steam or vapor condensers. Condensers,
which cool vapors until they liquefy, are essential components of steam
power plants. Condensers are also widely used in chemical processing
and chemical separations. Many vapors will contain small amounts of
a noncondensable gas. For example, water that is boiled to make steam
for a power turbine may contain a bit of dissolved air, which is released
into the steam. A desalination plant that evaporates water vapor from
seawater may release carbon dioxide as a result of bicarbonate present in
seawater. Even a very small amount of a noncondensable gas can sharply
reduce the heat transfer rate, as noted in Section 8.5 (pg. 455).

When vapor containing a gas is condensed, the gas is swept toward
the condenser surface. Then it remains behind as the vapor liquefies.
The accumulation of gas lowers the vapor concentration at the condenser
surface, so the vapor’s partial pressure is less than that of the nearly
pure vapor away from the surface. Vapor at a lower partial pressure has
a lower saturation temperature, so that greater subcooling is needed to
liquefy it.

The gas by the condenser surface is stationary in the direction per-
pendicular to the wall, since the gas has no mass flux into the condensate
film. The concentration of gas, however, is higher near the wall, similar
to the salts by the reverse osmosis membrane described in Section 11.8.
Thus, the gas diffuses away from the wall, down the concentration gradi-
ent. This diffusion flux acts in opposition to the convective flow of the
gas-vapor mixture toward the wall (Fig. 11.23). Similarly, the vapor must
diffuse through the gas to reach the wall and condense. The blowing
factor is clearly negative, and strong suction is likely.

Industrial condensers are heat exchangers with a coolant as one stream
and a vapor as the other. Vapor enters at one end and flows toward the
other end as it condenses. The mass flow rate of vapor decreases along
the length of the condenser. Noncondensable gases are swept with the
vapor toward the outlet, where they accumulate. Temperatures tend
to be lower at the outlet end of the condenser. If the vapor condenses
completely, the outlet end of the condenser will contain mostly gas, so
that removal of the gas, or “venting,” is relatively straightforward.

As an example, in a vertical downflow in-tube condenser, vapor flows
downward inside a tube bundle, while a liquid coolant (perhaps cold
water) flows through the shell side (Fig. 11.24). The condensate forms a
film that runs down the inside of the tubes. Noncondensable gases are
swept to the bottom, where a gas-vapor interface forms. The position of
the interface can fluctuate as the load on the condenser fluctuates. In
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Figure 11.23 Concentration and temperature at surface of a
condenser tube with a noncondensable gas present.

fact, control of the condenser pressure may be gained by controlling the
rate of venting of the gas at the bottom [11.42].

Venting is less convenient if vapor is on the shell side of a condenser,
especially in crossflow configurations, because the vapor flow path is
not tightly defined [11.43]. Steam power plant condensers, for instance,
are often horizontal shell-and-tube heat exchangers with water inside
the tubes and steam on the shell side. These condensers almost always
operate at subatmospheric pressure to minimize the bottom temperature,
which maximizes power generation. In this case, a steam ejector can
remove noncondensable gas from the shell side. The gas is entrained into
a jet of medium pressure steam that flows into a Venturi nozzle and out
the condenser. In a pressurized condenser, a thermally regulated valve
does the same job. The valve opens if the temperature drops below a set
point that signals an elevated concentration of gas.



new figures Oct 2023.auxlock

Water in

Water out

Vapor in

Vent

Condensate

Baffle plate
separator

Tubesheet
flange

Packed
floating head

Figure 11.24 Vertical in-tube downflow condenser. The float-
ing head at the bottom allows for thermal expansion and main-
tenance (assembly details not shown; see Mueller [11.41]). A
second vent may be included at the tubesheet flange to remove
air from the shell side.

685



686 An introduction to mass transfer §11.10

11.10 Transport properties of mixtures

When we lack data for the transport properties of mixtures, we may
estimate them using theoretical predictions or empirical models. Here,
we give a few basic procedures for evaluating D12, Dim, k, and µ in gas
mixtures, using results from kinetic theory—particularly the Chapman-
Enskog theory [11.8, 11.44, 11.45]. We also consider how to estimate D12

in dilute liquid solutions using the Sutherland-Einstein framework.

The diffusion coefficient for binary gas mixtures

As a starting point, we return to our simple model for the self-diffusion co-
efficient of a gas, eqn. (11.34). We can approximate the average molecular
speed, C , by Maxwell’s equilibrium formula [11.45]

C =
(︃

8kBNAT
πM

)︃1/2
(11.101)

where kB is Boltzmann’s constant and NA is Avogadro’s number.
If the molecules are rigid spheres, kinetic theory shows the mean free

path to be

ℓ = kBT√
2πd2p

(11.102)

where d is the effective molecular diameter. Substituting these values of
C and ℓ into eqn. (11.34) and noting that more detailed kinetic theory
gives 2ηa = 1/2, we find

DAA′ = (2ηa)Cℓ

= (kB/π)3/2

d2

(︃
NA
M

)︃1/2 T 3/2

p
(11.103)

The diffusion coefficient varies as p−1 and T 3/2, based on the simple
model for self-diffusion.

Of course, molecules are not really hard spheres, and different species
will have different sizes. The Chapman-Enskog kinetic theory takes those
factors into account, leading to

DAB =
(︁
1.8583× 10−7

)︁
T 3/2

pΩABD (T)

√︄
1
MA

+ 1
MB

(11.104)

where the units of p, T , and DAB are atm, K, and m2/s, respectively. The
function ΩABD (T), called a collision integral, accounts for scattering during
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the collisions between molecules of A and B. It depends, in general, on
which molecular species collide and the temperature.

The specific type of molecules matter owing to the intermolecular
forces of attraction and repulsion that act during collisions, which are
used to compute ΩABD . A good approximation to those forces is given by
the Lennard-Jones potential energy function (Fig. 11.25).21 This potential
is based on two parameters, σ and ε. The zero potential distance, σ ,
resembles a molecular diameter, and the potential well depth, ε, is the
energy required to completely separate two molecules from one another.
Values of σ and ε are given for a few molecules in Table 11.3.22

The calculations can be simplified using effective values of σ and ε
and proceeding as if this effective type of molecule were colliding with
itself. Then the collision integral ΩABD (T) can be can be approximated by
a collision integral ΩD for this effective molecule:

ΩABD (T) ≊ σ2
AB ΩD

(︁
kBT

/︁
εAB

)︁
(11.105)

21John Edward Jones was born in 1894 and educated in theoretical physics at Bristol
University. He served as a flyer in the First World War, then proposed his attraction
formula in his doctorate at Manchester. Stated as a potential, he hadφ(r) = 4ε

[︁
(σ/r)n−

(σ/r)m)] for r the molecular separation. The next year he married Katherine Lennard
and attached her maiden name to his own. He arrived at the famous (n,m) = (12,6) in
1931, under the name Lennard-Jones [11.46]. Tables 11.3 and 11.4 are for that potential.

22Each pair of constants was determined by fitting to viscosity data. Different fits
can achieve similar accuracy, and so different authors have reported different pairs of
values for the same gas [11.47]. A value of σ from one pair should never be combined
with a value of ε from another pair.

http://www.uh.edu/engines/epi2593.htm
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where σAB , for the collision of molecules of A and B, is

σAB = (σA + σB)
/︁
2 (11.106)

and the effective potential well depth for that collision is

εAB =
√
εAεB (11.107)

The calculation of the collision integral ΩD from the Lennard-Jones po-
tential is laborious. Some values are tabulated in Table 11.4.

Substitution of eqn. (11.104) into (11.105) results in a working formula
for the binary diffusion coefficient

DAB =
(︁
1.8583× 10−7

)︁
T 3/2

pσ2
ABΩD

√︄
1
MA

+ 1
MB

(11.108)

where, again, the units of p, T , andDAB are atm, K, and m2/s, respectively,
and σAB is in Å (1 Å= 0.1 nm) [11.44].

Equation (11.108) indicates that the diffusivity varies as p−1 and is
independent of species concentrations, just as the simple model indi-
cated that it should. The temperature dependence of ΩD adds to the
temperature dependence of DAB : at low temperatures, DAB ∝ T 11/6, but
as temperature rises the dependence ranges up to T 2 and then back down
to T 3/2 [11.7, 11.17].

Air, by the way, can be treated as a single substance in Table 11.3 as a
result of the similarity of its two main constituents, N2 and O2.

Example 11.16

Compute DAB for the diffusion of hydrogen in air at 282 K and 1 atm.

Solution. Let air be species A and H2 be species B. Then we read
from Table 11.3

σA = 3.711 Å, σB = 2.899 Å,
εA
kB
= 78.6 K,

εB
kB
= 40.0 K

and calculate these values

σAB = (3.711+ 2.899)/2 = 3.305 Å

εAB
/︁
kB =

√︂
(78.6)(40.0) = 56.1 K



§11.10 Transport properties of mixtures 689

Table 11.3 Lennard-Jones constants of selected species, with
molar masses. From viscosity data [11.48] except as noted.

Species σ (Å) ε/kB (K) M
(︂

kg
kmol

)︂
Species σ (Å) ε/kB (K) M

(︂
kg

kmol

)︂
Air 3.711 78.6 28.96 H2 2.899 40.0 2.016b

Ar 3.327 143.8 39.95a H2O 2.641 809.1 18.02
Br2 4.296 507.9 159.81 H2O2 4.196 289.3 34.01
CCl4 5.947 322.7 153.82 H2S 3.623 301.1 34.08
CH3OH 3.626 481.8 32.04 He 2.524 9.87 4.003a

CH4 3.758 148.6 16.04 Hg 2.969 750 200.59
CO 3.702 91.0 28.01b I2 5.160 474.2 253.81
CO2 3.859 213.0 44.01b Kr 3.510 207.4 83.80a

C2H6 4.443 215.7 30.07 NH3 2.900 558.3 17.03
C2H5OH 4.530 362.6 46.07 N2 3.705 84.94 28.01a

CH3COCH3 4.600 560.2 58.08 N2O 3.828 232.4 44.01
C3H8 5.021 254.0 44.10b Ne 2.801 33.92 20.18c

n-C5H12 5.740 337.0 72.15b O2 3.392 121.7 32.00a

C6H6 5.349 412.3 78.11 SF6 5.128 222.1 146.06
Cl2 4.217 316.0 70.91 SO2 4.112 335.4 64.06
F2 3.357 112.6 38.00 Xe 3.903 262.7 131.29a

aFrom [11.49]. bFrom [11.50]. cFrom [11.51], using vapor pressure data.

Hence, kBT/εAB = 5.027, and ΩD = 0.8410 from Table 11.4. Then

DAB =
(1.8583× 10−7)(282)3/2

(1)(3.305)2(0.8410)

√︄
1

2.016
+ 1

28.96
m2/s

= 6.98× 10−5 m2/s

An experimental value [11.7] is 6.58× 10−5 m2/s, so the prediction is
higher by 6%.

Limitations. Equation (11.108) was derived for low density gases with
molecules that are nonpolar and spherically symmetric. Poling et al. [11.5]
compared eqn. (11.108) to data for binary mixtures of monatomic, poly-
atomic, nonpolar, and polar gases like those in Table 11.3. They reported
an average absolute error of 7.9%. Better accuracy can be obtained using
a mixture-specific equation for ΩABD (T) [11.54, Chap. 11] or using values
of σAB and εAB that have been fit to the pair of gases considered [11.53],
rather than estimated with eqns. (11.106) and (11.107).
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Table 11.4 Lennard-Jones collision integrals for diffusivity and
for viscosity and thermal conductivity [11.52].

kBT/ε ΩD Ωµ kBT/ε ΩD Ωµ kBT/ε ΩD Ωµ kBT/ε ΩD Ωµ

0.10 4.0127 4.1039 1.20 1.3218 1.4542 5.00 0.8427 0.9266 30.00 0.6234 0.7005
0.15 3.4833 3.5879 1.30 1.2744 1.4010 5.50 0.8266 0.9102 32.00 0.6172 0.6939
0.20 3.1328 3.2686 1.40 1.2335 1.3550 6.00 0.8127 0.8961 34.00 0.6114 0.6878
0.25 2.8677 3.0336 1.50 1.1983 1.3151 6.50 0.8005 0.8837 36.00 0.6060 0.6820
0.30 2.6509 2.8456 1.60 1.1678 1.2801 7.00 0.7897 0.8726 38.00 0.6010 0.6766
0.35 2.4695 2.6777 1.70 1.1414 1.2491 7.50 0.7800 0.8627 40.00 0.5962 0.6715
0.40 2.3171 2.5327 1.80 1.1175 1.2215 8.00 0.7711 0.8537 45.00 0.5854 0.6599
0.45 2.1823 2.4003 1.90 1.0956 1.1971 8.50 0.7631 0.8454 50.00 0.5759 0.6496
0.50 2.0662 2.2867 2.00 1.0760 1.1753 9.00 0.7556 0.8378 55.00 0.5674 0.6405
0.55 1.9681 2.1774 2.20 1.0418 1.1379 9.50 0.7487 0.8308 60.00 0.5598 0.6322
0.60 1.8779 2.0828 2.40 1.0131 1.1069 10.00 0.7422 0.8242 65.00 0.5528 0.6246
0.65 1.7979 1.9994 2.60 0.9888 1.0807 12.00 0.7202 0.8017 70.00 0.5465 0.6177
0.70 1.7298 1.9230 2.80 0.9679 1.0581 14.00 0.7025 0.7834 75.00 0.5406 0.6113
0.75 1.6699 1.8521 3.00 0.9499 1.0386 16.00 0.6877 0.7681 80.00 0.5352 0.6053
0.80 1.6139 1.7885 3.20 0.9342 1.0215 18.00 0.6750 0.7549 90.00 0.5254 0.5946
0.85 1.5633 1.7327 3.40 0.9200 1.0064 20.00 0.6640 0.7433 100.00 0.5167 0.5851
0.90 1.5175 1.6821 3.60 0.9071 0.9929 22.00 0.6542 0.7330 125.00 0.4989 0.5654
0.95 1.4763 1.6360 3.80 0.8954 0.9807 24.00 0.6453 0.7238 150.00 0.4847 0.5497
1.00 1.4394 1.5933 4.00 0.8847 0.9697 26.00 0.6374 0.7153 175.00 0.4729 0.5366
1.10 1.3767 1.5175 4.50 0.8617 0.9461 28.00 0.6301 0.7076 200.00 0.4630 0.5256

When the density is high enough that the gas is not ideal, D12 will
decrease more rapidly with p or ρ than suggested by eqn. (11.108). At
these higher densities, molecular interactions are not limited to infrequent
two molecule collisions. Three molecules may collide, or a single molecule
might collide with a joined pair of molecules (a dimer ). At even higher
density, the motions of nearby molecules may become coordinated. The
transport properties of dense gases can be estimated using corresponding
states theory, absolute reaction-rate theory, or modified Enskog theory,
amongst other approaches [11.5, 11.54].

Conversely, when the gas density is so low that the mean free path is
near the dimensions of the system—as in some microscale devices—or
when it is near the length scale of gradients in the gas—as in a shock
wave at high Mach number—we enter the realm of rarefied gas dynamics.
Kinetic theory must be modified to account for system boundaries or for
spatially rapid changes in gas properties [11.55, 11.56].
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Diffusion coefficients for multicomponent gases

An effective binary diffusivity Dim may sometimes be used to represent
the diffusion of species i into a mixture m. For example, if a low concen-
tration of species i diffuses into a homogeneous mixture of n species,
then J⃗j ≊ 0 for j ≠ i, and one may show that

D−1
im =

n∑︂
j=1
j≠i

xj
Dij

(11.109)

where Dij is the binary diffusion coefficient for species i and j alone (see
Problem 11.53). This rule is called Blanc’s law.

If a mixture is dominantly composed of one species, A, and includes
only small traces of several other species, then the diffusion coefficient
of each trace gas is approximately the same as if the other trace gases
were not present, so that

Dim ≊ DiA (11.110)

Finally, if the binary diffusion coefficient has the same value for each
pair of species in a mixture, then one may show that Dim = Dij , as
intuition might suggest (Problem 11.53).

Diffusion coefficients for binary liquid mixtures

The kinetic theory of gases is based on a detailed description of infrequent
collisions between pairs of molecules. In a liquid, each molecule is always
in contact with many neighboring molecules, and a simple kinetic model
is infeasible. Instead, a less precise approach can be used to correlate
experimental measurements.

For a dilute solution of species A in liquid B, the hydrodynamic model
has met some success. Suppose that, when a force per molecule FA is
applied, the molecules of A reach an average steady speed v̂A relative to
the liquid B. The ratio v̂A/FA is called the mobility of A. If no force is
applied, molecules of A can instead diffuse as a result of concentration
gradients or even random molecular motions, called Brownian motion23.

23Robert Brown (1773–1858) was a Scottish botanist. In 1827, he was examining
pollen grains suspended in water, and noted that they continuously jerked about. Were
they alive? No, he found the same behavior in dust motes. Without a full atomic
theory, he could not tell that the particles were small enough to be knocked about by
molecules. Mathematical descriptions of the process had to wait for late 19th and early
20th century.
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Thermodynamic and kinetic arguments, such as those given by Suther-
land [11.57] and Einstein [11.58], lead to the following expression for the
diffusion coefficient of A in B:

DAB = kBT
(︁
v̂A/FA

)︁
(11.111)

Equation (11.111) is usually called the Einstein relation.
To evaluate the mobility of a solute, we may make the bold approxi-

mation that viscous drag applies on a molecular scale, using a variant of
Stokes’ law for a sphere at low Reynolds number (ReD < 1). Specifically,
we follow Sutherland in using an expression due to Basset [11.59]:

FA = 6πµBv̂ARA

(︄
1+ 2µB/βRA
1+ 3µB/βRA

)︄
(11.112)

Here, RA is the radius of sphereA and β is a coefficient of “sliding” friction,
for a friction force proportional to the velocity differential. Substituting
eqn. (11.112) in eqn. (11.111), we get

DABµB
T

= kB

6πRA

(︄
1+ 3µB/βRA
1+ 2µB/βRA

)︄
(11.113)

This model is valid if the concentration of A is so low that the molecules
of A do not interact with one another.24

We usually assume that no slip occurs between a liquid and a solid
surface that it touches. For solutes much larger than the solvent molecules,
this behavior continues; and so β ⎯→∞ and eqn. (11.113) simplifies to25

DABµB
T

= kB

6πRA
(11.114a)

In contrast, for small solute molecules—close in size to the solvent
molecules—the solute might slip relative to the solvent, and so β will be

24Stokes, in his 1856 paper [11.60], argued for the no-slip condition and derived the
result known today as Stokes’ law, FA = 6πµBvARA. Even so, fluid drag was not well
understood in the 19th century, and some evidence seemed to suggest that frictional slip
could occur between a fluid and solid. Basset discussed slip in his 1888 hydrodynamics
book, and he developed eqn. (11.112) to account for it. Sutherland, in his 1905 paper,
adopted Basset’s equation without comment, simply calling it “Stokes’ law”.

25Equation (11.114a) was given by Einstein in a paper submitted May 1905. The
more general form, eqn. (11.113), was reported independently by Sutherland in a paper
submitted March 1905. Equations (11.113) and (11.114a) are commonly called the
Stokes-Einstein equation, although Stokes had no hand in applying eqn. (11.112) to
diffusion. Equation (11.113) might better be called the Sutherland-Einstein equation.

https://en.wikipedia.org/wiki/William_Sutherland_(physicist)
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smaller. In the limit β ⎯→ 0, eqn. (11.113) becomes

DABµB
T

= kB

4πRA
(11.114b)

Experimental data for a diversity of solutes and solvents show a similar
trend of DABµB/T increasing as solute size decreases [11.61].

Equations (11.113), (11.114a), and (11.114b) each show that Dµ
/︁
T is

primarily a function of the size of the diffusing species, with a secondary
dependence on intermolecular forces (i.e., on β). Experiments on dilute
solutions confirm that Dµ/T is essentially temperature-independent for
a given solute-solvent pair, with the only exception occurring in very high
viscosity solutions. Thus, most correlations of experimental data start
with some form of eqn. (11.113).

Many such correlations have been developed. One such correlation
was given by King et al. [11.62]. They expressed the molecular size in
terms of molal volumes at the normal boiling point, Vm,A and Vm,B , and
accounted for intermolecular association forces using the latent heats of
vaporization at the normal boiling point, hfg,A and hfg,B . They obtained

DABµB
T

=
(︂
4.4× 10−15 kg·m/K·s2

)︂(︄Vm,B
Vm,A

)︄1/6(︄hfg,B
hfg,A

)︄1/2

(11.115)

which fit their data to a standard deviation of 19.5%. Values of hfg and
Vm are given for various substances in Table 11.5.

Equation (11.115) applies for the diffusion of a very dilute solute A
through solvent B. The equation is valid for nonelectrolytes, and it appears
to be satisfactory for both polar and nonpolar substances. Difficulty fitting
polar solvents of high viscosity led King et al. to limit eqn. (11.115) to
Dµ/T < 1.5 × 10−14 kg·m/K·s2. The predictions of eqn. (11.115) are
compared with experimental data in Fig. 11.26. Poling et al. [11.5] discuss
more complex models that provide better accuracy.

Data for the diffusion coefficient of hundreds of dilute solutions have
been compiled by Großmann et al. [11.63]. They also evaluated several
predictive models and used matrix completion methods to estimate values
for more than 10,000 solvent-solute pairs at 298 K.

Concentrated liquid solutions. In concentrated solutions—for which one
species is not dilute—the diffusion coefficient can vary substantially with
concentration. Figure 11.27, for example, shows data for two mixtures
in which this variation is strong. The dilute solution limits in this figure,
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Table 11.5 Molal specific volumes and latent heats of vaporiza-
tion for selected liquids at their normal boiling points [11.62].

Substance Vm (m3/kmol) hfg (MJ/kmol)

Alcohols
Methanol 0.042 35.53
Ethanol 0.064 39.33
n-Propanol 0.081 41.97
Isopropanol 0.072 40.71
n-Butanol 0.103 43.76
tert -Butanol 0.103 40.63

Alkanes and cycloalkanes
n-Pentane 0.118 25.61
Cyclopentane 0.100 27.32
Isopentane 0.118 24.73
Neopentane 0.118 22.72
n-Hexane 0.141 28.85
Cyclohexane 0.117 33.03
n-Heptane 0.163 31.69
n-Octane 0.185 34.14
n-Nonane 0.207 36.53
n-Decane 0.229 39.33

Miscellaneous
Acetone 0.074 28.90
Benzene 0.096 30.76
Carbon tetrachloride 0.102 29.93
Ethyl bromide 0.075 27.41
Nitromethane 0.056 25.44
Water 0.0187 40.62

for ethanol in water (x1 ⎯→ 0) and for water in ethanol (x1 ⎯→ 1), align
with the values in Table 11.1 at 25°C. Between these limits, the diffusivity
varies somewhat erratically.

The strong variation of D12 with concentration arises because the
diffusional flux is not linearly proportional to the concentration gradient.
In fact, chemical thermodynamics shows that the true driving force for
mass diffusion is the chemical potential and that the driving force for
diffusion is only proportional to concentration if the solution is dilute
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Figure 11.26 Comparison of liquid diffusion coefficients pre-
dicted by eqn. (11.115) to measured values for assorted solutes
in several organic solvents, from [11.64].

or ideal (see Section 11.11). Nevertheless, experimental studies of the
diffusion coefficient usually report the concentration, rather than the
chemical potential, because the concentration is easily measurable.

Figure 11.27 also shows that Deth-H2O increases by more than a factor
of two when the temperature increases from just 25°C to 65°C. At first
glance, the rapid change may seem surprising, since eqn. (11.113) predicts
a linear increase with absolute temperature. Equation (11.113), however,
also predicts that diffusivity increases as the dynamic viscosity µH2O falls;
and, over this temperature range, water’s viscosity drops by a factor of
two. Together, these two variations account for the increase in Deth-H2O

with T for x1 ⎯→ 0.
The literature contains several predictive models for the concentration

dependence of the diffusion coefficient [11.5]. For the particular case of
electrolyte solutions, in which electrostatic fields force ions to migrate, a
significant body of theory describes solute mobility and diffusivity [11.66].
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Figure 11.27 Variation of the diffusion
coefficient in two concentrated liquid
solutions [11.6, 11.65].
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The thermal conductivity and viscosity of gases

The viscosity and thermal conductivity of a mixture must sometimes be
estimated in convective mass transfer problems. Here, we consider only
µ and k for gases.

Two of the most important results from the kinetic theory of gases are
the predictions of µ and k for a pure, monatomic gas of species A [11.44]:

µA =
(︁
2.6693× 10−6)︁√︁MAT

σ2
AΩµ

(11.116)

and

kA =
0.083228

σ2
AΩµ

√︄
T
MA

(11.117)

Here, Ωµ is a collision integral for the viscosity and thermal conductivity
(see Table 11.4). In these equations µ is in kg/m·s, k is in W/m·K, T is in
kelvin, and σA again has units of Å.

The equation for µA applies equally well to polyatomic gases, but
kA must be corrected to account for internal modes of energy storage—
chiefly molecular rotation and vibration. In 1913, Eucken [11.67] gave a
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simple analysis showing that this correction was

k =
(︄

9γ − 5
4γ

)︄
µcp (11.118)

for an ideal gas, where γ ≡ cp/cv (see Problem 11.52). You may recall
from your thermodynamics courses that γ is 5/3 for monatomic gases,
7/5 for diatomic gases at modest temperatures, and approaches one for
very complex molecules. Equation (11.118) should be used with tabulated
data for cp; on average, it will underpredict k by perhaps 10 to 20% [11.5].

An approximate formula for µ in multicomponent gas mixtures was
developed by Wilke [11.68], based on the kinetic theory of gases:

µm =
n∑︂
i=1

xiµi
n∑︁
j=1

xjφij
(11.119a)

where

φij =

[︂
1+ (µi/µj)1/2(Mj/Mi)1/4

]︂2

2
√

2
[︂
1+ (Mi/Mj)

]︂1/2 (11.119b)

An analogous expression for the thermal conductivity of gas mixtures
was derived by Mason and Saxena [11.69]:26

km =
n∑︂
i=1

xiki
n∑︁
j=1

xjφij
(11.119c)

Equation (11.119a) is accurate to about 2% and eqn. (11.119c) to about
4% for mixtures of nonpolar gases. For higher accuracy or for mixtures
with polar components, refer to [11.5] and [11.54].

Example 11.17 Kinetic prediction of µ and k for air

Compute the transport properties of air at 300 K, and compare your
results to data from Table A.6.

26We have followed [11.5] in omitting an empirical correction factor proposed by
Mason and Saxena, (1.065×φij ).
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Solution. The mass composition of air was given in Example 11.1.
Using the methods of Example 11.1, we obtain the mole fractions as
xN2 = 0.7808, xO2 = 0.2095, and xAr = 0.0093.

We first compute µ and k for the three species to illustrate the
use of eqns. (11.116) to (11.118), although we could simply use tabled
data in eqns. (11.119a) and (11.119c). From Tables 11.3 and 11.4:

Species σ (Å) ε/kB (K) M (kg/kmol) Ωµ

N2 3.705 84.94 28.01 0.9975
O2 3.392 121.7 32.00 1.0984
Ar 3.324 143.8 39.95 1.0848

Substitution of these values into eqn. (11.116) yields

Species µcalc (kg/m·s) µdata (kg/m·s)

N2 1.787× 10−5 1.789×10−5

O2 2.069× 10−5 2.065×10−5

Ar 2.282× 10−5 2.29×10−5

where the data are from Appendix A (Table A.6). With cp data from Ap-
pendix A, eqns. (11.117) and (11.118) yield the thermal conductivities
of the components:

Species cp(J/kg·K) kcalc (W/m·K) kdata (W/m·K)

N2 1041. 0.02525 0.0260
O2 919.9 0.02583 0.0265
Ar 521.5 0.01785 0.0179

The predictions agree with the data to better than 0.4% for µ and to
within 3% for k.

To compute µm and km, we use eqns. (11.119a) and (11.119c) and
the tabulated values of µ and k. Choosing N2, O2, and Ar as species 1,
2, and 3, we get

φ12 = 0.9925, φ21 = 1.006

φ13 = 1.049, φ31 = 0.9393

φ23 = 1.061, φ32 = 0.9371
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and φii = 1. The sums appearing in the denominators are

3∑︂
j=1

xjφij =

⎧⎪⎪⎨⎪⎪⎩
0.9985 for i = 1

1.005 for i = 2

0.9390 for i = 3

Finally, eqns. (11.119a) and (11.119c) yield these calculated values:

µm,calc = 1.851× 10−5 kg/m·s, µm,data = 1.854× 10−5 kg/m·s
km,calc = 0.02531 W/m·K, km,data = 0.0264 W/m·K

The predicted mixture values are within 0.2 and about 4%, respectively,
of the air data from Table A.6.

Finally, we need cpm to compute the Prandtl number of the mixture.
For ideal gases, mixture specific heat capacity is merely the mass
weighted average, cpm =

∑︁
imicpi , equal to 1006 J/kg·K. Then

Pr = (µcp/k)m = (1.861× 10−5)(1006)/0.02596 = 0.721

This value is 2% above the tabled value of 0.707. The reader may wish
to compare these results with those obtained much more directly using
the values for air in Table 11.3 or to explore the effects of neglecting
argon in the preceding calculations.

11.11 Diffusion in multicomponent and nonideal
mixtures

So far, we have considered only binary diffusion in ideal solutions. When
three or more species are present, more than one concentration gradi-
ent can vary independently. Further, when a mixture is not ideal, the
intermolecular forces of diffusion change with the concentration. In this
section, we briefly introduce the theory of diffusion in multicomponent
and nonideal mixtures.

Fick’s law in multicomponent mixtures

In a mixture of three species, two concentration gradients and two diffu-
sional fluxes are independent. Thus,

j⃗1 = −ρD11∇m1 − ρD12∇m2 (11.120a)

j⃗2 = −ρD21∇m1 − ρD22∇m2 (11.120b)
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with j⃗3 = −j⃗1− j⃗2 and∇m3 = −∇m1−∇m2. These diffusion coefficients
are not the same as the binary diffusion coefficients previously studied:
they can take negative values, and Dij need not equal Dji [11.70].

Equation (11.120a) reveals several paradoxical facts about multicom-
ponent diffusion. For example, the flux of species 1 can be non-zero when
its concentration gradient is zero—provided that species 2 has a non-zero
concentration gradient. Similarly, the cross-coupling of gradients can
cause a species to diffuse into a region where its concentration is higher;
or, if terms on the right-hand side of eqn. (11.120a) sum to zero, species i
may have zero flux when its concentration gradient is not zero.

Duncan and Toor produced all these phenomena in a simple exper-
iment in 1962 [11.71]. They connected a tube between two bulbs, one
containing equal mole fractions of CO2 and N2, the other containing equal
mole fractions of H2 and N2. Then they allowed the gases to diffuse
until equilibrium was reached. Nitrogen was successively observed to
diffuse when it did not have a gradient, to diffuse up its concentration
gradient, and not to diffuse when it had a gradient. Upon exchanging
the initial concentrations of CO2 and N2, they caused CO2 to display the
same behavior.

An n-component mixture has n− 1 independent gradients:

j⃗i = −ρ
n−1∑︂
j=1

Dij∇mj for 1 ⩽ i ⩽ n− 1 (11.121)

Mutoru and Firoozabadi [11.72] have compiled values of Dij for ternary
and quaternary mixtures.

Maxwell-Stefan equations for ideal mixtures

James Clerk Maxwell studied binary diffusion in his 1867 paper on the
kinetic theory of gases. Josef Stefan, in 1871, considered the same problem
using physical arguments and force balance. Stefan’s physical arguments
are also applicable to liquids. The equations they obtained are now
called the Maxwell-Stefan equations [11.73, 11.74]. The theory states that
the drag forces between diffusing species balance the partial pressure
gradients that move the species in opposite directions.

Interspecies drag in binary diffusion. When two particles have an elastic
collision, the momentum change of particle 2, ∆P⃗2, is proportional the
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velocity difference before the collision, (v⃗1 − v⃗2)

∆P⃗2 ∝
m1m2

m1 +m2
(v⃗1 − v⃗2) (11.122)

where m1 and m2 are the particles’ masses [11.75]. In binary diffusion, the
rate of momentum transfer depends on the rate of collisions between the
two kinds of molecules. In turn, the collision frequency per unit volume,
Z12, depends on the number of molecules of each type per unit volume,
Ni.27 Further, Ni = NAcxi, where NA is Avogadro’s number.28 Thus:

Z12 ∝N1N2 ∝ x1x2 (11.123)

Now, for one-dimensional diffusion in a slab of area A and thickness
dz, the average rate of momentum transfer from species 1 to species 2,
dṖ1→2, is proportional to the product of the momentum transfer per
collision and the rate of collisions within the volume

dṖ1→2 = ax1x2(v1 − v2)Adz (11.124)

where v1 and v2 are the species average speeds in the z-direction, and
a is a constant of proportionality. This transfer represents a loss of
momentum from species 1, in other words, a drag force on species 1 by
species 2. The drag per unit volume of mixture is therefore

f12 = ax1x2(v1 − v2) (11.125)

We define the Maxwell-Stefan diffusion coefficient to be Ð12 ≡ (cR◦T)/a:

f12 = (cR◦T)
x1x2(v1 − v2)

Ð12
(11.126)

This definition applies to either a gas or a liquid. In fact, Problem 11.55
shows that this definition leads directly to the Sutherland-Einstein relation,
eqn. (11.111), for a dilute liquid solution.

27In a low density gas composed of hard-sphere molecules, Z12 =N1N2σ12C where
σ12 = π(d1 + d2)2/4 and C is the average molecular speed from eqn. (11.101) [11.56].

28NA = 6.0221× 1023 molecules/mol.
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Figure 11.28 Partial pressure and
interspecies drag force on species 1 in a
thin slab of gas mixture.

new figures Oct 2023.auxlock
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dz
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Ideal gas mixtures. For an ideal gas, the drag force opposes the partial
pressure difference on species 1 across the slab of gas mixture. With
reference to Fig. 11.28, the force balance is

p1A = f12Adz +
(︃
p1 +

dp1

dz
dz
)︃
A

Canceling terms, and setting cR◦T = p for an ideal gas, we have29

−dp1

dz
= f12 = p

(︃
x1x2(v1 − v2)

Ð12

)︃
(11.127a)

The left-hand side is the force driving the diffusion of species 1, per unit
volume of gas mixture. Likewise, for species 2, the balance is

−dp2

dz
= f21 = p

(︃
x1x2(v2 − v1)

Ð12

)︃
(11.127b)

Clearly, f12 = −f21, since diffusion creates no net force on the mixture.
Only one of eqns. (11.127) is independent.

For a multicomponent gas mixture, and in three dimensions, the
generalization of eqns. (11.127) is

−∇pi = p
n∑︂
j=1

xixj(v⃗i − v⃗j)
Ðij

(11.128)

29If species 1 moves in the +z-direction, dp1/dz < 0.
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Upon putting xiv⃗i = N⃗i/c, xi = pi/p, and setting the total pressure p
constant, eqn. (11.128) can take either of the following forms:

∇xi =
n∑︂
j=1

xiN⃗j − xjN⃗i
cÐij

=
n∑︂
j=1

xiJ⃗j − xj J⃗i
cÐij

(11.129a)

(11.129b)

Equations (11.129) are two forms of the Maxwell-Stefan equations for an
ideal gas. Only n− 1 equations are independent. Terms with i = j are
zero, so that Ðii is not used. Additional analysis shows that Ðij = Ðji.

The values of Ðij for an ideal gas mixture may be calculated using
eqn. (11.108). In contrast, the values ofDij for multicomponent mixtures,
in eqn. (11.121), must be computed from Ðij using matrix methods [11.70].

Equations (11.129) are a system of first-order o.d.e.s. If the fluxes are
known, the equations can be integrated to find the concentration profiles.
If the fluxes are unknown, values that meet the concentration boundary
conditions can be determined iteratively (Problem 11.57).

Fick’s Law for binary diffusion in ideal gas. The Maxwell-Stefan equa-
tions for a binary ideal gas mixture are equivalent to Fick’s law. From
eqn. (11.129b) in the z-direction, with J1 + J2 = 0,

−dx1

dz
= x2J1 − x1J2

cÐ12

−cÐ12
dx1

dz
= c2J1 + c1J1

c
= J1

so that

J1 = −cÐ12
dx1

dz
(11.130)

which is the same as eqn. (11.30). For the special case of binary diffusion
in an ideal gas, the Maxwell-Stefan diffusion coefficient is the same as the
Fick diffusion coefficient, Ð12 = D12.

Effective binary Fick diffusion coefficients, Dim, were described in Sec-
tion 11.10. Problem 11.53 shows how those approximations are derived
from the Maxwell-Stefan equations.
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Chemical potential in nonideal mixtures

For mixtures that are nonideal, such as concentrated liquid solutions, the
driving force for diffusion of a species i is the gradient of the chemical
potential of i, denoted as µi. The chemical potential is a thermodynamic
property that characterizes the potential energy of a species in a mixture.
A species will diffuse from a region of high chemical potential to a region
of low chemical potential, just as a ball rolls downhill from high gravi-
tational potential to low potential. Unlike the ball, however, a diffusing
species develops no kinetic energy because the released potential energy
is transferred to the other species by intermolecular friction. The chemical
potential is measured in joules per mole of species i (J/mol).

The condition of chemical equilibrium is that the chemical potential
is uniform for each species in the mixture, with no gradients and no
differences across phase boundaries. If the chemical potential in one state
is lower than in another state, the substance will move spontaneously
toward the state with lower potential. For example, if a substance’s
chemical potential is lower in the vapor state than the liquid state, it will
evaporate.

For a substance that is dilute, or ideal, the chemical potential has the
simple form

µi(x) = µ−◦i (p, T)+ R◦T ln(xi) ideal solution (11.131)

where µ−◦i (p, T) is the potential in a reference state, or standard state. The
standard state is often chosen to be pure species i, x−◦i = 1.30 Although
R◦ appears, this equation is not limited to gases.31

For nonideal solutions, such as concentrated liquids, the expression
for µi is more complicated:

µi = µ−◦(p, T)+ R◦T ln(γixi) nonideal solution (11.132)

Here, γi is the activity coefficient, another thermodynamic property. It
depends on the concentrations of all species in the solution, as well as p
and T . In an ideal solution, such as a low density gas or a dilute liquid,
γi = 1.

30The reference state, or standard state, is an arbitrary datum. For ionic solutes in
electrochemistry, the standard state is often chosen as a hypothetical ideal solute at a
concentration of 1 mol/kg [11.76].

31The gas constant is present because R◦ = kBNA, where kB is Boltzmann’s constant
and NA is Avogadro’s number, the number of molecules per mole.
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The chemical potential accounts for many interesting phenomena,
including all the solubility relations described in Section 11.4. A full
discussion occupies entire chapters of textbooks on physical chemistry
and chemical engineering [11.10, 11.11]. In this textbook, however, we
shall dig no deeper.

Chemical potential driving force. A gradient in any potential energy
produces a force, as a gradient in gravitational potential energy produces
the gravitational force. Thus, a gradient in the chemical potential creates
the force that drives mass diffusion:

−∇µi = driving force for diffusion of species i, per mole (11.133)

In one dimension, using eqn. (11.131), the driving force per mole is

−dµi
dz

= −R
◦T
xi

dxi
dz

(11.134)

To convert this driving force to a driving force per unit volume, we multiply
through by ci (moles i/m3):

−ci
dµi
dz

= −cR◦T dxi
dz

(11.135)

For an ideal gas, p = cR◦T , and if the pressure is uniform then

−ci
dµi
dz

= −pdxi
dz

= −dpi
dz

ideal gas (11.136)

The last term is the same driving force as in eqn. (11.127a).
For a nonideal mixture, using eqn. (11.132) and shifting to vector form,

the chemical potential driving force is

−ci∇T,pµi = −cR◦T ∇T,p ln(xiγi) (11.137a)

= −cR◦T
n−1∑︂
j=1

(︄
δij + xi

∂ lnγi
∂xj

)︄
⏞ ⏟⏟ ⏞

≡Γij

∇T,pxj (11.137b)

= −cR◦T
n−1∑︂
j=1

Γij∇T,pxj (11.137c)

Here, we define the thermodynamic factor Γij as shown, and the gradients
∇T,p are taken at constant T and p. As before, only n− 1 gradients are
independent.

Intermolecular forces have a complex concentration dependence in
nonideal solutions. This variation is largely carried in the activity coeffi-
cient, γi, and the thermodynamic factor, Γij .
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Maxwell-Stefan equations in nonideal mixtures

For a nonideal solution, the Maxwell-Stefan equations are again a balance
between the chemical potential driving force and the interspecies drag
force, similar to the ideal gas equations, (11.128) and (11.129):

−ci∇T,pµi = −(cR◦T)
n∑︂
j=1

xiJ⃗j − xj J⃗i
cÐij

(11.138)

The chemical potential driving force must now be represented by eqn. (11.137c).
Substituting that relationship and dividing by −cR◦T , we obtain the
Maxwell-Stefan equations for a nonideal mixture:

n−1∑︂
j=1

Γij∇T,pxj =
n∑︂
j=1

xiJ⃗j − xj J⃗i
cÐij

(11.139)

This system of equations, like the generalized Fick’s law, eqn. (11.121),
may be solved using matrix methods with appropriate estimates for Γi
and Ðij . Many interesting examples are given in [11.70] and [11.77].

The Maxwell-Stefan equations may be extended to electrochemical sys-
tems by adding electrostatic forces to eqn. (11.138). For dilute solutions,
the result is the Nernst-Planck equation (Problem 11.56), which describes
the transport of ions in electrolyte solutions.

Binary diffusion in concentrated liquid solutions. If only two species
are present, eqn. (11.139) can be simplified as before

Γ∇T,px1 =
x1J⃗2 − x2J⃗1

cÐ12
= −c1J⃗1 + c2J⃗1

c2Ð12
= − J⃗1

cÐ12

with Γ = Γ11 from eqn. (11.137b). Then

J⃗1 = −cΓÐ12∇T,px1 (11.140)

We immediately see that the Fick coefficient for binary diffusion is related
to the Maxwell-Stefan coefficient by

D12 = ΓÐ12 (11.141)

The thermodynamic factor, Γ , accounts for most of the concentration
dependence of the Fick diffusivity. The Maxwell-Stefan diffusivity is
much less sensitive to concentration [11.70]. When x1 → 0, so that the
solution is ideal, Γ → 1 and D12 = Ð12. For example, in a dilute liquid
solution, the Fick and Maxwell-Stefan diffusivities are the same, and the
Sutherland-Einstein formula, eqn. (11.113), predicts both.
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Problems

11.1 Derive eqns. (11.9).

11.2 A 1000 liter cylinder at 300 K contains a gaseous mixture com-
posed of 0.10 kmol of NH3, 0.04 kmol of CO2, and 0.06 kmol of
He. (a) Find the mass fraction for each species and the pressure in
the cylinder. (b) After the cylinder is heated to 600 K, what are the
new mole fractions, mass fractions, and molar concentrations?
(c) The cylinder is now compressed isothermally to a volume of
600 liters. What are the molar concentrations, mass fractions, and
partial densities? (d) If 0.40 kg of N2 is injected into the cylinder
while the temperature remains at 600 K, find the mole fractions,
mass fractions, and molar concentrations. [(a) mCO2 = 0.475;
(c) cCO2 = 0.0667 kmol/m3; (d) xCO2 = 0.187.]

11.3 The pressure of Jupiter’s atmosphere increases with depth. The
famous clouds of Jupiter are in a layer called the troposphere, in
which the pressure rises from 0.1 bar to 10 bar. The top of the tro-
posphere, called the tropopause, is about 50 km above the clouds
and is at 0.1 bar and 110 K. The atmospheric mole fractions of
hydrogen, helium, and methane are xH2 = 0.86, xHe = 0.136, and
xCH4 = 0.0018. Other species have small but localized concentra-
tions, e.g., in the troposphere’s clouds of ammonia ice. (a) Cal-
culate the molar concentrations and the partial densities of H2,
He, and CH4 at the tropopause. (b) Find the number of hydrogen
atoms per unit volume (number density), NH2 at the tropopause.
(c) Estimate NH2 at the base of the Jovian troposphere, where the
pressure is 10 bar and the temperature is 340 K.

11.4 In Example 11.2, suppose that the only gases at the s-surface are
CO, O2, and N2. As before, assume that mO2,s is very small. Find
jN2,s , nN2,s , and mN2,s .

11.5 Small automobile batteries commonly contain an aqueous solu-
tion of sulfuric acid (H2SO4) with lead and lead oxide plates as
electrodes. Current is generated by the reaction of the electrolyte
with the electrode material. The reaction at the lead electrode
(the anode) is

Pb(s)+HSO4
− ⎯→ PbSO4(s)+H+ + 2e−



708 Chapter 11: An introduction to mass transfer

where the (s) denotes a solid phase component. If the current
density at such an electrode is i = 5 mA/cm2, what is the mole
flux of HSO4

– (bisulfate) to the electrode? Recall that the charge
of an electron is −1.609× 10−19 C and that 1 A = 1 C/s. What is
the mass flux of HSO4

– ? At what mass rate is PbSO4 produced?
A what rate does H+ flow away from the electrode? [ṙ ′′PbSO4

=
7.83× 10−5 kg/m2·s.]

11.6 In catalysis, one gaseous species reacts with another on the surface
of a catalyst to form a gaseous product. For example, butane
(C4H10) reacts with hydrogen on the surface of a nickel catalyst
to form propane (C3H8) and methane (CH4). This heterogeneous
reaction, referred to as hydrogenolysis, is

C4H10 +H2
Ni
⎯→ C3H8 + CH4

The molar rate of consumption of C4H10 per unit area in the
reaction is ṘC4H10 = A(e−∆E/R◦T )pC4H10p

−2.4
H2

, where A = 2.9 ×
109 kmol/m2s, ∆E = 1.9× 108 J/kmol, and p is in atm [11.78].

a. IfpC4H10,s = pC3H8,s = 0.2 atm, pCH4,s = 0.17 atm, andpH2,s =
0.3 atm at a nickel surface with conditions of 440◦C and
0.87 atm total pressure, what is the rate of consumption of
butane?

b. What are the mole fluxes of butane and hydrogen to the
surface? What are the mass fluxes of propane and methane
away from the surface?

c. What is vC4H10,s? What are vs and v∗s ?

d. What is the diffusional mole flux of butane? What is the
diffusional mass flux of propane? What is the flux of Ni?

[(b) nCH4,s = 2.03 g/m2s; (d) jC3H8 = 5.58 g/m2s]

11.7 Show that D12 = D21 in a binary mixture.

11.8 Using the definitions of the fluxes, velocities, and concentrations,
derive eqn. (11.30) from eqn. (11.26) for binary diffusion.

11.9 Fill in the details involved in obtaining eqn. (11.33) from eqn.
(11.32).
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11.10 The salt concentration in the ocean increases with increasing
depth, z, because saltier water has greater density and tends to
sink. A model equation for the concentration distribution in the
upper ocean is

S = 33.25+ 0.75 tanh(0.026z − 3.7)

where S is the salinity in grams of salt per kilogram of ocean water
and z is the distance below the surface in meters. (a) Plot the mass
fraction of salt as a function of z. (The region of rapid transition
of msalt(z) is called the halocline.) (b) Ignoring the effects of
waves or currents, compute jsalt(z). Use a value of Dsalt,water =
1.5 × 10−9 m2/s. Indicate the position of maximum diffusion
on your plot of the salt concentration. (c) The upper region of
the ocean is well mixed by wind-driven waves and turbulence,
while the lower region and halocline tend to be calmer. Using
jsalt(z) from part (b), make a simple estimate of the amount of
salt diffused upward in one week in a 5 km2 horizontal area of
the sea. Ignore rainfall and other inflow of fresh water.

11.11 Consider two chambers held at temperatures T1 and T2, respec-
tively, and joined by a small insulated tube. The chambers are
filled with a binary gas mixture, with the tube open, and allowed
to come to steady state. If the Soret effect is taken into account,
what is the concentration difference between the two chambers?
Assume that an effective mean value of the thermal diffusion ratio
is known.

11.12 (a) Work Problem 6.36. (b) In general, a fluid is said to be “incom-
pressible” if the density of a fluid particle does not change as it
moves about in the flow (i.e., if Dρ/Dt = 0). Show that an incom-
pressible flow satisfies ∇ · u⃗ = 0. (c) How does the condition of
incompressibility differ from that of “constant density”? Describe
a flow that is incompressible but that does not have “constant
density.”

11.13 (a) Carefully derive eqn. (11.44). Note that ρ is not assumed
constant in eqn. (11.44). (b) If ρ is spatially uniform, show that

Dρi
Dt

= Dim∇2ρi + ṙi (11.142)

where the material derivative, D/Dt, is defined in eqn. (6.38).
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11.14 Derive the equation of species conservation on a molar basis, using
ci rather than ρi. Also obtain an equation in ci alone, similar to
eqn. (11.44) but without the assumption of incompressibility.
What assumptions must be made to obtain the latter result?

11.15 Find the following concentrations: (a) the mole fraction of air in
solution with water at 5◦C and 1 atm, exposed to air at the same
conditions, H = 4.88× 104 atm; (b) the mole fraction of ammonia
in air above an aqueous solution, with xNH3 = 0.05 at 0.9 atm and
40◦C and H = 1522 mm Hg; (c) the mole fraction of SO2 in an
aqueous solution at 15◦C and 1 atm, if pSO2 = 28.0 mm Hg and
H = 1.42×104 mm Hg; and (d) the partial pressure of ethylene over
an aqueous solution at 25◦C and 1 atm, with xC2H4 = 1.75× 10−5

and H = 11.4× 103 atm.

11.16 Use steam table data to calculate: (a) the partial pressure of
water over a 3 percent-by-weight aqueous solution of HCl at 50◦C;
(b) the boiling point at 1 atm of salt water with a mass fraction
mNaCl = 0.18. [(b) TB.P. = 101.8◦C.]

11.17 Consider one-dimensional, binary diffusion in which isothermal
ideal gases 1 and 2 travel in opposite directions along the z-axis
of a tube. Assume that the flow has a zero mass-average velocity,
so that mass transfer purely diffusive.

a. Show that the conservation equations for mass, species, and
momentum are satisfied by v = 0, j1 = −j2 = constant, and
p = constant.

b. With Fick’s law, solve form1(z) ifm1(0) = 0 andm1(L) = 1.

c. Find j1 in terms of the molar masses of the gases. (Hint: ρ is
not constant; use ρ = Mc and write M in terms of m1 before
integrating).

d. Write the mole fluxes in terms of the mass fluxes and solve
for the mole-average velocity, v∗. Under what condition is
v∗ = 0?

e. Suppose that gas 1 is helium and gas 2 is air at T = 276 K
and p = 1 atm, with L = 1 m. Calculate v∗, and ji and Ni for
both gases. Are the molar diffusion rates equal and opposite?
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11.18 Suppose that a steel fitting with a carbon mass fraction of 0.2% is
put into contact with carburizing gases at 910◦C, and that these
gases produce a steady mass fraction, mC,u, of 1.0% carbon just
within the surface of the metal. The diffusion coefficient of carbon
in this steel is [11.79]

DC,Fe =
(︁
1.20× 10−5 m2/︁s)︁ exp

[︁
−(1.34× 108 J/kmol)

/︁
(R◦T)

]︁
for T in kelvin. How long does it take to produce a carbon con-
centration of 0.6% by mass at a depth of 0.5 mm? How much less
time would it take if the temperature were 950◦C?

11.19 (a) Derive eqn. (11.62) for the mole flux across a stagnant layer,
working by analogy to the mass-based analysis of Section 11.5
that led to eqn. (11.58). Assume that cD12 is constant, and use
z as the coordinate across the layer. (b) Show that the molar
concentration profile, analogous to eqn. (11.61), is

1− x2(z)
1− x2,0

=
(︄

1− x2,L

1− x2,0

)︄z/L

11.20 A Stefan tube 1 cm in diameter initially has a pool of liquid carbon
tetrachloride 200.0 mm below the top. Pure argon flows over
the tube. The system is held at 60°C and 8.0× 104 Pa. During a
12 hr experiment, the pool level drops by 6.1 mm. What is the
diffusivity of CCl4 in Ar? The vapor pressure of CCl4 is log10 pv =
4.023 − 1222/(T − 45.74), where pv is in bar and T in K. The
specific gravity of liquid CCl4 is 1.59.

11.21 A Stefan tube at 60°C contains a pool of liquid ethanol 15 cm
below the top. Pure nitrogen gas flows across the top. The total
pressure is 1.2 bar. Plot the concentration profiles of ethanol and
nitrogen in the tube, in terms of both mass fraction and mole
fraction (see Problem prob:12.33). The vapor pressure of ethanol
(C2H5OH) is given by log10 pv = 5.247− 1599/(T − 46.42) for pv
is in bar and T in K.

11.22 Consider mass convection in a binary mixture, in which only
species 1 is transferred through the s-surface. Show that gm,1 =
gm,2. How does j2,s relate to n1,s?
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11.23 A small sphere in a gas at rest has a low vapor pressure of species 1,
so that species 1 is dilute in the gas phase. When natural con-
vection around the sphere is negligible, the steady mass flux of
species 1 in the radial direction is n1,r ≊ j1,r = −ρD12dm1/dr .
Use a mass balance to obtain the s-surface mass flux in terms
of the difference between the concentration far from the sphere,
m1,∞, and near the surface, m1,s . Approximate ρD12 as constant,
which is accurate if species 1 is dilute. Then use eqns. (11.66) and
(11.69) to show that Num,D = 2. What condition must apply for
convection to be negligible?

11.24 Film absorption is a process whereby gases are absorbed into a
falling liquid film. Typically, a thin film of liquid runs down the
inside of a vertical tube through which the gas flows. Analyze this
process making assumptions as follows. The film flow is laminar
and of constant thickness, δ0, with a velocity profile given by
eqn. (8.51); the gas is only slightly soluble in the liquid, so that it
does not penetrate far beyond the liquid surface and so that liquid
properties are unaffected by it; and, the gas concentration at the
s- and u-surfaces (above and below the liquid-vapor interface,
respectively) does not vary along the length of the tube. The inlet
concentration of gas in the liquid is m1,0. Show that the mass
transfer Nusselt number is given by

Num,x =
(︃
u0x
πD12

)︃1/2
with u0 =

(︁
ρf − ρg

)︁
gδ2

0

2µf

The mass transfer coefficient here is based on the concentration
difference between the u-surface and the bulk liquid at m1,0.
Hint : The small penetration assumption can be used to reduce
the species equation for the film to the diffusion equation, (11.56).

11.25 Benzene vapor flows through a 3 cm I.D. vertical tube. A thin film
of initially pure water runs down the inside wall of the tube at a
flow rate of 0.3 liter/s. If the tube is 0.5 m long and 40◦C, estimate
the rate (in kg/s) at which benzene is absorbed into water over
the entire length of the tube. The mass fraction of benzene at the
u-surface is 0.206. Hint : Use the result stated in Problem 11.24.
Obtain δ0 from the results in Chapter 8.

11.26 (a) Write eqn. (11.44) in its boundary layer form. (b) Write this
concentration boundary layer equation and its b.c.’s in terms of a
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nondimensional mass fraction,ψ, analogous to the dimensionless
temperature in eqn. (6.42). (c) For ν = Dim, relate ψ to the
Blasius function, f , for flow over a flat plate. (d) Note the similar
roles of Pr and Sc in the two boundary layer transport processes.
Infer the mass concentration analog of eqn. (6.55) and sketch the
concentration and momentum b.l. profiles for Sc = 1 and Sc ≫ 1.

11.27 When Sc is large, momentum diffuses more easily than mass,
and the concentration b.l. thickness, δc , is much less than the
momentum b.l. thickness, δ. On a flat plate, the small part of
the velocity profile within the concentration b.l. is approximately
u/Ue = 3y/2δ. Compute Num,x based on this velocity profile,
assuming a constant wall concentration. Hint : Use the mass
transfer analogs of eqn. (6.47) and (6.50) and note that qw/ρcp is
analogous to ji,s/ρ.

11.28 Nitrous oxide is bled through the surface of a porous 3/8 in.
O.D. tube at 0.025 liter/s per meter of tube length. Air flows
perpendicular to the tube at 25 ft/s. Both the air and the tube
are at 18◦C, and the ambient pressure is 1 atm. Estimate the
mean concentration of N2O at the tube surface. Dair,N2O = 1.48×
10−5 m2/s. Hint : First estimate the concentration using properties
of pure air; then correct the properties if necessary.

11.29 Helium is bled through a porous vertical wall, 40 cm high, into
surrounding air at a rate of 87.0 mg/m2s. Both the helium and
the air are at 300 K, the environment is at 1 atm, and DHe,air =
7.12× 10−5 m2/s. What is the average concentration of helium in
the air along the wall, mHe,s ?

11.30 We’re off on a drive across West Texas. It’s going to be hot today—
40◦C—but we’re unsure of the humidity. We attach a “desert water
bag” to the shaded side of our pickup truck. It’s made of canvas,
and it holds a liter and a half of drinking water. When we fill it,
we make sure to saturate the canvas inside and out. Water will
continue to permeate the fabric, but the weave is tight enough
that no water drips from it. Plot the temperature of the water
inside the bag as a function of the outdoor humidity. Hint: These
bags were once widely used in the Western US, but they never
found much use along the US Gulf coast.
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11.31 The following data were taken at a weather station over a period
of several months:

Date Tdry-bulb Twet-bulb

3/15 15.5◦C 11.0◦C
4/21 22.0 16.8
5/13 27.3 25.8
5/31 32.7 20.0
7/4 39.0 31.2

Use eqn. (11.74) to find the mass fraction of water in the air at
each date. Compare to values from a psychrometric chart.

11.32 During a coating process, a thin film of ethanol is wiped onto a
thick flat plate, 0.1 m by 0.1 m. The initial thickness of the liquid
film is 0.1 mm, and the initial temperature of both the plate and
the film is 303 K. The air above the film is at 303 K, flows at 10
m/s, and contains no ethanol. (a) Assume that the plate is a poor
conductor, so that heat transfer from it is negligible. After a short
initial transient, the liquid film reaches a steady temperature. Find
this temperature and calculate the time required for the film to
evaporate. (b) Discuss what happens when the plate is a very good
conductor of heat, and calculate a lower bound on the time to
evaporate. Properties of ethanol are as follow: log10(pv mmHg) =
9.4432 − 2287.8/(T K); hfg = 9.3 × 105 J/kg; liquid density,
ρeth = 789 kg/m3; Sc = 1.30 for ethanol vapor in air; vapor specific
heat capacity, cpeth = 1420 J/kg·K.

11.33 Ice cubes left in a freezer will slowly sublime into the air. Suppose
that a tray of ice cubes is left in a freezer with air at −10◦C and a
relative humidity of 50%. The air in the freezer is circulated by a
small fan, creating a heat transfer coefficient from the top of the ice
cube tray of 5 W/m2K. If a 20 g ice cube is rectangular and has an
exposed top surface area of 8 cm2, find the temperature of the ice
cube and estimate the time required for it to sublime completely.
Assume that no heat is transferred through the ice cube tray. For
ice, take hsg = 2.837 MJ/kg, and for water vapor in air, take Sc =
0.63. The vapor pressure of ice is given in Example 11.6.

11.34 Bikram Yoga was a strenuous style of yoga done in a room at 38 to
41◦C with relative humidity from 20 to 50%. People doing this
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yoga will generate body heat Q̇b of 300 to 600 W, which must be
removed to avoid heat stroke. Calculate the rate at which one’s
body can cool under these conditions and compare it to the rate
of heat generation.

The body sweats more as its need to cool increases, but the amount
of sweat evaporated on the skin depends on air temperature and
humidity. Sweating cannot exceed about 2 liters per hour, of
which only about half evaporates (the rest will simply drip).

Assume that sweating skin has a temperature of 36◦C and an
emittance of 0.95, and that an average body surface area is Ab =
1.8 m2. Assume that the walls in the yoga studio are at the air
temperature. Assume that the lightweight yoga clothing has no
thermal effect. Water’s vapor pressure can be taken from a steam
table or other database. Convection to a person active in still air
can be estimated from the following equation [11.80]:

h =
(︁
5.7 W/m2K

)︁(︄ Q̇b
(58.1 W/m2)Ab

− 0.8
)︄0.39

Note that at high humidity and temperature, some people become
overheated and must stop exercising.

11.35 Biff Harwell has taken Deb sailing. Deb, and Biff’s towel, fall into
the harbor. Biff rescues them both from a passing dolphin and
then spreads his wet towel out to dry on the fiberglass foredeck of
the boat. The incident solar radiation is 1050 W/m2; the ambient
air is at 31◦C, with mH2O = 0.017; the wind speed is 8 knots
relative to the boat (1 knot = 1.151 mph); εtowel ≊ αtowel ≊ 1; and
the sky has the properties of a black body at 280 K. The towel is
3 ft long in the windward direction and 2 ft wide. Help Biff figure
out how rapidly (in kg/s) water evaporates from the towel.

11.36 Small water droplets evaporate rapidly dry air. Suppose that a
droplet is placed in a room at 30°C, 40% RH, and 1 atm. Calculate
the lifetime of the droplet if its initial diameter is 0.2, 0.5, 1, 2,
and 5 µm.

11.37 A Couette flow (or stagnant film) model of a laminar boundary
layer neglects streamwise derivatives locally, so that the velocity
varies in y , but not x, from u = 0 at the wall to u∞ at the edge
of the b.l., y = δ. The b.l. thickness δ is assumed increase only
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slowly with x. (a) Show that u/u∞ = y/δ in laminar flow. (b)
Calculate skin friction coefficient, Cf , the temperature profile,
T(y), and the Nusselt number, Nux , in terms of δ and δt . (c)
Using eqns. (6.31b) and (6.55), show that the laminar Couette flow
model results in estimates of Cf (x) and Nux that differ from
eqns. (6.33) and (6.58) by a constant on the order of one.

11.38 (a) What are the largest and smallest values of the mass transfer
driving force, Bm,2? (b) Plot the blowing factor as a function of
Bm,2. Indicate on your graph the regions of blowing, suction, and
low-rate mass transfer.

11.39 Perform the integration to obtain eqn. (11.85). Then take the
derivative and the limit needed to get eqns. (11.86) and (11.87).

11.40 (a) Derive eqn. (11.98) from eqn. (11.97). (b) In a test of a scramjet
combustor, gas is injected through a porous section of the com-
bustor wall [11.81]. The gas velocity is 980 m/s. As a result of
viscous friction and gas compression, the temperature of an adia-
batic section of the wall would be 1048 K: use this temperature as
if it were the freestream temperature. The heat transfer coefficient
without injection is h∗ = 720 W/m2K. The injected gas is drawn
from a reservoir at 350 K at a mass flux of ni,s = 0.3 kg/m2s.
What is the wall temperature Ts if the gas is He, Ar, or N2? (c) Plot
Ts for each gas if 0 ⩽ ni,s ⩽ 1.5 kg/m2s.

11.41 Dry ice (solid CO2) is used to cool medical supplies transported
by a small plane to a remote village in Alaska. A roughly spherical
chunk of dry ice, 5 cm in diameter, falls from the plane through
air at 5°C. It reaches a terminal velocity of 40 m/s. What are the
temperature and sublimation rate of the dry ice, assuming steady
conditions? The latent heat of sublimation is about 590 kJ/kg
and log10(pv bar) = 6.81228 − 1301.679/(T K − 3.494). The
surface temperature will be well below the solid-vapor equilibrium
temperature of CO2 at 1 atm, which is−78.5°C. Use this correlation
for forced convection over a sphere in air at room temperature

NuD = 2+ 0.493 Re1/2
D + 0.0011 ReD

for 7800 ⩽ ReD ⩽ 2.9× 105 [11.82] and approximate the Prandtl
number dependence. Neglect heat conduction into the ice. Hint :
First use the properties of pure air, and then correct the properties
if necessary.
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11.42 Steam condenses on a 25 cm high, cold vertical wall in a low-
pressure condenser unit. The wall is isothermal at 25◦C, and the
ambient pressure is 8000 Pa. Air has leaked into the unit and has
reached a mass fraction of 0.04. The steam–air mixture is at 45◦C
and is blown downward past the wall at 8 m/s. (a) Estimate the rate
of condensation on the wall. Hint : The surface of the condensate
film is not at the mixture or wall temperature. (b) Compare the
result of part (a) to condensation without air in the steam. What
do you conclude?

11.43 (a) Compute the binary diffusivity of each of the noble gases
when they are individually mixed with nitrogen gas at 1 atm and
300 K. Plot the results as a function of the molar mass of the
noble gas. What do you conclude? (b) Consider the addition of
a small amount of helium, xHe = 0.04, to a mixture of nitrogen,
xN2 = 0.48, and argon, xAr = 0.48. Compute DHe,m and compare
it with DAr,m. Note that the increased concentration of argon
does not raise its diffusivity in the mixture.

11.44 A mothball consists of a 2.5 cm diameter sphere of naphthalene
(C10H8) that is hung by a wire in a closet. The solid naphthalene
slowly sublimes to vapor, which drives off the moths. Estimate
the lifetime of this mothball in a closet with a mean temperature
of 20◦C. Use the following data for naphthalene

σ = 6.18 Å, ε/kB = 561.5 K,

and, for the solid, ρC10H8 = 1145 kg/m3 at 20°C. The vapor pres-
sure of naphthalene near room temperature is approximated by

log10(pv mmHg) = 11.450− 3729.3/(T K)

The integral you will obtain can be evaluated numerically. The la-
tent heat of sublimation and evaporation rate are low enough that
the wet-bulb temperature is essentially the ambient temperature.

11.45 In contrast to the naphthalene mothball described in Problem
11.44, other mothballs are made from paradichlorobenzene (PDB).
Estimate the lifetime of a 2.5 cm diameter PDB mothball using the
following room temperature property data:

ρPDB = 1248 kg/m3

σ = 5.76 Å ε/kB = 578.9 K MPDB = 147.0 kg/kmol

log10
(︁
pv mmHg

)︁
= 11.985− 3570

/︁
(T K)
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11.46 Compute the diffusivity of methane in air using (a) eqn. (11.108)
and (b) Blanc’s law, eqn. (11.109). For part (b), treat air as a mixture
of oxygen and nitrogen, ignoring argon. Let xmethane = 0.05,
T = 420◦F, and p = 10 psia. [(a) DCH4,air = 7.66 × 10−5 m2/s;
(b) DCH4,air = 8.02× 10−5 m2/s.]

11.47 In Section 11.5, ρD12 or cD12 were at times assumed to be inde-
pendent of position. Consider this approximation for gases. (a)
Do these two groups depend on pressure, temperature, or the
proportions of species 1 and 2? Are isobaric conditions necessary
to hold either group constant? (b) For what type of mixture is
ρD12 most sensitive to composition? What does this indicate
about mole versus mass-based analysis? (c) Do Pr or Sc depend
on composition, temperature, or pressure?

11.48 A dilute aqueous solution containing potassium ions is subjected
to a 1 V/cm electric field. A measurement suggests that the K+

ions move at 4× 10−4 cm/s in response to the field. Estimate the
effective radius of K+ ions if the solution is at 300 K. The charge
of an electron is −1.609× 10−19 C and 1 V/m = 1 N/C.

11.49 (a) Use eqn. (11.115) to obtain diffusion coefficients for: i) dilute
CCl4 diffusing through liquid methanol at 340 K; ii) dilute benzene
diffusing through water at 290 K; iii) dilute ethyl alcohol diffusing
through water at 350 K; and iv) dilute acetone diffusing through
methanol at 370 K. (b) Estimate the effective radius of a methanol
molecule in a dilute aqueous solution. [(a) Dacetone,methanol =
6.8× 10−9 m2/s.]

11.50 Use eqn. (11.116) to calculate the dynamic viscosity, µ, of gaseous
methane, hydrogen sulfide, and nitrous oxide, under the following
conditions: 250 K and 1 atm, 500 K and 1 atm, 250 K and 2 atm,
250 K and 12 atm, 500 K and 12 atm. Is the calculation possible
in every case?

11.51 A student is studying the combustion of a premixed gaseous
fuel with the following molar composition: 10.3% methane, 15.4%
ethane, and 74.3% oxygen. She passes 0.006 ft3/s of the mixture (at
70◦F and 18 psia) through a smooth 3/8 inch I.D. tube, 47 inches
long. (a) What is the pressure drop? (b) The student’s advisor
recommends preheating the fuel mixture, using a Nichrome strip
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heater wrapped around the last 5 inches of the duct. If the heater
produces 0.8 W/inch, what is the wall temperature at the outlet
of the duct? Let cp,CH4 = 2280 J/kg·K, γCH4 = 1.3, cp,C2H6 =
1730 J/kg·K, and γC2H6 = 1.2, and evaluate the properties at
the inlet conditions. Hint : Refer to Chapter 7 for pressure drop
equations.

11.52 (a) Show that k = (5/2)µcv for a monatomic gas. (b) Obtain
Eucken’s equation, (11.118), for the Prandtl number of a low
density gas:

Pr = 4γ
/︁
(9γ − 5)

(c) Recall that for an ideal gas, γ ≊ (D + 2)/D, where D is the
number of modes of energy storage of its molecules. Obtain an
expression for Pr as a function of D. (d) Use Eucken’s formula to
compute Pr for gaseous Ar, N2, and H2O, accounting for transla-
tional and rotational energy storage. Compare the result to 1 atm
data from Appendix A over a range of temperatures. Discuss the
results obtained for steam as opposed to Ar and N2.

11.53 Three simplifications of the Maxwell-Stefan equations, (11.139),
lead to an effective, binary Fick diffusion coefficient,Dim. (a) Show
that Blanc’s law, eqn. (11.109), applies when species i at low con-
centration diffuses into an otherwise uniform mixture. (b) Show
that if Ðij has the same value for each pair of species and the
mixture is ideal, then Dim = Ðij . (c) Show that if species i =
1,2,3, . . . , n − 1 all have low concentrations, then Dim = Ði,n,
where species n is the dominant species (or solvent), as stated in
eqn. (11.110).

11.54 A dilute solute A in a liquid solution diffuses down the gradient
of the chemical potential, µA, because a gradient in potential
energy causes a force per mole of A, as discussed in Section 11.11.
Compute this force and combine the result with the molar form
of Fick’s law to derive the Einstein relation, eqn. (11.111). Note
that the Einstein relation considers the force per molecule and
that R◦ = kBNA, where NA is Avogadro’s number.

11.55 In Section 11.11, we evaluated the drag on one species as it diffuses
past another. Show that this force also leads to the Einstein
relation, eqn. (11.111). (Compare to Problem 11.54.)
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11.56 Consider a solvent n that contains n− 1 dilute solutes with xi≪
xn ≊ 1. (a) Work Problem 11.53c. (b) Show that v⃗∗ ≊ v⃗n ≊ v⃗ if
the solutes are dilute. (c) Suppose the solutes are charged ions,
such as Na+ and Cl – for table salt dissolved in water. An electric
potential gradient, −∇φ, applied to the solution will create a
force per mole of ion, −ziF∇φ, where zi is the ion’s valence
(±1 for Na+ and Cl – ) and F = 9.6485 × 104 C/mol is Faraday’s
constant. Starting with the Maxwell-Stefan equations, derive the
Nernst-Planck equation:

N⃗i = −cDi,n∇xi + civ⃗n − ciDi,nzi
F
R◦T

∇φ

11.57 A liquid mixture of acetone and methanol sits at the bottom of
a Stefan tube that is 23.8 cm tall. The top is swept by a flow of
pure air. Let species 1 be acetone, species 2 be methanol, and
species 3 be air. The temperature is 328.5 K, and the pressure is
745.2 mmHg. The mole fractions just above the liquid are x1,s =
0.319 and x2,s = 0.528. For these gases, Ð12 = 0.0848 cm2/s,
Ð13 = 0.1372 cm2/s, and Ð23 = 0.1991 cm2/s [11.83].

a. Write the Maxwell-Stefan equations as a matrix o.d.e. for the
vector X(z) = {x1(z), x2(z)}. What is the mole flux of air,
N3? What are the boundary conditions at the liquid surface
(z = 0) and at the top of the tube (z = 23.8 cm)?

b. Use the software of your choice to solve your equation from
part (a) and plot the three concentrations as a function of
z. Note that the mole fluxes N1 and N2 are not known, so
that the equations must be solved iteratively to determine
value correspond to the boundary condition at the top of
the tube. [Ans: N1 = 1.782× 10−7 mol/cm2s, N2 = 3.126×
10−7 mol/cm2s.]

c. If part (b) seems too complex, instead use the answers given
for part (b) to solve the equations as if the fluxes were known.
Does your solution meet the boundary conditions at the top
of the tube? (It should.)

d. Does Jair = 0 at z = 0? Explain.

11.58 A simple model of an ablating heat shield assumes that ablated
material is rapidly removed without effecting the flow and that
the aerodynamic heat flux, qaero, is constant (Fig. 11.29).
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11.58.auxlock

0 x

0 η

Va

Heat Shield

surface, t > ta

surface,
t < ta

qaero

Figure 11.29 Ablating heat shield
(Problem 11.58).

a. If the shield is at T0 when heating starts at t = 0, how long
until the surface reaches the ablation temperature, Ta, for
either melting or sublimation?

b. Once ablation starts, assume the surface recedes at a constant
speed, Va. Find the temperature distribution in the material
below the surface for t > ta. Hint: Change to a coordinate
η = x − Va(t − ta) attached to the receding surface, and
ignore the initial distribution of T .

c. Use an energy balance to determine Va in terms of material
properties and qaero.

d. What combination of material properties best reduces the
heat conducted into the heat shield?
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A. Some thermophysical properties
of selected materials

A property is that which, once disjoined
And severed from a thing, undoes its nature:

As Weight to a rock,
Heat to a fire,
Flow to the wide waters,
Touch to corporeal things,
Intangibility to the viewless void.

de Rerum Natura, Lucretius, 50 BCE

This appendix includes eight tables of thermophysical property data and
other physical constants, as listed below.

Table Data Page

A.1 Properties of metallic solids 739

A.2 Properties of nonmetallic solids 741

A.3 Properties of saturated liquids 745

A.4 Latent heats of vaporization, Ttp, Tc 751

A.5 Properties of saturated vapors (p ̸= 1 atm) 752

A.6 Properties of gases at 1 atm 755

A.7 Physical constants from international CODATA 760

A.8 Additional physical property data in the text 760

A primary source of thermophysical properties is a document in original
measurements of data are first reported. A secondary source generally
means a document, based on primary sources, that presents other peoples’
data and does so critically. The data presented in these tables are neither
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primary or even secondary sources, since we have created these tables
from a variety of secondary (and even tertiary) sources.

We have, however, arrived at these numbers with great care. We
attempted to cross-check other data against different sources, which
occasionally led to contradictory values. Such contradictions are usu-
ally the result of differences among the experimental samples that are
reported or of differences in the accuracy of experiments themselves. We
resolved such differences by judging the source, by reducing the number
of significant figures to accommodate the conflict, or by omitting those
data from the tables. We attempt to report no more decimal places than
are accurate. The resulting numbers will suffice for most calculations.
However, the reader who needs high accuracy should be sure of the phys-
ical constitution of the material and should then consult the most recent
secondary or primary sources.

The format of these tables is quite close to that established a half-
century ago by R. M. Drake, Jr., in his excellent appendix on thermophysical
data [A.1]. Today, most of Drake’s values have been superseded by more
accurate measurements. One secondary source from which many of the
data for solids were obtained is the Purdue University series Thermo-
physical Properties of Matter [A.2]. The Purdue series is the result of
an enormous property-gathering effort carried out under the direction
of Y. S. Touloukian and several coworkers. Volumes in the series are
dated from 1970 onward, and addenda were issued throughout the fol-
lowing decade. NIST, IUPAC, and other agencies have since developed
standard reference data and correlations for many fluid substances, some
of which are contained in [A.3–A.11]. These correlations are based on
critical evaluation of multiple experiments, and they are structured to
maintain consistency amongst thermodynamic properties. We have taken
most of our data for fluids from those publications. A third secondary
source that we used is the G. E. Heat Transfer Data Book [A.12].

Numbers for solids that did not come directly from standard reference
correlations, [A.2], or [A.3] were obtained from a variety of manufacturers’
tables, handbooks, and other technical literature. While we have not
documented all these diverse sources and the various compromises that
were made in quoting them, the specific citations that follow account for
the bulk of the data in these tables.

Table A.1 gives the density, specific heat, thermal conductivity, and
thermal diffusivity for various metallic solids. These values were obtained
from volumes 1 and 4 of [A.2] or from [A.3] whenever it was possible to
find them there. Most thermal conductivity values in the table have been
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rounded off to two significant figures. The reason is that k is sensitive
to very minor variations in physical structure that cannot be detailed
fully here. Notice, for example, the significant differences between pure
aluminum and 99% pure aluminum, and the still larger differences for
alloyed aluminum. Additional information on the characteristics and use
of these metals can be found in the ASM Metals Handbook [A.13].

The effect of temperature on thermal conductivity is shown for most
of the metals in Table A.1. The specific heat capacity is shown only at
20◦C. For most materials, the heat capacity is much lower at cryogenic
temperatures. For example, cp for aluminum, iron, molybdenum, and
titanium decreases by two orders of magnitude as temperature decreases
from 200 K to 20 K. On the other hand, for most of these metals, cp
changes more gradually for temperatures between 300 K and 800 K,
varying by tens of percent to a factor of two. At still higher temperatures,
some of these metals (iron and titanium) show substantial spikes in cp.
These are associated with solid-to-solid phase transitions.

Table A.2 gives the same properties as Table A.1 (where they are
available) but for nonmetallic substances. Volumes 2 and 5 of [A.2] and
also [A.3] provided many of the data here, and they revealed even greater
variations in k than the metallic data did. For the various sands reported,
k varied by a factor of 500, and for the various graphites by a factor of
50, for example. The sensitivity of k to small variations in the packing of
fibrous materials or to the water content of hygroscopic materials forced
us to restrict some of the k values to a single significant figure. The effect
of water content is illustrated by the data for wet and dry soils. Some
data for building materials are from the large compilation in [A.14].

The data for polymers come mainly from their manufacturers’ data
and are substantially less reliable than, say, those given in Table A.1 for
metals. The values quoted are mainly those for room temperature. In
processing operations, however, most of these materials are taken to
temperatures of several hundred degrees Celsius at which they flow more
easily. The specific heat capacity may double from room temperature to
such temperatures. These polymers are also produced in a variety of mod-
ified forms; and in many applications they may be loaded with significant
portions of reinforcing fillers (e.g., 10 to 40% by weight glass fiber). The
fillers, in particular, can have a significant effect on thermal properties.

Table A.3 gives ρ, cp, k, α, ν, Pr, and β for several liquids. Data
for water are from [A.15] and [A.16]; they are in agreement with IAPWS
recommendations through 2007. Data for ammonia are from [A.4, A.5,
A.17], data for carbon dioxide are from [A.6–A.8], data for and methanol
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are from [A.9, A.10, A.18], data for nitrogen are from [A.19, A.20], and
data for oxygen are from [A.20, A.21]. Data for HFC-134a and HCFC-22
are from [A.22] and [A.23]. Data for CFC-12 and D2O are from [A.11]. For
these liquids, ρ has uncertainties less than 0.2%, cp has uncertainties
of 1–2%, while µ and k have typical uncertainties of 2–5%. Uncertainties
may be higher near the critical point. Data for lead follow [A.24], with
uncertainty in ρ of 1%, in cp and µ of 5%, and in k of about 10%. Data for
mercury follow [A.3] and [A.25]. Data for NaK follow [A.26]; uncertainties
are similar to those for lead. Olive oil data are from [A.27–A.29]. Data for
other substances came from [A.2], [A.25], or other sources.

The latent heats of vaporization in Table A.4 are primarily from NIST
reference data. Table A.5 provides thermophysical data for saturated
vapors. The sources are those already listed for saturated liquids. The
uncertainties are as described for gases in the next paragraph.

Table A.6 gives thermophysical properties for gases at 1 atmosphere
pressure: air data are from [A.20, A.30]; argon data are from [A.31–A.33];
ammonia data were taken from [A.4, A.5, A.17]; carbon dioxide properties
are from [A.6–A.8]; carbon monoxide properties are from [A.23]; helium
data are from [A.34–A.36]; hydrogen data are from [A.37–A.39]; nitrogen
data came from [A.19, A.20]; oxygen data are from [A.20, A.21]; and
water data were taken from [A.15] and [A.16] (in agreement with IAPWS
recommendations through 2007). Uncertainties in these data vary among
the gases; typically, ρ has uncertainties of 0.02–0.2%, cp has uncertainties
of 0.2–2%, µ has uncertainties of 0.3–3%, and k has uncertainties of 2–
5%. The uncertainties are generally lower in the dilute gas region and
higher near the saturation line or the critical point. The values for low
temperature helium have somewhat larger uncertainties.

Table A.7 lists values for some fundamental physical constants, as
given in [A.40] and its successors. Table A.8 points out physical data that
are listed in other parts of this book.
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Table A.2 Properties of nonmetallic solids

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Aluminum oxide (Al2O3)
plasma sprayed coating 20 ≈4
HVOF sprayed coating 20 ≈14
polycrystalline (98% dense) 0 725 40

27 3900 779 36 1.19× 10−5

127 940 26
577 1200 10

1077 1270 6.1
1577 1350 5.6

single crystal (sapphire) 0 725 52
27 3980 779 46 1.48× 10−5

127 940 32
577 1180 13

Asbestos
Cement board 20 1920 1000 0.6
Fiber, densely packed 20 1930 0.8
Fiber, loosely packed 20 980 0.14

Asphalt 20–25 0.75
Beef (lean, fresh) 25 1070 3400 0.48 1.35× 10−7

Brick
B & W, K-28 insulating 300 0.3

1000 0.4
Cement 10 720 0.34
Common 0–1000 0.7
Chrome 100 1.9
Facing 20 1.3
Fired clay 24 1920 800 0.81–0.98
Firebrick, insulating 300 2000 960 0.1 5.4× 10−8

1000 0.2
Butter 20 920 2520 0.22 9.5× 10−6

Carbon
Diamond (type IIb) 20 ≈3250 510 1350.0 8.1× 10−4

Graphites 20 ≈1730 ≈710 k varies with structure
AGOT graphite
⊥ to extrusion axis 0 141

27 1700 800 138
500 1600 59.1

∥ to extrusion axis 0 230
27 1700 800 220

500 1600 93.6
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Pyrolytic graphite
⊥ to layer planes 0 10.6

27 2200 710 9.5
227 5.4

1027 1.9
∥ to layer planes 0 2230

27 2200 710 2000
227 1130

1027 400
Cardboard 0–20 790 0.14
Cement, Portland 34 2010 0.7
Clay

Fireclay 500–750 1.0
Sandy clay 20 1780 0.9

Coal
Anthracite 900 ≈1500 ≈0.2
Brown coal 900 ≈0.1
Bituminous in situ ≈1300 0.5–0.7 3 to 4× 10−7

Concrete
Limestone gravel 20 1850 0.6
Sand : cement (3 : 1) 230 0.1
Sand and gravel 24 2400 1.4–2.9

24 2240 900 1.3–2.6
24 2080 1.0–1.9

Corkboard (medium ρ) 30 170 0.04
Egg white 20 3400 0.56 1.37× 10−7

Glass
Lead 44 3040 1.2
Pyrex (borosilicate) 60–100 2210 753 1.3 7.8× 10−7

Soda-lime −73 610 0.9
20 2480 750 1.1
93 866 1.3

Glass-fiber insulation batt 24 7.5–8.2 800 0.046–0.048
24 13–14 800 0.037–0.039

Glass-fiber pipe insulation 24 56–88 0.034
93 0.040–0.047

204 0.063–0.068
Gypsum wall board 24 640 1150 0.16
Ice 0 917 2100 2.215 1.15× 10−6

Ivory 80 0.5
Lunar surface dust (high vacuum) 250 1500±300 ≈600 ≈0.0006 ≈7× 10−10
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Magnesia, 85% (insulation) 38 ≈200 0.067
93 0.071

150 0.074
204 0.08

Magnesium oxide
polycrystalline (98% dense) 27 3500 900 48 1.5× 10−5

single crystal 27 3580 900 60 1.9× 10−5

Polymers
acetyl (POM, Delrin) −18–100 1420 1470 0.30–0.37
acrylic (PMMA, Plexiglas) 25 1180 0.17
acrylonitrile butadiene

styrene (ABS) 1060 0.14–0.31
epoxy,

bisphenol A (EP), cast 24–55 1200 ≈0.22
epoxy/glass-cloth

laminate (G-10, FR4) 1800 ≈1600 0.29 ≈1.0× 10−7

polyamide (PA)
nylon 6,6 0–49 1120 1470 0.25 1.5× 10−7

nylon 6,12 0–49 1060 1680 0.22 1.2× 10−7

polycarbonate
(PC, Lexan) 23 1200 1250 0.29 1.9× 10−7

polyethylene (PE)
HDPE 960 2260 0.33 1.5× 10−7

LDPE 920 ≈2100 0.33 ≈1.7× 10−7

polyimide (PI) 1430 1130 0.35 2.2× 10−7

polypropylene (PP) 905 1900 0.17–0.20
polystyrene (PS) 1040 ≈1350 0.10–0.16

expanded (EPS) 4–55 13–30 1500 0.035
extruded board 24 22–58 1500 0.026–0.030

polytetrafluoroethylene
(PTFE, Teflon) 20 2200 1050 0.25 ≈ 1.1× 10−7

polyvinylchloride (PVC) 25 1600 0.16
Rock wool 24 32–37 800 0.036–0.037

24 45 800 0.033–0.035
Rubber (hard) 0 1200 2010 0.15 6.2× 10−8

Silica aerogel 0 140 0.024
120 136 0.022

Silo-cel (diatomaceous earth) 0 320 0.061
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)
Silicon dioxide

Fused silica glass 0 703 1.33
27 2200 745 1.38 8.4× 10−7

227 988 1.62

Single crystal (quartz)
⊥ to c-axis 0 709 6.84

27 2640 743 6.21
227 989 3.88

∥ to c-axis 0 709 11.6
27 2640 743 10.8

227 989 6.00
Soil (mineral)

Dry 15 1500 1840 1. 4× 10−7

Wet 15 1930 2.
Soil (k dry to wet, by type)

Clays 1.1–1.6
Loams 0.95–2.2
Sands 0.78–2.2
Silts 1.6–2.2

Stone
Granite (NTS) 20 ≈2640 ≈820 1.6 ≈7.4× 10−7

Limestone (Indiana) 100 2300 ≈900 1.1 ≈5.3× 10−7

Sandstone (Berea) 25 ≈3
Slate 100 1.5

Wood (perpendicular to grain)
Ash 15 740 0.15–0.3
Balsa 15 100 0.05
Cedar 15 480 0.11
Fir 15 600 2720 0.12 7.4× 10−8

Mahogany 20 700 0.16
Oak 20 600 2390 0.1–0.4
Particle board (medium ρ) 24 800 1300 0.14 1.3× 10−7

Pitch pine 20 450 0.14
Plywood, Douglas fir 24 550 1200 0.12 1.8× 10−7

Sawdust (dry) 17 128 0.05
Sawdust (dry) 17 224 0.07
Spruce 20 410 0.11

Wool (sheep) 20 145 0.05
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Table A.3 Thermophysical properties of saturated liquids

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Ammonia (R717)

200 −73 728.7 4318 0.610 1.94× 10−7 7.082×10−7 3.65 0.00158

220 −53 705.5 4390 0.600 1.94 4.923 2.54 0.00167

240 −33 681.4 4466 0.578 1.90 3.684 1.94 0.00181

260 −13 656.1 4546 0.547 1.83 2.927 1.60 0.00200

280 7 629.2 4649 0.509 1.74 2.432 1.40 0.00224

300 27 600.2 4796 0.466 1.62 2.083 1.29 0.00258

320 47 568.3 5023 0.420 1.47 1.816 1.23 0.00307

340 67 532.5 5392 0.374 1.30 1.597 1.23 0.00387

360 87 490.3 6082 0.327 1.10 1.407 1.28 0.00540

380 107 436.3 7838 0.280 0.818 1.237 1.51 0.00951

400 127 344.0 22389 0.238 0.309 1.085 3.51 0.0481

Carbon dioxide (R744)

220 −53 1166 1962 0.173 7.56× 10−8 2.052×10−7 2.72 0.00317

230 −43 1129 1997 0.161 7.12 1.797 2.52 0.00350

240 −33 1089 2051 0.148 6.65 1.584 2.38 0.00392

250 −23 1046 2132 0.137 6.12 1.405 2.29 0.00451

260 −13 999 2255 0.125 5.54 1.252 2.26 0.00538

270 −3 946 2453 0.113 4.86 1.121 2.30 0.00677

280 7 884 2814 0.101 4.06 1.005 2.47 0.00934

290 17 805 3676 0.0889 3.01 0.8972 2.98 0.0157

300 27 679 8698 0.0808 1.37 0.7831 5.72 0.0570

302 29 634 15786 0.0851 0.851 0.7536 8.86 0.119

CFC-12 (dichlorodifluoromethane, R12, or Freon 12)

180 −93 1661 822 0.114 8.31× 10−8 5.42× 10−7 6.52 0.00159

200 −73 1608 837 0.104 7.76 3.87 4.99 0.00167

220 −53 1554 857 0.0960 7.21 2.96 4.11 0.00179

240 −33 1497 882 0.0881 6.67 2.38 3.57 0.00194

260 −13 1437 911 0.0806 6.15 1.97 3.20 0.00215

280 7 1374 947 0.0734 5.64 1.66 2.94 0.00245

300 27 1304 993 0.0665 5.13 1.42 2.76 0.00289

320 47 1226 1059 0.0596 4.59 1.22 2.65 0.00362

340 67 1135 1168 0.0528 3.98 1.04 2.62 0.00501
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Glycerin (glycerol; 1 atm, not saturated)

273 0 1276 2200 0.282 1.00× 10−7 0.0083 83,000

293 20 1261 2350 0.285 0.962 0.001120 11,630 0.00048

303 30 1255 2400 0.285 0.946 0.000488 5,161 0.00049

313 40 1249 2460 0.285 0.928 0.000227 2,451 0.00049

323 50 1243 2520 0.285 0.910 0.000114 1,254 0.00050

80% glycerin, 20% water

293 20 1209 2730 0.327 0.99× 10−7 4.97× 10−5 502 0.00051

303 30 1203 2750 0.327 0.99 2.82 282 0.00052

313 40 1197 2800 0.327 0.98 1.74 178 0.00053

323 50 1191 2860 0.331 0.97 1.14 118 0.00053

60% glycerin, 40% water

293 20 1154 3180 0.381 1.04× 10−7 9.36× 10−6 90.0 0.00048

303 30 1148 3180 0.381 1.04 6.89 66.3 0.00050

313 40 1143 3240 0.385 1.04 4.44 42.7 0.00052

323 50 1137 3300 0.389 1.04 3.31 31.8 0.00053

40% glycerin, 60% water

293 20 1099 3480 0.448 1.20× 10−7 3.385×10−6 28.9 0.00041

303 30 1095 3480 0.452 1.22 2.484 20.4 0.00045

313 40 1090 3570 0.461 1.18 1.900 16.1 0.00048

323 50 1085 3620 0.469 1.19 1.493 12.5 0.00051

20% glycerin, 80% water

293 20 1047 3860 0.519 1.28× 10−7 1.681×10−6 13.1 0.00031

303 30 1043 3860 0.532 1.32 1.294 9.8 0.00036

313 40 1039 3915 0.540 1.33 1.030 7.7 0.00041

323 50 1035 3970 0.553 1.35 0.849 6.3 0.00046

Helium I and Helium II

• k for He I is about 0.020 W/m·K near the λ-transition (≈ 2.17 K).
• k for He II below the λ-transition is hard to measure. It appears to be about
80,000 W/m·K between 1.4 and 1.75 K and it might go as high as 340,000 W/m·K at
1.92 K. These are the highest conductivities known (cf. copper, silver, and diamond).



Appendix A: Some thermophysical properties of selected materials 747

Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

HCFC-22 (difluoromonochloromethane, R22)

160 −113 1605 1061 0.1504 8.82× 10−8 7.10× 10−7 8.05 0.00163

180 −93 1553 1061 0.1395 8.46 4.77 5.63 0.00170

200 −73 1499 1064 0.1291 8.09 3.55 4.38 0.00181

220 −53 1444 1076 0.1193 7.67 2.79 3.64 0.00196

240 −33 1386 1100 0.1099 7.21 2.28 3.16 0.00216

260 −13 1324 1136 0.1008 6.69 1.90 2.84 0.00245

280 7 1257 1189 0.0918 6.14 1.61 2.62 0.00286

300 27 1183 1265 0.0828 5.53 1.37 2.48 0.00351

320 47 1097 1390 0.0737 4.83 1.17 2.42 0.00469

340 67 990.1 1665 0.0644 3.91 0.981 2.51 0.00756

360 87 823.4 3001 0.0575 2.33 0.786 3.38 0.02388

Heavy water (D2O)

300 27 1104 4190 0.5969 1.29× 10−7 9.48× 10−7 7.44 0.003362

400 127 1040 4174 0.6331 1.46 2.44 1.67 0.002846

500 227 920.5 4464 0.5669 1.38 1.43 1.04 0.003806

600 327 712.2 66659 0.4302 0.907 1.14 1.26 0.01231

HFC-134a (1,1,1,2-Tetrafluoroethane, R134a)

180 −93 1564 1187 0.1391 7.49× 10−8 9.45× 10−7 12.62 0.00170

200 −73 1510 1205 0.1277 7.01 5.74 8.18 0.00180

220 −53 1455 1233 0.1172 6.53 4.03 6.17 0.00193

240 −33 1397 1266 0.1073 6.06 3.05 5.03 0.00211

260 −13 1337 1308 0.0979 5.60 2.41 4.30 0.00236

280 7 1271 1360 0.0890 5.14 1.95 3.80 0.00273

300 27 1199 1432 0.0803 4.67 1.61 3.45 0.00330

320 47 1116 1542 0.0718 4.17 1.34 3.21 0.00433

340 67 1015 1750 0.0631 3.55 1.10 3.11 0.00657

360 87 870.1 2436 0.0541 2.55 0.883 3.46 0.0154

Lead (1 atm, not saturated)

601 328 10672 148 16 1.0× 10−5 2.52× 10−7 0.025 0.000120

800 527 10417 144 18 1.2 1.66 0.014 0.000123

1000 727 10162 141 20 1.4 1.30 0.0092 0.000126

1200 927 9906 138 22 1.6 1.12 0.0068 0.000129
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Mercury

234 −39 141.5 6.97 3.62× 10−6 1.5× 10−7 0.041

250 −23 140.5 7.32 3.83 1.4 0.037

300 27 13,529 139.3 8.34 4.43 1.12 0.0253 0.000181

350 77 13,407 137.7 9.15 4.96 0.974 0.0196 0.000181

400 127 13,286 136.6 9.84 5.42 0.88 0.016 0.000181

500 227 13,048 135.3 11.0 6.23 0.73 0.012 0.000183

600 327 12,809 135.5 12.0 6.91 0.71 0.010 0.000187

700 427 12,567 136.9 12.7 7.38 0.67 0.0091 0.000195

800 527 12,318 139.8 12.8 7.43 0.64 0.0086 0.000207

Methyl alcohol (methanol)

240 −33 841.1 2283 0.211 1.10× 10−7 1.81× 10−6 16.5 0.00114

260 −13 822.0 2347 0.207 1.08 1.24 11.5 0.00115

280 7 803.2 2434 0.204 1.04 0.895 8.59 0.00117

300 27 784.5 2546 0.200 1.00 0.675 6.74 0.00120

320 47 765.6 2684 0.196 0.954 0.528 5.53 0.00126

360 87 725.4 3032 0.188 0.856 0.352 4.11 0.00149

400 127 678.6 3491 0.181 0.762 0.253 3.32 0.00198

440 167 618.8 4165 0.173 0.672 0.189 2.81 0.00309

480 207 530.4 5725 0.166 0.548 0.144 2.63 0.00711

NaK (eutectic mixture of sodium and potassium)

473 200 833 908 24.7 3.27× 10−5 4.40× 10−7 0.013 0.000277

673 400 786 878 26.2 3.80 3.04 0.0080 0.000277

873 600 737 876 25.9 4.01 2.30 0.0057 0.000277

1073 800 688 893 23.9 3.89 1.97 0.0051 0.000277

Nitrogen

70 −203 838.5 2015 0.160 9.44× 10−8 2.63× 10−7 2.78 0.00513

77.2 −195.9 806.6 2041 0.145 8.81 2.00 2.27 0.00566

80 −193 793.9 2056 0.140 8.55 1.83 2.14 0.00591

90 −183 745.0 2141 0.120 7.51 1.38 1.84 0.00711

100 −173 689.4 2318 0.100 6.27 1.10 1.75 0.00927

110 −163 621.5 2743 0.0804 4.72 0.901 1.91 0.0142

120 −153 523.4 4508 0.0610 2.59 0.734 2.84 0.0359
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Oils (some approximate viscosities; 1 atm, not saturated)

273 0 MS-20 0.0076 100,000

339 66 California crude (heavy) 0.00008

289 16 California crude (light) 0.00005

339 66 California crude (light) 0.000010

289 16 Light machine oil (ρ = 907) 0.00016

339 66 Light machine oil (ρ = 907) 0.000013

289 16 SAE 30 0.00044 ≈ 5,000

339 66 SAE 30 0.00003

289 16 SAE 30 (Eastern) 0.00011

339 66 SAE 30 (Eastern) 0.00001

289 16 Spindle oil (ρ = 885) 0.00005

339 66 Spindle oil (ρ = 885) 0.000007

Olive Oil (1 atm, not saturated)

283 10 920 14.9 × 10−5

293 20 913 1800 0.24 1.46× 10−7 9.02 620 0.000728

303 30 906 5.76

313 40 900 3.84

323 50 893 2.67

333 60 886 1.91

343 70 880 1.41

Oxygen

60 −213 1282 1673 0.194 9.04× 10−8 4.51× 10−7 4.99 0.00343

70 −203 1237 1678 0.180 8.66 2.01 3.47 0.00370

80 −193 1190 1682 0.166 8.27 2.19 2.65 0.00398

90 −183 1142 1699 0.151 7.79 1.71 2.20 0.00436

100 −173 1091 1738 0.137 7.21 1.40 1.94 0.00492

110 −163 1036 1807 0.122 6.52 1.12 1.80 0.00575

120 −153 973.9 1927 0.107 5.71 1.00 1.75 0.00708

130 −143 902.5 2153 0.0926 4.77 0.856 1.80 0.00953

140 −133 813.2 2691 0.0782 3.56 0.741 2.07 0.0155

150 −123 675.5 5464 0.0642 1.74 0.635 3.65 0.0495
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Water

273.16 0.01 999.8 4220 0.5610 1.330×10−7 17.91× 10−7 13.47 −6.80× 10−5

275 2 999.9 4214 0.5645 1.340 16.82 12.55 −3.55× 10−5

280 7 999.9 4201 0.5740 1.366 14.34 10.63 4.36× 10−5

285 12 999.5 4193 0.5835 1.392 12.40 8.91 0.000112

290 17 998.8 4187 0.5927 1.417 10.85 7.66 0.000172

295 22 997.8 4183 0.6017 1.442 9.600 6.66 0.000226

300 27 996.5 4181 0.6103 1.465 8.568 5.85 0.000275

305 32 995.0 4180 0.6184 1.487 7.708 5.18 0.000319

310 37 993.3 4179 0.6260 1.508 6.982 4.63 0.000361

320 47 989.3 4181 0.6396 1.546 5.832 3.77 0.000436

340 67 979.5 4189 0.6605 1.610 4.308 2.68 0.000565

360 87 967.4 4202 0.6737 1.657 3.371 2.03 0.000679

373.15 100.0 958.3 4216 0.6791 1.681 2.940 1.75 0.000751

400 127 937.5 4256 0.6836 1.713 2.332 1.36 0.000895

420 147 919.9 4299 0.6825 1.726 2.030 1.18 0.001008

440 167 900.5 4357 0.6780 1.728 1.808 1.05 0.001132

460 187 879.5 4433 0.6702 1.719 1.641 0.955 0.001273

480 207 856.5 4533 0.6590 1.697 1.514 0.892 0.001440

500 227 831.3 4664 0.6439 1.660 1.416 0.853 0.001645

520 247 803.6 4838 0.6246 1.607 1.339 0.833 0.001909

540 267 772.8 5077 0.6001 1.530 1.278 0.835 0.002266

560 287 738.0 5423 0.5701 1.425 1.231 0.864 0.002783

580 307 697.6 5969 0.5346 1.284 1.195 0.931 0.003607

600 327 649.4 6953 0.4953 1.097 1.166 1.06 0.005141

620 347 586.9 9354 0.4541 0.8272 1.146 1.39 0.009092

640 367 481.5 25,940 0.4149 0.3322 1.148 3.46 0.03971

642 369 463.7 34,930 0.4180 0.2581 1.151 4.46 0.05679

644 371 440.7 58,910 0.4357 0.1678 1.156 6.89 0.1030

646 373 403.0 204,600 0.5280 0.06404 1.192 18.6 0.3952

647.0 374 357.3 3,905,000 1.323 0.00948 1.313 138. 7.735



Appendix A: Some thermophysical properties of selected materials 751

Table A.4 Some latent heats of vaporization, hfg (kJ/kg), with
temperatures at triple point, Ttp (K), and critical point, Tc (K).

T(K) Water Ammonia CO2 HCFC-22 HFC-134a Mercury Methanol Nitrogen Oxygen

60 238.4
70 208.1 230.5
80 195.7 222.3
90 180.5 213.2

100 161.0 202.6
110 134.3 189.7
120 300.4 92.0 173.7
130 294.0 153.1
140 287.9 125.2
150 281.8 79.2
160 275.9
180 264.3 257.4 1310

200 1478 252.9 245.7 1290

220 1426 344.9 241.3 233.9 1269

230 1398 328.0 235.2 227.8 1258

240 1369 309.6 228.9 221.5 1247

250 1339 289.3 222.2 215.0 1235

260 1307 266.5 215.1 208.2 1222

270 1273 240.1 207.5 201.0 1209

273 2501 1263 230.9 205.0 198.6 306.8 1205

280 2485 1237 208.6 199.4 193.3 306.6 1196

290 2462 1199 168.1 190.5 185.0 306.2 1181

300 2438 1158 103.7 180.9 176.1 305.8 1166

310 2414 1114 170.2 166.3 305.5 1150

320 2390 1067 158.3 155.5 305.1 1133

330 2365 1015 144.7 143.3 304.8 1116

340 2341 958.4 128.7 129.3 304.4 1096

350 2315 895.5 109.0 112.5 304.1 1076

360 2290 824.9 81.8 91.0 303.8 1054

373 2257 717.0 36.1 303.3 1022

400 2183 346.2 302.4 945

500 1828 299.2 391

600 1173 295.9
700 292.3

Ttp 273.16 195.5 216.6 115.7 169.9 234.2 175.6 63.2 54.3
Tc 647.096 405.6 304.1 369.3 374.2 1746 512.6 126.2 154.6
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Table A.5 Thermophysical properties of saturated vapors (p ≠ 1 atm).

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Ammonia (R717)

200 0.008610 0.08867 2039 0.0160 6.95× 10−6 0.884 0.005146

220 0.03373 0.3184 2137 0.0176 7.49 0.908 0.004862

240 0.1022 0.8969 2293 0.0195 8.07 0.947 0.004746

260 0.2553 2.116 2513 0.0218 8.67 0.998 0.004800

280 0.5507 4.380 2805 0.0246 9.28 1.06 0.005048

300 1.061 8.244 3189 0.0281 9.92 1.12 0.005553

320 1.872 14.50 3723 0.0326 10.6 1.21 0.006453

340 3.079 24.39 4537 0.0387 11.4 1.33 0.008063

360 4.793 40.20 5978 0.0480 12.4 1.55 0.01125

380 7.140 67.33 9403 0.0664 14.0 1.99 0.01955

400 10.30 130.9 37953 0.142 18.0 4.78 0.09262

Carbon dioxide (R744)

220 0.5991 15.82 930.3 0.0114 1.106× 10−5 0.901 0.006223

230 0.8929 23.27 1005 0.0124 1.158 0.938 0.006615

240 1.283 33.30 1103 0.0136 1.212 0.986 0.007223

250 1.785 46.64 1237 0.0150 1.273 1.05 0.008154

260 2.419 64.42 1430 0.0168 1.342 1.14 0.009611

270 3.203 88.37 1731 0.0194 1.425 1.27 0.01203

280 4.161 121.7 2277 0.0234 1.536 1.50 0.01662

290 5.318 172.0 3614 0.0310 1.705 1.98 0.02811

300 6.713 268.6 11921 0.0557 2.081 4.45 0.09949

302 7.027 308.2 23800 0.0735 2.264 7.33 0.2010

HCFC-22 (R22)

160 0.0005236 0.03406 479.2 0.00398 6.69× 10−6 0.807 0.006266

180 0.003701 0.2145 507.1 0.00472 7.54 0.810 0.005622

200 0.01667 0.8752 539.1 0.00554 8.39 0.816 0.005185

220 0.05473 2.649 577.8 0.00644 9.23 0.828 0.004947

240 0.1432 6.501 626.2 0.00744 10.1 0.847 0.004919

260 0.3169 13.76 688.0 0.00858 10.9 0.877 0.005131

280 0.6186 26.23 769.8 0.00990 11.8 0.918 0.005661

300 1.097 46.54 885.1 0.0116 12.8 0.977 0.006704

320 1.806 79.19 1071. 0.0140 14.0 1.07 0.008801

340 2.808 133.9 1470. 0.0181 15.7 1.27 0.01402

360 4.184 246.7 3469. 0.0298 19.3 2.24 0.04233
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

HFC-134a (R134a)

180 0.001128 0.07702 609.7 0.00389 6.90× 10−6 1.08 0.005617

200 0.006313 0.3898 658.6 0.00550 7.75 0.929 0.005150

220 0.02443 1.385 710.9 0.00711 8.59 0.859 0.004870

240 0.07248 3.837 770.5 0.00873 9.40 0.829 0.004796

260 0.1768 8.905 841.8 0.0104 10.2 0.826 0.004959

280 0.3727 18.23 929.6 0.0121 11.0 0.845 0.005421

300 0.7028 34.19 1044. 0.0140 11.9 0.886 0.006335

320 1.217 60.71 1211. 0.0163 12.9 0.961 0.008126

340 1.972 105.7 1524. 0.0197 14.4 1.11 0.01227

360 3.040 193.6 2606. 0.0274 17.0 1.62 0.02863

Methyl alcohol (methanol)

280 0.006177 0.08640 3168 0.0136 9.05× 10−6 2.11

320 0.04849 0.6071 4096 0.0172 10.3 2.46

360 0.2299 2.668 4856 0.0216 11.5 2.58

400 0.7737 8.734 5937 0.0275 12.5 2.70

440 2.051 24.28 7965 0.0369 13.6 2.92

Nitrogen

70 0.03855 1.896 1082 0.00635 4.88× 10−6 0.831 0.01525

77.24 0.1000 4.557 1123 0.00717 5.44 0.851 0.01475

80 0.1369 6.089 1145 0.00751 5.65 0.862 0.01472

90 0.3605 15.08 1266 0.00887 6.48 0.925 0.01553

100 0.7783 31.96 1503 0.0107 7.43 1.04 0.01842

110 1.466 62.58 2062 0.0138 8.63 1.29 0.02647

120 2.511 125.1 4631 0.0217 10.6 2.27 0.06454

Oxygen

70 0.006262 0.3457 978.0 0.00599 5.36× 10−6 0.874 0.01471

80 0.03012 1.468 974.3 0.00703 6.15 0.852 0.01314

90 0.09935 4.387 970.5 0.00812 6.94 0.829 0.01223

100 0.2540 10.42 1006. 0.00934 7.73 0.833 0.01207

110 0.5434 21.28 1101. 0.0107 8.55 0.876 0.01277

120 1.022 39.31 1276. 0.0125 9.43 0.962 0.01462

130 1.749 68.37 1600. 0.0149 10.5 1.12 0.01868

140 2.788 116.8 2370. 0.0190 11.8 1.48 0.02919

150 4.219 214.9 6625. 0.0297 14.7 3.29 0.08865
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Water vapor

273.16 0.0006177 0.004855 1884 0.01707 0.9216× 10−5 1.02 0.003681

275.0 0.0006985 0.005507 1886 0.01717 0.9260 1.02 0.003657

280.0 0.0009918 0.007681 1891 0.01744 0.9382 1.02 0.003596

285.0 0.001389 0.01057 1897 0.01773 0.9509 1.02 0.003538

290.0 0.001920 0.01436 1902 0.01803 0.9641 1.02 0.003481

295.0 0.002621 0.01928 1908 0.01835 0.9778 1.02 0.003428

300.0 0.003537 0.02559 1914 0.01867 0.9920 1.02 0.003376

305.0 0.004719 0.03360 1920 0.01901 1.006 1.02 0.003328

310.0 0.006231 0.04366 1927 0.01937 1.021 1.02 0.003281

320.0 0.01055 0.07166 1942 0.02012 1.052 1.02 0.003195

340.0 0.02719 0.1744 1979 0.02178 1.116 1.01 0.003052

360.0 0.06219 0.3786 2033 0.02369 1.182 1.01 0.002948

373.15 0.1014 0.5982 2080 0.02510 1.227 1.02 0.002902

380.0 0.1289 0.7483 2110 0.02587 1.250 1.02 0.002887

400.0 0.2458 1.369 2218 0.02835 1.319 1.03 0.002874

420.0 0.4373 2.352 2367 0.03113 1.388 1.06 0.002914

440.0 0.7337 3.833 2560 0.03423 1.457 1.09 0.003014

460.0 1.171 5.983 2801 0.03766 1.526 1.13 0.003181

480.0 1.790 9.014 3098 0.04145 1.595 1.19 0.003428

500.0 2.639 13.20 3463 0.04567 1.665 1.26 0.003778

520.0 3.769 18.90 3926 0.05044 1.738 1.35 0.004274

540.0 5.237 26.63 4540 0.05610 1.815 1.47 0.004994

560.0 7.106 37.15 5410 0.06334 1.901 1.62 0.006091

580.0 9.448 51.74 6760 0.07372 2.002 1.84 0.007904

600.0 12.34 72.84 9181 0.09105 2.135 2.15 0.01135

620.0 15.90 106.3 14,940 0.1267 2.337 2.76 0.02000

640.0 20.27 177.1 52,590 0.2500 2.794 5.88 0.07995

642.0 20.76 191.5 737,900 0.2897 2.894 7.37 0.1144

644.0 21.26 211.0 1,253,000 0.3596 3.034 10.6 0.1988

646.0 21.77 243.5 3,852,000 0.5561 3.325 23.0 0.6329

647.0 22.04 286.5 53,340,000 1.573 3.972 135. 9.274

psat,H2O in MPa for T in kelvin with pc = 22.064 MPa, Tc = 647.096 K, and θ = 1− T/Tc [A.41]:

ln(psat/pc) = (Tc/T)(aθ + bθ1.5 + cθ3 + dθ3.5 + eθ4 + fθ7.5) where a = −7.85951783,
b = 1.84408259, c = 11.7866497, d = 22.6807411, e = −15.9618719, f = 1.80122502.
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Table A.6 Thermophysical properties of gases at atmospheric
pressure (101325 Pa)

T (K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Air

100 3.606 1040 0.7107×10−5 0.1971×10−5 0.00947 0.252× 10−5 0.781

150 2.368 1012 1.038 0.4382 0.0142 0.590 0.742

200 1.769 1007 1.333 0.7537 0.0185 1.04 0.726

250 1.413 1006 1.604 1.135 0.0226 1.59 0.715

260 1.359 1006 1.655 1.218 0.0233 1.71 0.713

270 1.308 1006 1.706 1.304 0.0241 1.83 0.711

280 1.261 1006 1.756 1.392 0.0249 1.96 0.710

290 1.218 1006 1.805 1.482 0.0256 2.09 0.708

300 1.177 1006 1.854 1.575 0.0264 2.23 0.707

310 1.139 1007 1.902 1.670 0.0271 2.37 0.706

320 1.103 1007 1.949 1.766 0.0279 2.51 0.705

330 1.070 1008 1.995 1.865 0.0286 2.65 0.704

340 1.038 1009 2.041 1.966 0.0293 2.80 0.703

350 1.009 1009 2.087 2.069 0.0300 2.95 0.702

400 0.8823 1014 2.306 2.613 0.0335 3.74 0.699

450 0.7842 1021 2.512 3.204 0.0368 4.59 0.698

500 0.7058 1030 2.709 3.839 0.0399 5.50 0.698

550 0.6416 1040 2.897 4.515 0.0430 6.45 0.700

600 0.5881 1051 3.077 5.232 0.0460 7.44 0.703

650 0.5429 1063 3.250 5.987 0.0489 8.48 0.706

700 0.5041 1075 3.418 6.780 0.0518 9.55 0.710

750 0.4705 1087 3.580 7.608 0.0545 10.7 0.714

800 0.4411 1099 3.737 8.472 0.0572 11.8 0.717

850 0.4151 1110 3.890 9.371 0.0599 13.0 0.721

900 0.3921 1121 4.039 10.30 0.0625 14.2 0.724

950 0.3715 1131 4.185 11.27 0.0651 15.5 0.727

1000 0.3529 1141 4.328 12.27 0.0677 16.8 0.730

1100 0.3208 1159 4.605 14.36 0.0727 19.6 0.734

1200 0.2941 1174 4.873 16.57 0.0776 22.5 0.738

1300 0.2715 1188 5.133 18.91 0.0824 25.5 0.740

1400 0.2521 1200 5.385 21.36 0.0871 28.8 0.742

1500 0.2353 1210 5.633 23.94 0.0918 32.2 0.743
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Argon

100 4.982 547.4 0.799×10−5 0.160×10−5 0.00632 0.232× 10−5 0.692

150 3.269 527.7 1.20 0.366 0.00939 0.544 0.673

200 2.441 523.7 1.59 0.652 0.01245 0.974 0.669

250 1.950 522.2 1.95 1.00 0.01527 1.50 0.668

300 1.624 521.5 2.29 1.41 0.01787 2.11 0.667

350 1.391 521.2 2.59 1.86 0.02029 2.80 0.666

400 1.217 520.9 2.88 2.37 0.02256 3.56 0.666

450 1.082 520.8 3.16 2.92 0.02470 4.39 0.666

500 0.9735 520.7 3.42 3.51 0.02675 5.28 0.666

550 0.8850 520.6 3.67 4.14 0.02870 6.23 0.665

600 0.8112 520.6 3.91 4.82 0.03057 7.24 0.665

650 0.7488 520.5 4.14 5.52 0.03238 8.31 0.665

700 0.6953 520.5 4.36 6.27 0.03412 9.43 0.665

Ammonia

239.83 0.8900 2292 0.8067×10−5 0.9064×10−5 0.0195 0.957× 10−5 0.947

300 0.6990 2163 1.016 1.453 0.0254 1.68 0.866

400 0.5207 2287 1.391 2.672 0.0375 3.15 0.849

500 0.4157 2466 1.774 4.266 0.0520 5.07 0.841

600 0.3462 2648 2.143 6.191 0.0686 7.48 0.827

700 0.2966 2827 2.492 8.400 0.0871 10.4 0.809

Carbon dioxide

220 2.472 781 1.111×10−5 0.4493×10−5 0.0110 0.568× 10−5 0.791

250 2.165 805 1.258 0.5812 0.0130 0.749 0.776

300 1.797 853 1.500 0.8351 0.0168 1.10 0.763

350 1.537 899 1.736 1.130 0.0207 1.50 0.754

400 1.343 942 1.964 1.462 0.0247 1.95 0.748

450 1.193 980 2.182 1.829 0.0288 2.46 0.743

500 1.074 1016 2.392 2.229 0.0329 3.02 0.739

550 0.9756 1047 2.594 2.659 0.0369 3.62 0.735

600 0.8942 1076 2.788 3.118 0.0410 4.26 0.732
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Carbon monoxide

250 1.367 1042 1.54× 10−5 1.13× 10−5 0.02306 1.62× 10−5 0.697

300 1.138 1040 1.77 1.56 0.02656 2.24 0.694

350 0.975 1040 1.99 2.04 0.02981 2.94 0.693

400 0.853 1039 2.19 2.56 0.03285 3.70 0.692

450 0.758 1039 2.38 3.13 0.03571 4.53 0.691

500 0.682 1040 2.55 3.74 0.03844 5.42 0.691

600 0.5687 1041 2.89 5.08 0.04357 7.36 0.690

700 0.4874 1043 3.20 6.56 0.04838 9.52 0.689

800 0.4265 1046 3.49 8.18 0.05297 11.9 0.689

900 0.3791 1049 3.77 9.94 0.05738 14.4 0.689

1000 0.3412 1052 4.04 11.8 0.06164 17.2 0.689

Helium

50 0.9732 5201 0.607×10−5 0.0624×10−4 0.0476 0.0940×10−4 0.663

100 0.4871 5194 0.953 0.196 0.0746 0.295 0.664

150 0.3249 5193 1.25 0.385 0.0976 0.578 0.665

200 0.2437 5193 1.51 0.621 0.118 0.932 0.667

250 0.1950 5193 1.76 0.903 0.138 1.36 0.665

300 0.1625 5193 1.99 1.23 0.156 1.85 0.664

350 0.1393 5193 2.22 1.59 0.174 2.40 0.663

400 0.1219 5193 2.43 1.99 0.190 3.01 0.663

450 0.1084 5193 2.64 2.43 0.207 3.67 0.663

500 0.09753 5193 2.84 2.91 0.222 4.39 0.663

600 0.08128 5193 3.22 3.96 0.252 5.98 0.663

700 0.06967 5193 3.59 5.15 0.281 7.77 0.663

800 0.06096 5193 3.94 6.47 0.309 9.75 0.664

900 0.05419 5193 4.28 7.91 0.335 11.9 0.664

1000 0.04877 5193 4.62 9.46 0.361 14.2 0.665

1100 0.04434 5193 4.95 11.2 0.387 16.8 0.664

1200 0.04065 5193 5.27 13.0 0.412 19.5 0.664

1300 0.03752 5193 5.59 14.9 0.437 22.4 0.664

1400 0.03484 5193 5.90 16.9 0.461 25.5 0.665

1500 0.03252 5193 6.21 19.1 0.485 28.7 0.665
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Hydrogen

50 0.4953 10484 0.2406×10−5 0.4857×10−5 0.0378 0.727× 10−5 0.668

100 0.2457 11229 0.4120 1.677 0.0684 2.48 0.677

150 0.1637 12605 0.5515 3.369 0.101 4.90 0.687

200 0.1228 13538 0.6748 5.497 0.133 8.00 0.687

250 0.09821 14054 0.7879 8.023 0.161 11.7 0.686

300 0.08185 14313 0.8938 10.92 0.187 15.9 0.685

350 0.07016 14431 0.9945 14.18 0.210 20.7 0.684

400 0.06139 14479 1.091 17.77 0.231 26.0 0.683

450 0.05457 14500 1.184 21.69 0.251 31.8 0.683

500 0.04912 14513 1.274 25.94 0.271 38.0 0.682

550 0.04465 14528 1.361 30.49 0.290 44.7 0.682

600 0.04093 14549 1.447 35.34 0.309 51.9 0.681

650 0.03779 14578 1.530 40.50 0.328 59.5 0.681

700 0.03509 14614 1.612 45.94 0.346 67.6 0.680

750 0.03275 14658 1.692 51.66 0.365 76.1 0.679

800 0.03070 14710 1.770 57.67 0.384 85.0 0.678

850 0.02890 14769 1.848 63.95 0.403 94.4 0.678

900 0.02729 14836 1.924 70.49 0.422 104 0.677

1000 0.02456 14992 2.073 84.38 0.460 125 0.675

Nitrogen

100 3.483 1072 0.6959×10−5 0.1998×10−5 0.00938 0.251× 10−5 0.795

200 1.711 1044 1.291 0.7547 0.0183 1.02 0.737

300 1.138 1041 1.789 1.572 0.0260 2.19 0.717

400 0.8532 1045 2.221 2.603 0.0328 3.68 0.707

500 0.6825 1056 2.606 3.819 0.0390 5.42 0.705

600 0.5687 1075 2.958 5.201 0.0448 7.33 0.709

700 0.4875 1098 3.283 6.735 0.0503 9.40 0.717

800 0.4266 1122 3.589 8.413 0.0555 11.6 0.725

900 0.3792 1146 3.878 10.23 0.0605 13.9 0.734

1000 0.3413 1167 4.154 12.17 0.0654 16.4 0.742

1100 0.3103 1187 4.420 14.25 0.0701 19.0 0.749

1200 0.2844 1204 4.677 16.44 0.0747 21.8 0.754

1400 0.2438 1232 5.169 21.20 0.0836 27.8 0.762

1600 0.2133 1254 5.640 26.44 0.0923 34.5 0.766
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Oxygen

100 3.995 935.6 0.7712×10−5 0.1931×10−5 0.00909 0.243× 10−5 0.794

150 2.619 919.8 1.138 0.4343 0.0138 0.572 0.759

200 1.956 914.6 1.472 0.7525 0.0182 1.02 0.738

250 1.562 915.0 1.780 1.139 0.0225 1.57 0.725

300 1.301 919.9 2.065 1.588 0.0265 2.21 0.717

350 1.114 929.1 2.332 2.093 0.0303 2.93 0.714

400 0.9749 941.7 2.584 2.650 0.0340 3.71 0.715

450 0.8665 956.4 2.822 3.257 0.0376 4.54 0.718

500 0.7798 972.2 3.049 3.910 0.0410 5.41 0.722

550 0.7089 988.0 3.265 4.606 0.0444 6.34 0.727

600 0.6498 1003 3.473 5.345 0.0477 7.31 0.731

700 0.5569 1031 3.865 6.940 0.0540 9.40 0.738

800 0.4873 1055 4.233 8.687 0.0600 11.7 0.744

900 0.4332 1074 4.581 10.58 0.0659 14.2 0.747

1000 0.3899 1090 4.912 12.60 0.0715 16.8 0.748

Steam (H2O vapor)

373.15 0.5976 2080 12.28× 10−6 20.55× 10−6 0.02509 2.019× 10−5 1.018

393.15 0.5652 2021 13.04 23.07 0.02650 2.320 0.994

413.15 0.5365 1994 13.81 25.74 0.02805 2.622 0.982

433.15 0.5108 1980 14.59 28.56 0.02970 2.937 0.973

453.15 0.4875 1976 15.38 31.55 0.03145 3.265 0.966

473.15 0.4665 1976 16.18 34.68 0.03328 3.610 0.961

493.15 0.4472 1980 17.00 38.01 0.03519 3.974 0.956

513.15 0.4295 1986 17.81 41.47 0.03716 4.357 0.952

533.15 0.4131 1994 18.63 45.10 0.03919 4.758 0.948

553.15 0.3980 2003 19.46 48.89 0.04128 5.178 0.944

573.15 0.3840 2013 20.29 52.84 0.04341 5.616 0.941

593.15 0.3709 2023 21.12 56.94 0.04560 6.077 0.937

613.15 0.3587 2034 21.95 61.19 0.04784 6.554 0.934

673.15 0.3266 2070 24.45 74.86 0.05476 8.100 0.924

773.15 0.2842 2134 28.57 100.5 0.06698 11.04 0.910

873.15 0.2516 2203 32.62 129.7 0.07990 14.42 0.899

973.15 0.2257 2273 36.55 161.9 0.09338 18.20 0.890

1073.15 0.2046 2343 40.38 197.4 0.1073 22.38 0.882
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Table A.7 Physical constants from 2018 CODATA. As of the
2018 adjustment, all values listed here are defined exactly.

Avogadro’s number, NA 6.022 140 76 ×1026 molecules/kmol

Boltzmann’s constant, kB 1.380 649 ×10−23 J/K

Universal gas constant, R◦ = NAkB 8314.462 618… J/kmol·K
Speed of light in vacuum, co 299 792 458 m/s

Standard acceleration of gravity, g 9.806 65 m/s2

Stefan-Boltzmann constant, σ 5.670 374 419…×10−8 W/m2K4

Wien displacement law constant, (λT)eλ=max 2897.771 955… µm·K

Table A.8 Additional physical property data given in the text

Location Data Page

Table 1.2 Electromagnetic wave spectrum 28

Figs. 2.2, 2.3 Thermal conductivities of metals, liquids, and gases 52, 53

Eqn. (9.2a), Table 9.1 Surface tension 479, 480

Table 10.1 Total emittances 546

Table 11.3 Lennard-Jones constants and molecular weights 689

Table 11.4 Collision integrals 690

Table 11.5 Molal specific volumes and latent heats 694

http://physics.nist.gov/cuu/Constants/index.html


B. Units and conversion factors

A’RTABA: a Persian measure of capacity, principally used as a corn-measure,
which contained, according to Herodotus, 1 medimnus and 3 choenices, i.e.
51 choenices = 102 Roman sextarii = 12-3/4 gallons nearly; but, according
to Suidas, Hesychius, Polyaenus (Strat. IV.3, 32), and Epiphanius (Pond. 24)
only 1 Attic medimnus = 96 sextarii.

A Dictionary of Greek and Roman Antiquities W. Smith, 1875

The underlying standard for all our units is ultimately the Système Inter-
national d’ Unités (the “S.I. System”). But the need to deal with English
units, and the remnants of earlier metric systems, will remain with us
for many years to come. We therefore list some conversion factors to S.I.
units from English units and other units in this appendix. Many more
conversion factors and an extensive discussion of the S.I. system and may
be found in [B.1].

The dimensions that are used consistently in the subject of heat trans-
fer are length, mass, force, energy, temperature, and time. We generally
avoid using both force and mass dimensions in the same equation, since
force is always expressible in dimensions of mass, length, and time, and
vice versa. We do not make a practice of eliminating energy in terms
of force times length because work and heat must often be accounted
separately in heat transfer problems. The text makes occasional reference
to electrical units; however, these are conventional and do not have coun-
terparts in the English system, so no electrical units are discussed here.

We present conversion factors in the form of multipliers that may
be applied to English units so as to obtain S.I units. For example, the
relationship between Btu and J is

1 Btu = 1055.05 J (B.1)

We may rearrange eqn. (B.1) to display a conversion factor whose numerical
worth is one:

1 = 1055.05
J

Btu
(B.2)
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Table B.1 SI Multiplying Factors

Multiple Prefix Symbol Multiple Prefix Symbol

1030 quetta Q 10−30 quecto q

1027 ronna R 10−27 ronto r

1024 yotta Y 10−24 yocto y

1021 zetta Z 10−21 zepto z

1018 exa E 10−18 atto a

1015 peta P 10−15 femto f

1012 tera T 10−12 pico p

109 giga G 10−9 nano n

106 mega M 10−6 micro µ

103 kilo k 10−3 milli m

102 hecto h 10−2 centi c

101 deka da 10−1 deci d

Thus, if we were to multiply a given number of Btus by this factor, we
would obtain the corresponding number of joules. The latter form is quite
useful in changing units within more complex equations. For example,
the conversion factor

1 = 0.0001663
m/s

furlong/fortnight

could be multiplied by a velocity in furlongs per fortnight1, on just one
side of an equation, to convert it to meters per second.

Note that the S.I. units may have prefixes placed in front of them to
indicate multiplication by various powers of ten. For example, the prefix
“k” denotes multiplication by 1000 (e.g., 1 km = 1000 m). The complete
set of S.I. prefixes is given in Table B.1.

Table B.2 provides multipliers for a selection of common units. As an
example of their use, consider the first entry in the table which shows
a conversion factor (in column “multiply no.”) of 16.018 for changing
lbm/ft3 to kg/m3. If we consider a liquid with a density of 62.40 lbm/ft3,
we may convert to density in kg/m3 as follows:

62.40 lb/ft3 ×
(︄

16.018
kg/m3

lbm/ft3

)︄
= 999.5 kg/m3 (B.3)

1Shortly after World War II, a group of staff physicists at Boeing Airplane Co. answered
angry demands by engineers that calculations be presented in English units with a
report translated entirely into such dimensions as these.
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Table B.2 Selected Conversion Factors

Dimension To get SI = multiply no. × other unit

Density kg/m3 = 16.018 × lbm/ft3

kg/m3 = 103 × g/cm3

Diffusivity (α, ν , D) m2/s = 0.092903 × ft2/s

m2/s = 10−6 × centistokes

Energy J = 1055.05 × Btua

J = 4.1868 × calb

J = 10−7 × erg

J = 3.6×106 × kW·hr

Energy per unit mass J/kg = 2326.0 × Btu/lbm

J/kg = 4186.8 × cal/g

Flow rate m3/s = 6.3090×10−5 × gal/min (gpm)

m3/s = 4.7195×10−4 × ft3/min (cfm)

m3/s = 10−3 × L/s

Force N = 10−5 × dyne

N = 4.4482 × lbf

Heat flux W/m2 = 3.154 × Btu/hr·ft2

W/m2 = 104 × W/cm2

Heat transfer coefficient W/m2K = 5.6786 × Btu/hr·ft2◦F

Length m = 10−10 × ångströms (Å)

m = 0.0254 × inches

m = 0.3048 × feet

m = 201.168 × furlongs

m = 1609.34 × miles

m = 3.0857× 1016 × parsecs

Mass kg = 0.45359 × lbm

kg = 14.594 × slug
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Table B.2…continued.

Dimension To get SI = multiply no. × other unit

Power W = 0.022597 × ft·lbf/min

W = 0.29307 × Btu/hr

W = 745.700 × hp

Pressure Pa = 133.32 × mmHg (@0◦C)

Pa = 248.84 × inH2O (@60◦F)

Pa = 3376.9 × inHg (@60◦F)

Pa = 6894.8 × psi

Pa = 105 × bar

Pa = 101325 × atm

Specific heat capacity J/kg·K = 4186.8 × Btu/lbm·◦F
J/kg·K = 4186.8 × cal/g·◦C

Temperature K = 5/9 × ◦R

K = (◦C + 273.15)

K = (◦F + 459.67)/1.8

Thermal conductivity W/m·K = 0.14413 × Btu·in/hr·ft2◦F

W/m·K = 1.7307 × Btu/hr·ft◦F
W/m·K = 418.68 × cal/s·cm◦C

Viscosity (dynamic) Pa·s = 10−3 × centipoise

Pa·s = 1.4881 × lbm/ft·s
Pa·s = 47.880 × lbf·s/ft2

Volume m3 = 10−3 × L

m3 = 3.7854× 10−3 × gallons

m3 = 0.028317 × ft3

a The British thermal unit, originally defined as the heat that raises 1 lbm of water
1◦F, has several values that depend mainly on the initial temperature of the water being
warmed. The above is the International Table (i.e., steam table) Btu. A “mean” Btu of
1055.87 J is also common. Related quantities are: 1 therm = 105 Btu; 1 quad = 1015 Btu
≈ 1 EJ; 1 ton of refrigeration = 12,000 Btu/hr absorbed.

b The calorie represents the heat that raises 1 g of water 1◦C. Like the Btu, the calorie
has several values that depend on the initial temperature of the water. The above is the
International Table calorie, or IT calorie. A “thermochemical” calorie of 4.184 J has also
been in common use. The dietitian’s “Calorie” is actually 1 kilocalorie.



References 765

References
[B.1] A. Thompson and B. N. Taylor. Guide for the Use of the International System

of Units (SI). National Institute of Standards and Technology, Gaithersburg,
MD, 2008. url: http://physics.nist.gov/SP811. NIST Special Pub. 811.

http://physics.nist.gov/SP811




C. Nomenclature

Count every day one letter of my name;
Before you reach the end, dear,
Will come to lead you to my palace halls
A guide whom I shall send, dear.

Abhijña
¯

na S
¯

akuntala
¯

, Ka
¯
lida

¯
sa, 5th C

Arbitrary constants, coefficients, and functions introduced in context
are not included here; neither are most geometrical dimensions. Dimen-
sions of symbols are given in S.I. units in parenthesis after the definition.
Symbols without dimensions are noted by (–).

A,Ac , Ah, Aj
area (m2) or function defined
in eqn. (9.41); cross-sectional
area (m2); area of heater (m2);
jet cross-sectional area (m2)

B radiosity (W/m2) or the
function defined in Fig. 8.14.

Bm,i mass transfer driving force,
(mi,s −mi,e)/(1−mi,s),
eqn. (11.59) (–)

b.c. boundary condition

b.l. boundary layer

C heat capacity rate (W/K) or
electrical capacitance (s/ohm)
or correction factor in Fig. 7.18
or pressure correction factor
for gaseous emittance (–)

C average thermal molecular
speed, eqn. (11.101)

Cc , Ch heat capacity rate for hot and
cold fluids (W/K)

Csf surface roughness factor (–).
(see Table 9.2)

c, cp, cv specific heat, specific heat at
constant pressure, specific
heat at constant
volume (J/kg·K)

c molar concentration of a
mixture (kmol/m3) or
damping coefficient (N·s/m)
or exponent in eqn. (6.114a)

ci partial molar concentration of
species i (kmol/m3)

co speed of light in vacuum,
2.99792458× 108 m/s

D or d diameter (m)

Dh hydraulic diameter, 4Ac/P (m)

D12,Dim binary diffusion coefficient for
species 1 diffusing in
species 2, effective binary
diffusion coefficient for
species i diffusing in mixture
m (m2/s)
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Ðij Maxwell-Stefan diffusion
coefficient (m2/s)

E, E0 voltage, initial voltage (V)

e, eb, eλ, eλb
emissive power (W/m2) or
energy equivalent of mass (J);
black body emissive
power(W/m2); monochromatic
emissive power (W/m2·µm);
black body monochromatic
emissive power (W/m2·µm)

F LMTD correction factor (–) or
fluid parameter from Table 9.4
(–)

F(t) time-dependent driving
force (N)

F1-2 radiation view factor for
surface (1) seeing surface (2)

F1-2 gray-body transfer factor from
surface (1) to surface (2)

f Darcy-Weisbach friction
factor(–) [eqn. (7.33) and Fig.
7.6] or Blasius function of η (–)

fo orientation factor for
eqns. (9.50)

fv frequency of vibration (Hz)

G superficial mass flux
= ṁ/Apipe

g,geff gravitational body force
(m/s2); effective g defined in
eqn. (8.63) (m/s2)

gm,i mass transfer coefficient for
species i, (kg/m2·s)

H height of ribbon (m), head (m),
irradiance (W/m2), or Henry’s
law constant (N/m2)

h,h,hrad local heat transfer coefficient
(W/m2K), or enthalpy (J/kg), or
height (m), or Planck’s
constant
(6.626070× 10−34 J·s);
average heat transfer
coefficient (W/m2K); radiation
heat transfer coefficient
(W/m2K)

ĥ specific enthalpy (J/kg)

hc interfacial conductance
(W/m2K)

hfg , hsf, hsg

latent heat of vaporization;
latent heat of fusion; latent
heat of sublimation (J/kg)

h′fg latent heat corrected for
sensible heat

ĥi specific enthalpy of species i
(J/kg)

h∗ heat transfer coefficient at
zero mass transfer, in
Chpt. 11 only (W/m2K)

I electric current (amperes) or
number of isothermal
increments (–)

i⃗, j⃗, k⃗ unit vectors in the x,y, z
directions

i intensity of radiation (W/m2·
steradian)

i⃗ electric current density
(amperes/m2)

I0(x) modified Bessel function of
the first kind of order zero

i.c. initial condition

J0(x), J1(x)
Bessel function of the first
kind of order zero, of order
one

j⃗i diffusional mass flux of
species i (kg/m2·s)

J⃗i diffusional mole flux of
species i (kmol/m2·s)

k thermal conductivity (W/m·K)

kB Boltzmann’s constant,
1.38065× 10−23 J/K

kT thermal diffusion ratio (–)

L any characteristic length (m)

L0 geometrical mean beam length
(m)
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LMTD logarithmic mean temperature
difference

ℓ an axial length or length into
the paper or mean free
molecular path (m or Å) or
mixing length (m)

M molecular weight (of mixture
if not subscripted) (kg/kmol)
or merit number of heat pipe
working fluid, hfgσ/νf .

m fin parameter,
√︂
hP/kA (m−1)

m0 rest mass (kg)

ṁ mass flow rate (kg/s) or mass
flux per unit width (kg/m · s)

mi mass fraction of species i (–)

N number of adiabatic channels
(–) or number of rows in a rod
bundle (–)

N⃗ mole flux (of mixture if not
subscripted) (kmol/m2·s)

NA Avogadro’s number,
6.02214076× 1026

molecules/kmol

N ,Ni number density of mixture,
number density of species i
(molecules/m3)

n⃗ mass flux (of mixture if not
subscripted) (kg/m2·s), unit
normal vector (–)

n summation index (–) or
nucleation site density
(sites/m2)

P factor (–) defined in eqn. (3.14)
or pitch of a tube bundle (m)
or perimeter (m)

p pressure (N/m2)

pi, pv partial pressure of species i,
vapor pressure (N/m2)

Q rate of heat transfer (W)

q, q⃗ heat flux (W/m2)

qb, qFC , qi
defined in context of
eqn. (9.37)

qmax or qburnout

peak boiling heat flux (W/m2)

qmin minimum boiling heat flux
(W/m2)

q̇ volumetric heat generation
(W/m3)

R factor defined in eqn. (3.14) (–),
Cmin/Cmax, radius (m),
electrical resistance (ohm), or
region (m3)

R ideal gas constant per unit
mass, R◦/M (for mixture if not
subscripted) (J/kg·K)

R◦ universal gas constant,
8314.46 (J/kmol·K)

Rt , Rf thermal resistance (K/W or
m2·K/W), fouling resistance
(m2·K/W)

r , r⃗ radial coordinate (m), position
vector (m)

rcrit critical radius of insulation (m)

ṙi volume rate of creation of
mass of species i (kg/m3·s)

S entropy (J/K), or surface (m2),
or shape factor (N/I)

SL, ST rod bundle spacings (m). See
Fig. 7.15

s specific entropy (J/kg·K)
T , Tb, Tc , Tf , Tm

temperature (◦C, K); bulk
temperature (◦C, K);
thermodynamic critical
temperature (K); film
temperature (◦C, K); mean
temperature for radiation
exchange (K)

T time constant, ρcV/hA (s)

T a long time over which
properties are averaged (s)

t time (s)
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U overall heat transfer
coefficient (W/m2K); internal
thermodynamic energy (J);
characteristic velocity (m/s)

u, u⃗ local x-direction fluid velocity
(m/s) or specific energy (J/kg);
vectorial velocity (m/s)

uav, u,uc , ug
average velocity over an area
(m/s); local time-averaged
velocity (m/s); characteristic
velocity (m/s) [eqn. (8.19)];
Helmholtz-unstable velocity
(m/s)

u′, v′, u′r, u∗

turbulent fluctuations in x or
y velocity (m/s); rms
turbulent fluctuation (m/s);
friction velocity,

√︁
τw/ρ (m/s)

û specific internal energy (J/kg)

V volume (m3); voltage (V)

Vm molal specific volume
(m3/kmol)

v local y-direction velocity (m/s)

v⃗ mass-average velocity, in
Chapter 11 only (m/s)

v⃗i average velocity of species i
(m/s)

v⃗∗ mole average velocity (m/s)

v̂ specific volume (m3/kg)

Wk rate of doing work (W)

w z-direction velocity (m/s) or
width (m)

x,y, z Cartesian coordinates (m); x is
also used to denote any
unknown quantity

xi mole fraction of species i (–)

x quality of two-phase flow

Zij frequency of collisions
between molecules of
species i and j (s−1)

Greek symbols

α thermal diffusivity, k/ρcp
(m2/s), or helix angle (rad.)

α,αg absorptance (–); gaseous
absorptance (–)

β coefficient of thermal
expansion (K−1), or relaxation
factor (–), or h

√
αt/k, or

contact angle (deg), or
coefficient of sliding friction
(–),

βλ monochromatic extinction
coefficient (m2/kg)

Γ , Γ(z) ġL2/k∆T , gamma function

Γc mass flow rate in film
(kg/m·s)

Γij thermodynamic factor,
eqn. (11.137b) (–)

γ cp/cv ; electrical conductivity
(Ω·m)−1

γi activity coefficient,
eqn. (11.132) (–)

γλ monochromatic scattering
coefficient (m2/kg)

∆E activation energy of reaction
(J/kmol)

∆p pressure drop in any system
(N/m2)

∆T any temperature difference;
various values are defined in
context.

δ,δc , δt , δ′t
flow boundary layer thickness
(m) or condensate film
thickness (m); concentration
boundary layer thickness (m);
thermal boundary layer
thickness (m); h/k (m).

ε emittance (–); heat exchanger
effectiveness (–); roughness
(m)

εA, εAB potential well depth for
molecules of A, for collisions
of A and B (J)
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εf fin effectiveness (–)

εg , ε0 gaseous emittance (–),
standard emissivity (–)

εm, εh eddy diffusivity of mass (–), of
heat (–)

η independent variable of
Blasius function, y

√︁
u∞/νx (–)

ηf fin efficiency

Θ a ratio of two temperature
differences (–)

θ (T − T∞) (K) or angular
coordinate (rad)

ζ x
/︁√
αt

κλ monochromatic absorption
coefficient (m2/kg)

λ, λc , λH wavelength (m) or eigenvalue
(m−1); critical Taylor
wavelength (m);
Helmholtz-unstable
wavelength (m)

λd, λd1 , λd2

most dangerous
Taylor-unstable wavelength
(m); subscripts denote one-
and two-dimensional values

λ̂ dimensionless eigenvalue (–)

µ dynamic viscosity (kg/m·s)
µi chemical potential of species i

(J/mol)

ν kinematic viscosity, µ/ρ
(m2/s)

ξ x/L or x
√︁
ω/2α; also

(x/L+ 1) or x/L (–)

ρ mass density (kg/m3) or
reflectance (–)

ρi partial density of ith species
(kg/m3)

σ surface tension (N/m) or
Stefan-Boltzmann constant
5.67037× 10−8 (W/m2·K4)

σA, σAB collision diameter of
molecules of A, for collisions
of A with B (Å)

τ transmittance (–) or
dimensionless time (T/T ) or
shear stress (N/m2) or length
of travel in b.l. (m)

τw , τyx shear stress on a wall (N/m2),
shear stress in the x-direction
on the plane normal to the
y-direction (N/m2)

τδ shear stress exerted by liquid
film (N/m2)

Φ ∆T
/︁
(q̇L2/k) or fraction of

total heat removed (see
Fig. 5.10) (–)

φ angular coordinate (rad), or
δt/δ (–)

φij weighting functions for
mixture viscosity or thermal
conductivity (–)

χ dΘ/dζ

ψ ωL2
/︁
α

Ω ωt

ΩD,Ωk,Ωµ
collision integral for
diffusivity, thermal
conductivity, or dynamic
viscosity (–)

ω frequency of a wave or of
rotation (rad/s) or solid angle
(sr)

∇T,p gradient computed while
holding T and p constant
(m−1)

General subscripts

av, avg denoting bulk or average
values

b, body denoting any body

b denoting a black body

c denoting the critical state

cbd denoting a convective boiling
dominated value

D denoting a value based on D
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e, et denoting a dynamical entry
length or a free stream
variable; denoting a thermal
entry length

f , g denoting saturated liquid and
saturated vapor states

fb denoting a value for flow
boiling

i denoting initial or inside value,
or a value that changes with
the index i, or values for the
ith species in a mixture

in denoting a value at the inlet

L denoting a value based on L or
at the left-hand side

lo denoting a value computed as
if all fluid were in liquid state

m denoting values for mixtures

max, min denoting maximum or
minimum values

n denoting a value that changes
with the index n

nbd denoting a nucleate boiling
dominated value

o denoting outside, in most
cases

out denoting a value at the outlet

R denoting a value based on R or
at the right-hand side

s denoting values above an
interface

sfc denoting conditions at a
surface

sup, sat, sub
denoting superheated,
saturated, or subcooled states

u denoting values below an
interface

w denoting conditions at a wall

x denoting a local value at a
given value of x

∞ denoting conditions in a fluid
far from a surface

λ denoting radiative properties
evaluated at a particular
wavelength

General superscripts

* denoting a value for zero net
mass transfer (in Chpt. 11
only)

−◦ denoting a thermodynamic
property in the standard state

Dimensionless parameters

Bi Biot number, hL/kbody

Bo Bond number, L2g(ρf −ρg)/σ
Boi Boiling number, qw/Ghfg
Cf , Cf skin friction coefficient,

τw/(ρu2
∞/2); overall skin

friction coefficient
τw/(ρu2

∞/2)

Co Convection number,
[(1− x)/x]0.8(ρg/ρf )0.5

Da Damköhler number,
ρA′ exp(−∆E/R◦T)/g∗m

Ec Eckert number, u2/(cp∆T)

Fo Fourier number, αt/L2

Fr Froude number, U2/(gL)

GrL Grashof number, gβ∆TL3/ν2

(for heat transfer), or
g(∆ρ/ρ)L3/ν2

Gz Graetz number, RePrD/x

H′ L′ based on L ≡ H
Ja Jakob number, cp∆T/hfg
j Colburn j-factor, St Pr2/3

L′ L
√
g(ρf − ρg)/σ

Le Lewis number, Sc/Pr = α/Dim

M Merit number, hfgσ/νf
Ma Mach number,

u/(sound speed)
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NTU number of transfer units,
UA/Cmin

Nux ,NuL local Nusselt number,
hx/kfluid; average Nusselt
number, hL/kfluid

Num,x ,Num,L
local Nusselt number for mass
transfer (or Sherwood number)
g∗m,ix/(ρDim); average
Nusselt number for mass
transfer, gm,i∗L/(ρDim)

PeL Péclet number, UL/α = ReL Pr

Pr, Prt Prandtl number, µcp/k = ν/α;
turbulent Prandtl number,
εm/εh

RaL Rayleigh number,
Gr Pr = gβ∆TL3/(να) for heat
transfer; g(∆ρ/ρ)L3/(νD12)
for mass transfer

Ra∗L RaLNuL = gβqwL4
/︁
(kνα)

ReL,Rec ,Ref , Relo, Rel, Reu
Reynolds number, UL/ν ;
condensation Re equal to Γc/µ;
Re for liquid; liquid-only
Reynolds number, GD/µf ; Re
at start or end of transition

Sc Schmidt number for species i
in mixture m, ν/Dim

ShL Sherwood number,
g∗m,iL/(ρDim)

St Stanton number,
Nu/(Re Pr) = h/(ρcpu)

Str Strouhal number, fvD/u∞

WeL Weber number, ρgU2
∞L/σ

Π any dimensionless group





Part VII

Indices

775





Citation Index

A
AAAS Climate Science Panel (2014),

602, 617
Abramovic and Klofutar (1998), 734,

737
Al-Arabi and El-Riedy (1976), 434, 467
Alberti, Weber, and Mancini (2015),

588–589, 591, 615
Alberti, Weber, and Mancini (2016),

588, 590, 592, 615
Alberti, Weber, and Mancini (2018),

588, 615
Alberti, Weber, Mancini, Fateev, and

Clausen (2015), 586, 615
Alpert, Saunders, Mahzari, Monk,

White, and West (2023), 682,
724

Amar, Calvert, and Kirk (2011), 682,
724

American Society of Heating,
Refrigerating, and
Air-Conditioning Engineers
(2017), 81, 97, 715, 727, 733,
735

Amy, Budenstein, Bagepalli, England,
DeAngelis, Wilk, Jarrett,
Kelsall, Hirschey, Wen,
Chavan, Gilleland, Yuan,
Chueh, Sandhage, Kawajiri,
and Henry (2017), 375, 410

Amy, Seyf, Steiner, Friedman, and
Henry (2019), 375, 410

Arp, McCarty, and Friend (1998), 734,
737

Arpaci (1991), 235, 268
ASM Handbook Committee (1990), 733,

735
Assael, Assael, Huber, Perkins, and

Takata (2011), 734, 738
Atkins and de Paula (2006), 584, 614
Atkins, de Paula, and Keeler (2023),

642, 705, 722
Aung (1987), 441, 468

B
Baehr and Stephan (1998), 207, 219,

267, 362, 409
Baidakov and Sulla (1985), 480, 534
Bakhru and Lienhard (1972), 497, 536
Barthlott and Neinhuis (1997), 504, 537
Barzegar Gerdroodbary (2023), 681,

724
Basset (1888), 692, 726
Battisti and Naylor (2009), 602, 616
Beckwith, Marangoni, and Lienhard

(2007), 325, 348
Bejan and Lage (1990), 420, 466
Bejan (2013), 48
Bellman and Pennington (1954), 486,

535
Berdahl and Fromberg (1982), 595, 615
Berdahl and Martin (1984), 597, 615
Berenson (1960), 502, 504–505, 536
Bergles and Rohsenow (1964), 509, 537
Bhatti and Shah (1987), 365, 373,

385–386, 409
Bich, Millat, and Vogel (1990), 734, 737
Binney, Dong, and Lienhard (1986),

481, 534
Bird, Stewart, and Lightfoot (2002), 47,

673, 723
Blair and Werle (1980), 345, 349
Blair (1982), 332, 348
Blair (1983), 326, 331–332, 348

777



778 Citation Index

Boelter, Cherry, Johnson, and Martinelli
(1965), 47, 237, 239, 268,
368, 409

Bomelburg and Smith (1972), 734, 737
Bonilla and Perry (1941), 494, 535
Boussinesq (1877), 323, 347
Bowman, Mueller, and Nagle (1940),

116–117, 137
Bromley (1950), 500–501, 536
Bromley, LeRoy, and Robbers (1953),

511, 538
Bromley, Singh, Ray, Sridhar, and Read

(1974), 643, 722
Bronowski (1973), 220, 267
Buckingham (1914), 151, 192
Buckingham (1915), 151, 192

C
Carslaw and Jaeger (1959), 47, 215, 226,

232, 234–235, 247–248, 267
Carty and Schrodt (1975), 720, 727
Catton (1978), 440, 468
Cebeci (1974), 432, 466
Cercignani (2000), 533, 540, 690, 725
Chapman and Cowling (1964), 637,

686, 722
Chen and Armaly (1987), 441, 468
Chen (1966), 515, 538
Chen (1985), 307, 347
Chen (2005), 48
Chexal, Horowitz, McCarthy, Merilo,

Sursock, Harrison, Peterson,
Shatford, Hughes, Ghiaasiaan,
Dhir, Kastner, and Köhler
(1999), 520, 539

Chilton and Colburn (1934), 667, 723
Churchill and Bernstein (1977), 390,

392, 412
Churchill and Chu (1975), 419–420,

430, 466
Churchill and Ozoe (1973), 308, 347
Churchill (1976), 312, 333, 347
Churchill (1977), 441, 468
Clausing and Berton (1989), 434, 436,

467
Colburn (1933), 314, 347, 368, 409
Collier and Thome (1996), 48, 512,

520–521, 538

Comini and Savino (2009), 182, 192
Corriher (1997), 256, 268
Crepeau (2008), 653, 723

D
Dadarlat, Gibkes, Bicanic, and Pasca

(1996), 734, 737
Davis and Anderson (1966), 510, 537
Ded and Lienhard (1972), 499, 536
Denny, Mills, and Jusionis (1971), 455,

469
deReuck and Craven (1993), 734, 736
Dergarabedian (1953), 231, 267
Dhir and Lienhard (1971), 443, 449,

452, 468, 501, 536
Dhir (1975), 442–443, 468
Dhir (2018), 481–482, 534
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693
dilute liquid solutions, 691–695
effective, binary, 633, 640, 657,

691, 719
hydrodynamic model for liquid

solutions, 691–695
interdiffusion coefficient, 651
kinetic theory model for gases,

634–637
Maxwell-Stefan, 701
multicomponent gas mixtures,

691
multicomponent mixtures,

699–706
Diffusional mass flux, 629

Fick’s law for, 632–637
Diffusional mole flux, 630

Fick’s law for, 633
Diffusivity, see Thermal diffusivity
Dimensional analysis, 150–162
Dirichlet conditions, 142
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Dittus-Boelter equation, 368
Droplet

combustion, 681
evaporation, 668

Dry ice, 716
Dufour effect, 637

E
Earth, age of, Kelvin’s estimate, 262
Eckert number, 310
Eddy diffusivity

for heat, 323
for momentum, 318

Effectiveness, see Heat exchangers or
Fins

Eigenvalue, 204
Einstein relation, 692, 719
Einstein, A., 155, 692
Electrolyte solutions, 695
Electromagnetic spectrum, 27
Emittance, 33, 545–548

diffuse and directional, 548–549
gaseous, 581–594
hemispherical, 549
monochromatic, 545

Energy equation, 293–296
analogy to momentum equation,

296–298
for boundary layers, 296
for pipe flow, 355
with mass transfer, 676

Entropy production, 9
for lumped capacity system, 26

Entry length, see Internal flow
Error function, 223–224
Evaporation, 662–669, 680

F
Falling liquid films, 338, 442–444, 454,

683, 712
Faraday’s constant, 720
Fick’s law, 64, 632–637

for multicomponent mixtures, 699
Film absorption, 712
Film boiling, see Boiling
Film coefficient, see Heat transfer

coefficient

Film composition, 678
Film condensation, see Condensation
Film cooling, 678
Film temperature, 297, 310, 420, 678
Fins, 163–180

arrays, 176
condition for one-dimensionality,

163–165
design considerations, 174–175
effectiveness, 174
efficiency, 174
purpose of, 163
root temperature, 182–183
thermal resistance of, 175–176
variable cross-section, 178–180
very long fins, 173
with tip heat transfer, 171–172
without tip heat transfer, 168–171

First law of thermodynamics, 6–8
Flux, see Heat flux or Mass flux
Flux plot, 236–240
Forced convection, 20

boiling, see Boiling, forced
convection

boundary layers, see Boundary
layers

condensation, see Condensation
cross flow, see Cross flow
cylinders, 390–391
flat plates

laminar, uniform qw , 311–312
laminar, uniform Tw , 306–309
turbulent, 325–335
unheated starting length, 308,

331
variable property effects, 310,

327
spheres, 716
tube bundles, 393–397
within tubes, see Internal flow

Fourier number, 195
Fourier series conduction solutions,

203–207
one-term approximations, 216

Fourier, J.B.J., 12
The Analytical Theory of Heat, 3,

11, 141
Fourier’s law, 11–17, 50–51
Free convection, see Natural convection
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Friction coefficient, see Darcy-Weisbach
friction factor or Skin friction
coefficient

Froude number, 157, 519
Fully developed flow, see Internal flow
Functional replacement method, 150

G
Gardon gage, 94
Gaseous radiation, 581–594

absorption, scattering, and
extinction coefficients, 585

Beer’s law, 585
equation of transfer, 587
flames, 34, 594
mean beam length, 588
optical depth, 586, 589
standard emissivity, 588
total absorptance, 588

Gauss’s theorem, 55, 295, 638, 676
Gnielinski equation, 369
Graetz number, 362
Grashof number, 418

for mass transfer, 661
Grashof, F., 418
Gravity

effect on boiling, 509
geff for condensation, 449
g-jitter, 431
standard acceleration of, 760

Gray body, 547–548, 552–554, 567–581
electrical analogy for heat

exchange, 567–577
transfer factor, see Transfer factor

Greenhouse effect, 599–602

H
Hagen, G., 358
Hagen-Poiseuille flow, 358
Halocline, 709
Heat, 3
Heat capacity, see Specific heat capacity
Heat conduction, see Conduction
Heat conduction equation

multidimensional, 49–56
one-dimensional, 17–18

Heat convection, see Convection

Heat diffusion equation, 18
Heat exchangers, 99–136

balanced counterflow, 112, 127
counterflow, 99, 108, 123
cross-flow, 100, 119, 124
design of, 127–130
effectiveness-NTU method,

120–126
function and configuration,

99–103
logarithmic mean temperature

difference, see Logarithmic
mean temperature difference

mean temperature difference in,
103–113

microchannel, 361
parallel flow, 99, 108, 123
P -NTU method, 127
relationship to isothermal pipe

flow, 380–381
shell-and-tube, 99, 118, 124
single-stream limit, 126, 381
with variable U , 113–114

Heat flux, defined, 11–13
Heat pipes, 525–528

merit number, 526
Heat sink, 176
Heat transfer, 3

modes of, 11–34
Heat transfer coefficient, 19–20

average, 19, 308–309
effect of mass transfer, 676–678
overall, 78–85

Heisler charts, 212
Helmholtz instability, 488–491
Henry’s law, 642
Hohlraum, 28
Hot-wire anemometer, 393, 406
Hydraulic diameter, 381–386
Hydrodynamic theory of CHF, see Peak

Heat Flux
Hydrogen embrittlement, 646
Hypersonic flow, 682

I
Ideal gas law for mixtures, 625–626
Ideal solution, 637, 643, 695
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Incompressible flow, 279–280, 294,
639, 709

Indices, method of, 150
Initial condition, 142
Insulation

critical radius of, 69–71
superinsulation, 14

Integral conservation equations
for energy, 302–306
for momentum, 288–290

Intensity of radiation, 549–551
Interfacial boundary conditions,

640–646
Internal flow

bulk energy equation, 355
bulk enthalpy, 353
bulk temperature, 353–357

for uniform qw , 358
for uniform Tw , 380–381

bulk velocity, 353
entry length

laminar hydrodynamic, 357
laminar thermal, 361–362
turbulent, 364–366

friction factor
laminar flow, 370
turbulent flow, 367–374

fully developed
hydrodynamically, 353,

357–358
thermally, 353–357

hydraulic diameter, 381
laminar heat transfer

developing flow, 361–364
uniform qw , fully developed,

358–360
uniform Tw , fully developed,

361
laminar temperature profiles,

355–357
laminar velocity profile

developing flow, 353
fully developed, 357–358

noncircular ducts, 382–387
turbulent, 364–379
turbulent heat transfer, 366–379

Gnielinski equation, 369
liquid metals, 375–379
rough walls, 372–374

variable property effects, 371
turbulent transition, 274

Irradiance, 567

J
Jakob number, 442
Jakob, M., 230, 442
Jakob, Max, 314

K
Ka

¯
lida

¯
sa

Abhijña
¯

na S
¯

akuntala
¯

, 767
Kinetic theory of gases

average molecular speed, 686
binary collision frequency, 701
Chapman-Enskog theory, 686
diffusion coefficient

elementary model, 634–635
exact, 686–688
Maxwell-Stefan, 700

limitations of, 689–690
mean free path, 299, 686
thermal conductivity

elementary model, 299–300
gas mixtures, 697
monatomic gas, 696

viscosity
elementary model, 299–300
gas mixtures, 697
monatomic gas, 696

Kirchhoff, G.R., 551
Kirchhoff’s law, 551–554
Kolmogorov scales of turbulence, 342

L
Laplace’s equation, 235
Laplacian, 56, 235
Lardner, D.

The Steam Engine Familiarly
Explained and Illustrated, 99

Leibnitz’s rule, 289
Lennard-Jones intermolecular potential,

687–688
Lewis number, 632
Lewis, W. K., 633, 659, 667
L’Hospital’s rule, 112
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Liquid metal heat transfer
effect of Pr, 301–302
in tube bundles, 395–397
in tubes, 375–379
laminar boundary layer, 307–309

Logarithmic mean temperature
difference (LMTD), 103–120

correction factors, 116–120
defined, 111
limitations on, 113–114

Lucretius
de Rerum Natura, 731

Lummer, O.R., 30–31
Lumped capacity solutions, 21–26,

194–202
dimensional analysis of, 195–196
electrical/mechanical analogies,

196–198
in natural convection, 421–422
second order, 200–202
with heat generation, 145
with variable ambient

temperature, 198–200, 264

M
Mach number, 310
Mass average velocity, 628
Mass conservation, see Conservation of

mass
Mass diffusion equation, 650
Mass fraction, 624
Mass transfer, 621–699

analogy to heat transfer, 64,
647–661

evaporation, 662–667, 680
forced convective, 655–660
in stationary medium, 647–653
natural convective, 661
with simultaneous heat transfer,

662–669, 676–684
Mass transfer coefficients, 655–661

at low rates, 655–661
analogy of heat and mass

transfer, 657–661
defined, 656
effect of mass transfer rate on,

670–673
variable property effects, 678

Mass transfer driving force, 652, 656
Material derivative, 296
Maxwell, J. C., 700
Maxwell-Stefan diffusion coefficient,

701
Maxwell-Stefan equations, 653,

700–706
for an ideal gas, 703
nonideal mixtures, 706

Mean beam length, 588
Mean free path, 299

rigid sphere molecules, 686
Melville, H.

Moby Dick, 351
Microchannel heat exchanger, 361
Mixed convection, 441
Mixing-cup temperature, see Bulk

temperature
Mixtures

binary, 632
composition of, 624–627
molar mass of, 625
nonideal, 704
of ideal gases, 625–627
specific heat of, 699
transport properties, 686–699

gas diffusion coefficients,
686–691

liquid diffusion coefficients,
691–695

thermal conductivity of gas
mixtures, 696–699

viscosity of gas mixtures,
696–699

velocities and fluxes in, 627–632
Mobility, 691
Molar concentration, 625
Molar mass, 625, 689
Molarity, 625
Mole flux, 629
Mole fraction, 625
Mole-average velocity, 630
Momentum equation, 281–284
Momentum integral method, see

Integral conservation
equations

Moody diagram, 370
Mothballs, 717
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N
Natural convection, 20, 413–441

dimensional analysis, 417–419
governing equations, 415–417
horizontal cylinders, 430–431
in enclosures, 440
in mass transfer, 661
inclined and horizontal plates,

434–437
spheres, 433–434
submerged bodies, 433
turbulent, 419–420, 434
validity of b.l. approximations,

428
variable-property effects, 436
vertical cylinders, 432
vertical plates, 417–428

Squire-Eckert analysis, 422–426
wide-range correlation, 419

with forced convection, 440
with uniform heat flux, 437–439

Navier-Stokes equation, 281
Nernst-Planck equation, 706, 720
Neumann conditions, 142
Newcomen’s engine, 193
Newton, Isaac, 19
Newton’s law of cooling, 19
Newton’s law of viscous shear, 283
Nomenclature, 767–773
NTU, number of transfer units, 122
Nuclear reactor, 622
nuclear reactor, 5, 230, 351, 375, 393,

395–396, 476
Nucleate boiling, see Boiling
Nukiyama, S., 471–473
Nusselt number, defined, 277

average, 309, 312
for developing internal flow,

362–363
for fully developed internal flow,

359
for mass transfer, 658

Nusselt, E.K.W., 122, 277–278, 418, 443,
449, 455

O
Ocean, salt concentration in, 709

Ohm’s law, 63
gray body radiation analogy,

567–577
thermal resistance analogy, see

Thermal resistance
Overall heat transfer coefficient, 78–85

typical values, 82

P
Partial density, 624
Partial pressure, 625
Peak heat flux, 476, 485–500

external flows, 510
general expression for, 492
horizontal plate, 492–496
internal flows, 520
various configurations, 496–500
very small objects, 497, 507
Zuber-Kutateladze prediction, 495

Péclet number, 307, 377, 396
Phase equilibrium, 641
Physical constants, 760
Pipe flow, see Internal flow
Pi-theorem, see Buckingham pi-theorem
Planck, M., 30
Planck’s constant, 30
Planck’s law, 30, 46
Pohlhausen, K., 288, 305
Poiseuille, J., 358
Poiseuille’s law, 358
Prandtl number, 298–301

Eucken formula, 719
relation to b.l. thickness, 301–302,

305
turbulent Prandtl number, 323

Prandtl, L., 272–273, 284, 316
Preheater, feed-water, 104
Pringsheim, E., 30–31
Properties of substances, see

Thermophysical property
data

Property reference state, see Film
temperature or Film
composition

Psychrometer, sling, 664

Q
Quenching, 497
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R
Radiation, see Thermal radiation
Radiation heat transfer coefficient, 71
Radiation shield, 34, 557, 571
Radiosity, 567
Raoult’s law, 642
Rarefied gas dynamics, 690
Rayleigh number, 419

for mass transfer, 661
for uniform wall heat flux, 438

Rayleigh, Lord (J.W. Strutt), 151
Reactions

heterogeneous, 630, 638, 681, 708
homogeneous, 638, 681

Reboiler, 102
Recuperator, 105
Reflectance, 28

diffuse and specular, 548–549
Relativity, theory of, 155
Resistance, see Thermal resistance
Resistance thermometer, 471
Reverse osmosis, 673
Reversibility and heat transfer, 8
Reynolds number, 273
Reynolds, O., 274, 314
Reynolds-Colburn analogy

for laminar flow, 313–314
for mass transfer, 667
for turbulent flow, 323–325,

366–369
Richardson, L.F., 314
Roughness, see Surface roughness

effects

S
Samurai sword, 220–221
Savery’s engine, 193
Scattering, 582
Schmidt number, 632
Schmidt, E., 277, 633
Second law of thermodynamics, 8–9
Self-diffusion, 634, 686
Separation of variables solutions,

146–150
Shakespeare, Wm.

Macbeth, 471
Venus and Adonis, 543

Sherwood number, 659

Sherwood, T. K., 659
Shock wave, 681–682, 690
Sieder-Tate equation, 368
Similarity transformations, 224,

284–287
Simultaneous heat and mass transfer,

662–669, 676–682
S.I. System, 14, 761–765
Skin drag, see Skin friction coefficient
Skin friction coefficient, 289

for laminar flow, 292
for turbulent flow, 322, 344
for turbulent pipe flow, 367–374

Smith, W.
A Dictionary of Greek and Roman

Antiquities, 761
Solar energy, 594–603

solar collectors, 602–603
wavelength distribution, 547

Soret effect, 637, 709
Species conservation, 638–661

boundary conditions for, 640–646
equation of, 638–640

for stationary media, 647–651
for steady state, 647–649
for unsteady diffusion, 650–651

Species-average velocity, 628
Specific heat capacity, 17, 294

for mixtures, 699
Specific heat ratio, 697
Specular reflection, 548
Speed of light in vacuum, 30, 760
Stagnant film model, 671, 715
Standard state, 704
Stanton number, 313, 325
Steam ejector, 684
Stefan tube, 653
Stefan, J., 653, 700
Stefan-Boltzmann constant, 30, 760
Stefan-Boltzmann law, 29, 653
Stegosaurus, 163
Steradian, defined, 549
Stokes’ law, 692
Stokes, G. G., 692
Stokes-Einstein equation, 692
Stream function, 278–280
Streamlines, 278
String rule, 607
Strouhal number, 387
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Sublimation, 645, 659, 667, 714,
716–717

Suction, 673
Surface roughness effects

on friction factor, 368, 372–374
on nucleation, 481–482
on pool boiling, 503–507
on turbulent forced convection,

372–374
on turbulent transition, 276, 330

Surface tension, 479–481
Sutherland, W., 692
Sweat cooling, 668, 680

T
Taylor instability, 485–488
Taylor, G.I., 486
Temperature gradient, defined, 50
Temperature response charts, 207–216
Thermal conductivity, 11–14, 51

equations for gases, 696–699
Eucken correction, 697
simple kinetic theory model,

299–300
temperature dependence, 50–51

Thermal diffusion, 637
Thermal diffusivity, 18
Thermal expansion, coefficient of, 417

for an ideal gas, 417
Thermal radiation, 26–34, 543–604

black body, 27–30
black body exchange, 555–565
diffuse and directional, 548–549
enclosures

gray, algebraic solutions,
577–581

nonisothermal, nongray, or
nondiffuse, 581

gaseous, see Gaseous radiation
gray body, 547
gray body exchange, 552–554

electrical analogy, 567–577
with a specified wall flux, 575
with an adiabatic surface, 574

infrared radiation, 27–28
intensity, 549–551
Kirchhoff’s law, 551–554

monochromatic emissive power,
29

Monte Carlo method, 581, 594
Planck’s law, 30, 46
radiant exchange described, 31–34
radiation fractional function(, 613
radiation fractional function), 613
radiation heat transfer coefficient,

71
radiation shield, 34, 557, 571
small object in large environment,

33, 570
solar, 594–604
Stefan-Boltzmann law, 29–30
transfer factor, see Transfer factor
view factor, see View factor
wavelength distribution, 27–30,

545–548
Wien’s displacement law, 30

Thermal resistance, 62–77
contact resistance, 75–77
defined, 62
for a cylinder, 66
for a fin, 175–176
for a slab, 62
for convection, 69
for thermal radiation, 71–75
fouling resistance, 82–85
in parallel, 72–75, 80
in series, 69, 78–79
Ohm’s law analogy, 62–63
voltage divider, 96

Thermophysical properties
physical constants, 760

Thermophysical property data, 731
accuracy of, 732–734
critical point temperature, 751
critical-point temperature,

479–481
density, 739–759
diffusion coefficient, 636

air-water, 636
dynamic viscosity, 755–759
emittance

gases, 582–594
surfaces, 546

gases at 1 atm pressure, 755–759
kinematic viscosity, 745–759
latent heat of vaporization, 751
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liquid metals, 745–750
metallic solids, 739–740
mixtures, see Mixtures
molar mass, 689
nonmetallic solids, 741–744
Prandtl number, 745–759
saturated liquids, 745–750
saturated vapors, 752–754
specific heat capacity, 739–759
surface tension, 479–481
thermal conductivity, 15, 52–53,

739–759
thermal diffusivity, 739–759
thermal expansion coefficient,

745–754
triple point temperature, 751
vapor pressure, 752–754

CCl4(l), 711
CO2(s), 716
ethanol, 714
H2O(l), 754
H2O(s), 646
naphthalene, 659
paradichlorobenzene, 717

Time constant, 22, 196, 200
Transfer factor, 33, 545

parallel plates, 569
two diffuse gray bodies, 570
two specular gray bodies, 571

Transmittance, 28
Transpiration cooling, 678–680
Transport laws, 8
Tube bundles, 393–397
Tube flow, see Internal flow
Turbulence, 314–336

eddy diffusivities, 318–323
friction velocity, 320, 373
internal flow, 364–379
length scales of, 316–318, 342
log law, 322
mixing length, 316–322
Reynolds-Colburn analogy,

323–325
transition to, 274–276, 328–335
viscous sublayer, 321

Two-phase flow
heat transfer

boiling, 512–520
condensing, 521

regimes
for horizontal tubes, 519–520
without gravity force, 512–515

U
Units, 761–765
Universal gas constant, 626, 760

V
Verne, J.

Around the World in 80 Days, 5
View factor, 31, 555–565

between small and large objects,
563–564

examples of view factor algebra,
555–565

general integral for, 558–560
reciprocity relation, 557
some three-dimensional

configurations, 562
some two-dimensional

configurations, 561
summation rule, 555

View factors
string rule, 607

Viscosity
correction for temperature

dependence of, 327, 371
dynamic, 272
gas mixtures, 697
kinematic, 273
monatomic gas, 696
Newton’s law of viscous shear,

283
simple kinetic theory model,

299–300
Sutherland formula for gases, 341

von Kármán constant, 321
von Kármán, T., 288
Vortex shedding, 387–389

W
Watt, James, 193
Weber number, 510
Wet-bulb temperature, 664–668
Wetting, 504–507

surface texture, 504
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Wetting agent, 522
Wien’s displacement law, 30, 760

Y
Yamagata equation, 482
Yoga, see Bikram yoga

Z
Zeta function, 46
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